Reflective variants of Solomonoff induction and AIXI

Benja Fallenstein, Nate Soares and Jessica Taylor

Machine Intelligence Research Institute

July 24, 2015

Benja Fallenstein, Nate Soares and Jessica Taylor Reflective variants of Solomonoff induction and AIXI

- 4 同 ト 4 ヨ ト 4 ヨ ト

Motivation

- What does it mean to learn optimally in the real world?
 - Closest thing to a definition:
 - Solomonoff induction and AIXI

<ロ> (日) (日) (日) (日) (日)

Motivation

- What does it mean to learn optimally in the real world?
 - Closest thing to a definition:
 - Solomonoff induction and AIXI
- Environments can't contain other equally powerful systems
 - But that's important in the real world!

- 4 同 ト 4 ヨ ト

Motivation

- What does it mean to learn optimally in the real world?
 - Closest thing to a definition:
 - Solomonoff induction and AIXI
- Environments can't contain other equally powerful systems
 - But that's important in the real world!
- Seems like a pretty fundamental flaw
 - In order to figure out what the environment does, need more computing power than this environment

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

- What does it mean to learn optimally in the real world?
 - Closest thing to a definition:
 - Solomonoff induction and AIXI
- Environments can't contain other equally powerful systems
 - But that's important in the real world!
- Seems like a pretty fundamental flaw
 - In order to figure out what the environment does, need more computing power than this environment
 - Halting oracles can't talk about machines with halting oracles

- 4 同 1 4 日 1 4 日 1

Motivation

- What does it mean to learn optimally in the real world?
 - Closest thing to a definition:
 - Solomonoff induction and AIXI
- Environments can't contain other equally powerful systems
 - But that's important in the real world!
- Seems like a pretty fundamental flaw
 - In order to figure out what the environment does, need more computing power than this environment
 - Halting oracles can't talk about machines with halting oracles
- But actually. . .

<ロ> (日) (日) (日) (日) (日)

1 Why Solomonoff induction can't predict itself

2 Reflective oracles

3 Reflective Solomonoff induction and AIXI

- 4 同 ト 4 ヨ ト

Why SI can't predict itself

- Solomonoff induction (SI), roughly:
 - Predict infinite bitstrings.
 - Hypotheses: any program which outputs an infinite bitstring.
 - Prior probability $\propto 2^{-\text{length of program}}$

▲□ ► < □ ► </p>

Why SI can't predict itself

- Solomonoff induction (SI), roughly:
 - Predict infinite bitstrings.
 - Hypotheses: any program which outputs an infinite bitstring.
 - Prior probability $\propto 2^{-\text{length of program}}$
- For each hypothesis, SI must compute next bit.
 - SI mustn't loop, even if a hypothesis loops.
 - Needs halting oracle.
 - But halting oracle only takes machines *without* a halting oracle.

▲ 同 ▶ ▲ ヨ ▶ ▲ ヨ

Why SI can't predict itself

- Solomonoff induction (SI), roughly:
 - Predict infinite bitstrings.
 - Hypotheses: any program which outputs an infinite bitstring.
 - Prior probability $\propto 2^{-\text{length of program}}$
- For each hypothesis, SI must compute next bit.
 - SI mustn't loop, even if a hypothesis loops.
 - Needs halting oracle.
 - But halting oracle only takes machines *without* a halting oracle.
- Attempt to fix:
 - $\bullet\,$ Oracle that returns 0/1 if hypothesis returns 0/1
 - Can return either 0 or 1 if program loops
 - But: Ask "what do I return" and return opposite

イロト イポト イラト イラト

Reflective oracles

- Probabilistic oracle machines:
 - Turing machines which can (1) flip coins and (2) call an oracle.
 - The oracle may answer randomly.
 - $\mathbb{P}[M^{O}() = 1] = \text{prob. that } M \text{ returns } 1 \text{ when run on oracle } O$.

(4 同) (4 回) (4 回)

Reflective oracles

- Probabilistic oracle machines:
 - Turing machines which can (1) flip coins and (2) call an oracle.
 - The oracle may answer randomly.
 - $\mathbb{P}[M^{O}() = 1] = \text{prob. that } M \text{ returns } 1 \text{ when run on oracle } O$.

