Adaptive Neuro-Symbolic Network Agent

Patrick Hammer patrick.hammer@temple.edu

ANSNA

- Sensorimotor System
- NARS heritage, using NAL-1/7/8
- Uses Sparse Distributed Representations, not Terms
- Event driven control ideas adapted from: Tony Lofthouse's Adaptive Logic And Neural Network (https://cis.temple.edu/tagit/events/papers/Lofthouse.pdf)
- Uses Procedure Learning ideas from OpenNARS
- Can efficiently process sensor information

Knowledge Representation

• SDR's, supporting intersection **SDRInt(a,b) = a & b**

- Also **SDRUnion(a,b)** = **a** | **b** and tuple formation:
- SDRTuple(a,b) = $\Pi_{s}(a) \oplus \Pi_{p}(b)$ used for sequences

(Picture from http://www.sparsey.com)

Event

Composed of:

- SDR
- Type: Belief or Goal
- NAL Truth Value: Frequency and Confidence
- Evidental Base: Input ID's, to count evidence once
- Occurrence Time

Concept

Composed of:

- SDR
- Usage (useCount and lastUsed)
- Belief and goal event
- Predictive links

also:

- created for new event when novel enough
- when an event matches it, Usage gets updated, and Belief/Goal event revises with matched event:

Matching event e to concept C

Match event **e** to concept with highest truth expectation of **T_match** = Truth of **e** --> **C**: (winner takes all / Choice)

- Positive evidence **E_p = {i | C_i=e_i=1}**
- Negative evidence $\overline{E}_n = \{i \mid \overline{e}_i = \overline{1} \land C_i = 0\}$
- Total evidence $\mathbf{E}_{total} = \mathbf{E}_{p} \cup \mathbf{E}_{n}$
- Match frequency **f_match = |E_p| / |E_total**|
- Match conf. c_match = |E_total| / (|E_total| + 1)
- Match truth **T_match = (f_match, c_match)**
- SDR_Inheritance(S,P) = Deduction(T_match, T_E) ... Essentially Revision plus Deduction

Predictive Links

Predictive NAL-8 statement (&/,a,op) =/> b composed of:

- Source Concept SDR a
- Target Concept SDR ${\boldsymbol{b}}$
- Operation **op** (can be **None**)
- NAL Truth Value
- Occurrence time offset
- Occurrence time variance
- Reinforced by observing an event sequence **a. op. b.**
- Punished by failed anticipation.

"Link spikes":

When goal b! arrives at concept b, and concept op! generates the highest goal truth among all to b incoming links, deduce and anticipate b. and execute op as a side effect, else pass subgoal a! to concept a using Deduction.

Inference Rules

Revision and Choice:

{Event a, Event a} |- Event a {Implication A, Implication A} |- Implication A

Intersection:

{Event a., Event b.} |- Event (&/,a,b)

Induction:

{Event a., Event b.} |- Implication $\langle a = / \rangle b \rangle$

Deduction:

{Event a., Implication $\langle a = / \rangle b \rangle$ } |- Event b. {Event b!, Implication $\langle a = / \rangle b \rangle$ } |- Event a! {Event (&/,a,op())!, Event a.} |- Event op()!

Big Picture

Stable C implementation

Future investigations

• Find better ways to deal with conceptual novelty than comparing event SDR's to existing concept SDR's.

• Flexible NARS-style Inheritance between concepts seems necessary to explain higher-level cognition, rather than relying on implicit/structural Inheritance given by the SDR encodings.

• Conceptual Interpolation changes existing SDR's, similar to Sparse Distributed Memory to form more representative SDR's from event matches, investigate.

• How can variable/placeholder bits be implemented efficiently, so that the system can form abstract knowledge similar to NARS?

• Hierarchically arranged receptive fields: local inhibition in each layer can automatically lead to sparse coding of input stimuli. Investigate, and in general, extend ANSNA with sensory channels.

Conceptual interpolation

Formation of a "noise-less prototype" by keeping a counter, as shown in Kanerva, P. (1988). Sparse distributed memory. MIT press

Variables in OpenNARS

• To support identity mapping, that for instance demands, associating the common property between the right and left sample as a reason for the happening satisfaction, OpenNARS introduces dependent variables:

```
<{right} --> [A1]>. :|:
<{left} --> [A1]>. :|:
<{SELF} --> [satisfied]>. :|:
|- (intersection then deduction)
<(&/,<{left} --> [#1]>,<{right} --> [#1]>) =/>
<{SELF} --> [satisfied]>>.
```

• How to realize in ANSNA?

Variable bits in ANSNA

left =	0101000
right =	0010010
A1 =	1000100
rightA1 =	1010110
leftA1 =	1101100

• Observed sequence: leftA1, rightA1, satisfied, hypo.:

(&/,1010110,1101100) =/> satisfied

• specific version by or-ing the bits:

(&/,rightA1,leftA1) =/> satisfied 1111110 =/> satisfied

• general version:

(&/,right(#1),left(#1)) =/> satisfied xpspxsx =/> satisfied

Variable bits in ANSNA

(&/,right(#1),left(#1)) =/> satisfied xpspxsx =/> satisfied

• For a new **c=(&/,a,b)** to match the precondition of this implication:

- **p** positions need to be 1 in **b**,
- **s** positions needs to be 1 in **a**,
- in \mathbf{c} , \mathbf{x} can be either 0 in \mathbf{a} and \mathbf{b} , or 1 in \mathbf{a} and \mathbf{b} both.

• So all the **x** positons together act as the variable SDR part in the SDR's **a** and **b**, which has to be the same in both **a** and **b** to match the precondition.

Thank you!

SENSORIMOTOR SYSTEM

Website: https://github.com/patham9/ANSNA