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Motivation

What does it mean to learn optimally in the real world?

Closest thing to a definition:

Solomonoff induction and AIXI

Environments can’t contain other equally powerful systems

But that’s important in the real world!

Seems like a pretty fundamental flaw

In order to figure out what the environment does, need more
computing power than this environment
Halting oracles can’t talk about machines with halting oracles

But actually. . .
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Why SI can’t predict itself

Solomonoff induction (SI), roughly:

Predict infinite bitstrings.
Hypotheses: any program which outputs an infinite bitstring.
Prior probability ∝ 2−length of program

For each hypothesis, SI must compute next bit.

SI mustn’t loop, even if a hypothesis loops.
Needs halting oracle.
But halting oracle only takes machines without a halting oracle.

Attempt to fix:

Oracle that returns 0/1 if hypothesis returns 0/1
Can return either 0 or 1 if program loops
But: Ask “what do I return” and return opposite
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Reflective oracles

Probabilistic oracle machines:

Turing machines which can (1) flip coins and (2) call an oracle.
The oracle may answer randomly.
P[MO() = 1] = prob. that M returns 1 when run on oracle O.

Reflective oracles:

O(M, x , p): M machine, x input, p probability
Always returns 0 or 1, possibly probabilistically.
P[MO(x) = 1] > p =⇒ P[O(M, x , p) = 1] = 1
P[MO(x) = 0] > 1− p =⇒ P[O(M, x , p) = 0] = 1

E.g.: Ask oracle what I do and do the opposite

MO() := 1− O(M, ε, 0.5)
Not a contradiction: P[MO() = 1] = 0.5
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Reflective Solomonoff induction

Hypothesis = machine, takes bitstring so far, returns next bit

=⇒ O(M, x , p) talks about conditional probability given x

Given machine MO(x) that may loop, construct NO(x):

Flip a fair coin. If heads: Return O(M, x , 0.5).

If tails: Run O(M, x , 0.5); depending on result, replace 0.5 by
either 0.25 or 0.75; start from beginning (binary search)

NO(x) never loops, and: P[NO(x) = b] ≥ P[MO(x) = b]

Reflective Solomonoff induction rSIO(x):

Sample non-looping machine NO

Rejection sampling: compute probability that NO produces
string x , accept NO with this probability, else start over
Output NO(x)
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Reflective Solomonoff induction and AIXI

rSIO(x) can reason about worlds making calls to rSIO(x)

E.g.: environment that outputs bit rSIO(x) considers less likely

(You could do this to a real-world predictor!)

Thm: rSIO(x) converges to perfect predictions on any
oracle-computable environment (including this one)

Solution: probability that next bit is 1 is 0.5

Analogously, can define reflective variant of AIXI

Has hypotheses containing other reflective AIXIs

If it learns that it is in one of these worlds:

(roughly) Plays a Nash equilibrium.

Reflective oracle existence proof is closely related to Nash eq.
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Conclusions

AIXI and SI are definitions of perfect agents and predictors.

(IMO not exactly right, but a large step forward.)

Real-world: environment can contain equally powerful systems

Reflective AIXI and SI extend definiton to deal with this

But the real world doesn’t contain reflective oracles!

Real-world systems will need to have uncertainty about
mathematical facts in predictions about other predictors

Reflective SI/AIXI as a step towards theory of very intelligent
systems reasoning about very intelligent systems

Thank you for your attention!
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