Reflective oracles:

- O(M, x, p): M machine, x input, p probability
- Always returns 0 or 1, possibly probabilistically.

•
$$\mathbb{P}[M^O(x) = 1] > p \implies \mathbb{P}[O(M, x, p) = 1] = 1$$

•
$$\mathbb{P}[M^O(x)=0] > 1-p \implies \mathbb{P}[O(M,x,p)=0]=1$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Reflective oracles

- Probabilistic oracle machines:
 - Turing machines which can (1) flip coins and (2) call an oracle.
 - The oracle may answer randomly.
 - $\mathbb{P}[M^{O}() = 1] = \text{prob. that } M \text{ returns } 1 \text{ when run on oracle } O$.

Reflective oracles:

- O(M, x, p): M machine, x input, p probability
- Always returns 0 or 1, possibly probabilistically.

•
$$\mathbb{P}[M^O(x) = 1] > p \implies \mathbb{P}[O(M, x, p) = 1] = 1$$

•
$$\mathbb{P}[M^O(x)=0] > 1-p \implies \mathbb{P}[O(M,x,p)=0]=1$$

• E.g.: Ask oracle what I do and do the opposite

•
$$M^{O}() := 1 - O(M, \epsilon, 0.5)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reflective oracles

- Probabilistic oracle machines:
 - Turing machines which can (1) flip coins and (2) call an oracle.
 - The oracle may answer randomly.
 - $\mathbb{P}[M^{O}() = 1] =$ prob. that M returns 1 when run on oracle O.

Reflective oracles:

- O(M, x, p): M machine, x input, p probability
- Always returns 0 or 1, possibly probabilistically.

•
$$\mathbb{P}[M^O(x) = 1] > p \implies \mathbb{P}[O(M, x, p) = 1] = 1$$

•
$$\mathbb{P}[M^O(x)=0] > 1-p \implies \mathbb{P}[O(M,x,p)=0]=1$$

• E.g.: Ask oracle what I do and do the opposite

•
$$M^{O}() := 1 - O(M, \epsilon, 0.5)$$

• Not a contradiction: $\mathbb{P}[M^{O}() = 1] = 0.5$

化口油 化晶体 化晶体 化晶体

Reflective Solomonoff induction

- Hypothesis = machine, takes bitstring so far, returns next bit
 - $\implies O(M, x, p)$ talks about *conditional probability* given x

<ロ> (日) (日) (日) (日) (日)

Reflective Solomonoff induction

- Hypothesis = machine, takes bitstring so far, returns next bit
 - $\implies O(M, x, p)$ talks about *conditional probability* given x
- Given machine $M^{O}(x)$ that may loop, construct $N^{O}(x)$:
 - Flip a fair coin. If heads: Return O(M, x, 0.5).
 - If tails: Run O(M, x, 0.5); depending on result, replace 0.5 by either 0.25 or 0.75; start from beginning (binary search)
 - $N^O(x)$ never loops, and: $\mathbb{P}[N^O(x) = b] \ge \mathbb{P}[M^O(x) = b]$

Reflective Solomonoff induction

- Hypothesis = machine, takes bitstring so far, returns next bit
 - $\implies O(M, x, p)$ talks about conditional probability given x
- Given machine $M^{O}(x)$ that may loop, construct $N^{O}(x)$:
 - Flip a fair coin. If heads: Return O(M, x, 0.5).
 - If tails: Run O(M, x, 0.5); depending on result, replace 0.5 by either 0.25 or 0.75; start from beginning (binary search)
 - $N^O(x)$ never loops, and: $\mathbb{P}[N^O(x) = b] \ge \mathbb{P}[M^O(x) = b]$
- Reflective Solomonoff induction $rSI^{O}(x)$:
 - Sample non-looping machine N^O
 - Rejection sampling: compute probability that N^O produces string x, accept N^O with this probability, else start over
 - Output N^O(x)

化口油 化晶体 化晶体 化晶体

Reflective Solomonoff induction and AIXI

- $rSI^{O}(x)$ can reason about worlds making calls to $rSI^{O}(x)$
 - E.g.: environment that outputs bit $rSI^{O}(x)$ considers less likely
 - (You could do this to a real-world predictor!)

(4月) (4日) (4日)

Reflective Solomonoff induction and AIXI

- $rSI^{O}(x)$ can reason about worlds making calls to $rSI^{O}(x)$
 - E.g.: environment that outputs bit $rSI^{O}(x)$ considers less likely
 - (You could do this to a real-world predictor!)
 - Thm: rSI^O(x) converges to perfect predictions on any oracle-computable environment (including this one)
 - Solution: probability that next bit is 1 is 0.5

(4月) (1日) (日)

Reflective Solomonoff induction and AIXI

- $rSI^{O}(x)$ can reason about worlds making calls to $rSI^{O}(x)$
 - E.g.: environment that outputs bit $rSI^{O}(x)$ considers less likely
 - (You could do this to a real-world predictor!)
 - Thm: rSI^O(x) converges to perfect predictions on any oracle-computable environment (including this one)
 - Solution: probability that next bit is 1 is 0.5
- Analogously, can define reflective variant of AIXI
 - Has hypotheses containing other reflective AIXIs
 - If it learns that it is in one of these worlds:
 - (roughly) Plays a Nash equilibrium.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Reflective Solomonoff induction and AIXI

- $rSI^{O}(x)$ can reason about worlds making calls to $rSI^{O}(x)$
 - E.g.: environment that outputs bit $rSI^{O}(x)$ considers less likely
 - (You could do this to a real-world predictor!)
 - Thm: rSI^O(x) converges to perfect predictions on any oracle-computable environment (including this one)
 - Solution: probability that next bit is 1 is 0.5
- Analogously, can define reflective variant of AIXI
 - Has hypotheses containing other reflective AIXIs
 - If it learns that it is in one of these worlds:
 - (roughly) Plays a Nash equilibrium.
- Reflective oracle existence proof is closely related to Nash eq.

Conclusions

- AIXI and SI are definitions of *perfect* agents and predictors.
 - (IMO not exactly right, but a large step forward.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- AIXI and SI are definitions of *perfect* agents and predictors.
 - (IMO not exactly right, but a large step forward.)
 - Real-world: environment can contain equally powerful systems
 - Reflective AIXI and SI extend definiton to deal with this

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- AIXI and SI are definitions of *perfect* agents and predictors.
 - (IMO not exactly right, but a large step forward.)
 - Real-world: environment can contain equally powerful systems
 - Reflective AIXI and SI extend definiton to deal with this
- But the real world doesn't contain reflective oracles!

Conclusions

- AIXI and SI are definitions of *perfect* agents and predictors.
 - (IMO not exactly right, but a large step forward.)
 - Real-world: environment can contain equally powerful systems
 - Reflective AIXI and SI extend definiton to deal with this
- But the real world doesn't contain reflective oracles!
 - Real-world systems will need to have *uncertainty about mathematical facts* in predictions about other predictors

Conclusions

- AIXI and SI are definitions of *perfect* agents and predictors.
 - (IMO not exactly right, but a large step forward.)
 - Real-world: environment can contain equally powerful systems
 - Reflective AIXI and SI extend definiton to deal with this
- But the real world doesn't contain reflective oracles!
 - Real-world systems will need to have *uncertainty about mathematical facts* in predictions about other predictors
 - Reflective SI/AIXI as a step towards theory of very intelligent systems reasoning about very intelligent systems

- 4 同 6 4 日 6 4 日 6

Conclusions

- AIXI and SI are definitions of *perfect* agents and predictors.
 - (IMO not exactly right, but a large step forward.)
 - Real-world: environment can contain equally powerful systems
 - Reflective AIXI and SI extend definiton to deal with this
- But the real world doesn't contain reflective oracles!
 - Real-world systems will need to have *uncertainty about mathematical facts* in predictions about other predictors
 - Reflective SI/AIXI as a step towards theory of very intelligent systems reasoning about very intelligent systems
- Thank you for your attention!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト