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Abstract. A novel approach to automated learning of syntactic rules
governing natural languages is proposed, based on using probabilities
assigned to sentences (and potentially longer sequences) by transformer
neural network language models to guide symbolic learning processes
like clustering and rule induction. This method exploits the learned lin-
guistic knowledge in the transformers, without any reference to their
inner representations; hence, the technique is readily adaptable to the
continuous appearance of more powerful language models. We show a
proof-of-concept example of our proposed technique, using the method
to guide unsupervised symbolic link-grammar induction methods drawn
from our prior research.

1 Introduction

Unsupervised grammar induction — learning the grammar rules of a language
from a corpus of text or speech without any labeled examples (e.g. of sentences
labeled with their human-created syntax parses) — remains in essence an unsolved
problem. State of the art performance is improving but still fairly mediocre [6].
Recent transformer neural network models have shown powerful abilities at
language prediction and generation, indicating that at some level they do inter-
nally “understand” the rules of grammar. However, the rules of grammar don’t
seem to be found in the neural connections in these networks in any straightfor-
ward manner [1][5], and are not easily extractable in an unsupervised manner.
Supervised extraction of grammatical knowledge from the BERT network reveals
that, to map the state of a transformer network when parsing a sentence into the
sentence’s parse, complex and tangled matrix transformations are needed [4].
Here we explore an alternate approach: Don’t try to milk the grammar out
of the transformer network directly, rather use the transformer’s language model
as a sequence probability oracle, a tool for estimating the probabilities of word
sequences; then use these sequence probability estimates to guide the behavior
of symbolic learning algorithms performing grammar induction. This is work in
progress, but preliminary results have been obtained and look quite promising.
Full human-level AI language processing will clearly involve additional as-
pects not considered here, most critically the grounding of linguistic constructs in
non-linguistic data [8]. However, the synergy between symbolic and sub-symbolic
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aspects of language modeling is a key aspect of generally intelligent language un-
derstanding and generation which has not been adequately captured so far, and
we feel the work presented here makes significant progress in this direction.

2 Methodology

Transformer network models like BERT and GPT2 and their relatives provide
probabilistic language models which can be used to assess the probability of any
given sentence. The probability of sentence S according to such a language model
tells you the odds that, if you sampled a random sentence output by the model
(used in a generative way), it would be S. If S is not grammatical according
to the grammar rules of the language modelled by the network, its probability
will be very low. If S is grammatical but senseless, its probability should also be
quite low.

Having a sentence (or more generally word sequence) probability oracle of
this nature for a language provides a way to assess the degree to which a given
grammar G models that language. What one wants is that: The high-probability
sentences according to the oracle tend to be grammatical according to G, the low-
probability sentences according to the oracle are less likely to be grammatical
according to GG, and G is as concise as possible. The grammars that are best
according to these conjuncted factors are the best grammatical models of the
language in question.

This concept could be used to cast grammar induction as a probabilistic
programming problem, in a relatively straightforward but computationally ex-
orbitant way. Just sample random grammars from some reasonable distribution
on grammar space, and evaluate their quality by the above factors.

What we propose here is conceptually similar but more feasible: Begin with a
symbolic grammar learning algorithm which is capable of incrementally building
up a complex grammar, and use sentence probability estimates from a neural
language model to guide the grammar learning. One could view this as an in-
stance of the probabilistic programming approach with a linguistic-theory-based
heuristic method of sampling grammar space.

Guided by our prior work on symbolic unsupervised grammar induction [3],
we describe an algorithm for inducing a dependency grammar from an unlabeled
corpus, involving two major steps:

— Separate the vocabulary of interest into word categories (functionally equiv-
alent to parts of speech, with a certain level of granularity). An implicit
sub-step here is the disambiguation of polysemous words in the vocabulary,
so that a single word could be assigned to more than one category.

— Do rule induction to find rules that specify how words in the said categories
can be connected to form grammatical sentences.

In more detail, our approach involves:

1. Infer word-senses and parts of speech from vectors built using a neural lan-
guage model as sentence probability oracle
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2. Infer grammatical rules from symbolic pattern-analysis of the corpus tagged

with these senses and parts of speech

Assemble a grammar incrementally from inferred rules

4. Evaluate the addition of an inferred rule to one’s grammar via using a tree
transformer network to generate sentences consistent with one’s rule, and
alternately with mutations of one’s rule

5. Use a neural model as a sentence probability oracle to estimate whether the
inferred rule leads to better generated sentences than its mutation

@

The overall grammar learning architecture encompassing this process is depicted
in Figure 1

Word-instance
probability vectors

_ clusterini
Transformer Probabilistic S
neural net language
model Word senses
Tree transformer Word-sense
network probability vectors
Text corpus Probability evaluation of sentences
generated based on grammar rules
Inferred Grammar rule
grammar evaluator
clustering
hypothesized grammar rules
Symbolic grammar rule
learner
Parts of
PoS-tagged corpus speech

Fig. 1. High-level grammar learning architecture involving symbolic learning guided
by estimated word sequence probabilities from a transformer network.

For our early experiments, we have chosen BERT [2] as the transformer to use,
but it could easily be extended to any other similar pre-trained network.

2.1 Assessing sentence probability

We now explain some of the formal details of our approach, beginning with the

computation of sentence probability according to a neural language model.
Given a sentence S = [wg, w1, ..., wn], composed of N words w;, i € [0,1, ..., N],

we want to calculate its probability P(S). A way to decompose that probability
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into conditional probabilities is:
Py(S) = P(wo, w1, ..., wn) = Pwo)-P(w1|wo)-P(wz|wy, w1)-.... P(wywo, wi, ..., wn—1),

which we call forward sentence probability.

Now, each P(w;|w;_1,...,wp) can be obtained from BERT’s masked word
prediction model by taking the whole sentence, masking all the words which are
not conditioned in the term (including w;), and obtaining BERT’s estimation
for the probability of w;.

To exemplify the idea, we summarize how to calculate the forward probability
of the sentence “She answered quickly”. The probability is given by

Py (She answered quickly) = P(She)-P(She answered|She)-P(She answered quickly|She answered).

Each of these terms translates to a BERT Masked Language Model prediction
for a sentence with masked tokens. For example,

P(She answered|She) = P(MASK2=answered|She MASK2 MASK3),

and we get probability values such that “answered” is predicted as the second
token in the BERT Masked Language Model.

Now, to take advantage of BERT’s bi-directional capabilities, we can estimate
the sentence’s backwards probability in a similar fashion:

Pb(S) = P(wo,wl,...,wN) = P(wN)-P(wN_1|wN)~P(wN_2|wN_1,wN)~...~P(w0|w1,w2,...,wN)

We finally approximate the sentence probability as the geometric-mean of
the two directional ones:

P(S) =/ P¢(S) - Py(95)

2.2 'Word Category Formation

Following our prior work on symbolic grammar induction [3] and a number
of previous works, we propose to generate embeddings for the words in the
vocabulary, and cluster them using a proximity metric in the embedding space.
Each final cluster can be considered a different word category, whose connection
rules to other clusters will be later defined in the induced grammar. Unlike prior
work, we use sentence probabilities for the embedding features.

We expand each sentence in the corpus into N sentences with a “blank”
token in a different position, where N is that sentence’s length. Each of those
sentences with a blank is a feature for the word-vectors we will build. Hence,
we can think of a word-sentence matrix M, where the rows are the words in the
vocabulary and the columns are unique sentences with blanks in them. Figure 2
shows such a matrix.

We fill each cell in the matrix with the probability of the corresponding
sentence-with-a-blank (column), when the blank is substituted by the corre-
sponding word (row). That is, if S} is the sentence-with-a-blank in column j and
w; is the word in row ¢, then the cell M; ; = P(S}\blank filled with w;).
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Once the matrix is filled, word categories are obtained by clustering the
obtained word vectors. Or, if one has performed word sense disambiguation
(which can be done based on different computations from this same matrix,
as will be described below), by clustering similar vectors corresponding to word
senses.
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Fig. 2. Left: An example of forward sentence probability calculation. Right:The matrix
of words versus sentences-with-one-blank, each entry of which gives the probability
of the sentence with the given word filling in the blank. We use these for word sense
disambiguation and word category learning.

2.3 Word Sense Disambiguation

Embeddings obtained from transformer networks by supervised learning have
been used to derive word senses [10]; here we pursue a related goal but in an
unsupervised approach. From an unlabeled training corpus, we obtain a trans-
former embedding for each instance of each word in its given context. Then, for
each word in the vocabulary, we gather all of its embeddings and cluster them.
The resulting clusters can be used as the different word senses of a word.

Specifically, in our approach, a word-instance can be represented by a vector
whose i’th entry is the probability the neural language model assigns to the
sentence obtained by: Replacing the word with word i, in the sentence (and
discourse context) where it appears.

Consider the word-instance “test” in “The test was a success.” We can make
a vector for the sentence-with-one-blank-word “The  was a success” via eval-
uating the probabilities of sentences like:

— W[1] = “frog”, S[1] = “The frog was a success”
— WJ[2] = “which”, S[2] = “The which was a success”

Based on these we can create a vector for the intension (contextual properties)
of the word-instance, via

— V(test, The ___ was a success)[1] = P(The frog was a success)
— V(test, The ___ was a success)[2] = P(The which was a success)

- -V.(test, The __ was a success)[i] = P(S[i]).
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Word Category Formation in Depth Based on the above, a word-sense can
be represented by a vector whose i’th entry is the probability the neural language
model assigns to the sentence obtained by: Inserting the word into the blank in
the i’th sentence on a list of sentences-with-one-blank-word (and checking to be
sure the resulting sentence gives the appropriate sense of the word). For instance,
if we have

— Sentence 1 = The _ was a success.
— Sentence 2 = Dating her was a constant ___ of my sanity.
— Sentence 3 = I would rather __ him first.

then building the vector for “test” (in the sense of exam) looks like

— S(1, test) = The test was a success.
S(2, test) = Dating her was a constant test of my sanity.
— S(3, test) = I would rather test him first.

V (test)[i] = P(S(test,i))

Clustering these vectors creates Part of Speech categories and finer-grained
syntactico-semantic categories.

2.4 Grammar Induction

After word categories are formed, grammar induction can take place by figuring
out which groups of words are allowed to link with others in grammatical parses.
A grammar can be accumulated by starting with one rule and adding more
incrementally, using the neural language model to evaluate the desirability of
each proposed addition. The choice of which additions to the grammar to propose
at each stage is made by a symbolic rule induction algorithm; so far we have
used the Grammar Learner process described in [3].

For a grammar rule proposed as an addition to the partial grammar already
learned, we generate sentences that use that rule within the given grammar
and obtain their sentence probabilities P(S). Then we corrupt the rule in some
manner, adjust the grammar accordingly, generate sentences from this modified
grammar starting with the mutated rule, and evaluate their P(S). If the sen-
tences from the modified grammar decrease significantly in quality (where the
threshold is a parameter), then the original rule is taken as valid. The ratio-
nale here is that correct grammar rules will produce better sentences than their
distortions.

In the case of the link grammar formalism [7], which we have used in our
work so far, a grammar rule consists of a set of disjuncts of conjunctions of
typed “connectors” pointing forward or backward in a sentence. A mutation of
this type of rule can be the swapping of each connector in the rule, which also
implies a word-order change.

For example, if we have a rule R that connects the word “kids” with the
word “the” on the left and the word “small” also on the left, in that order:
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kids: small- & the-,

which allows the string “the small kids”, then the mutated rule R* would be
kids: small+ & the+,

which accepts the string “kids small the”!.

L ] lSFd--Qrt "

the small:.a kide.n play.v football.n

Fig. 3. Link parse of "The small kids play football” according to the standard English
link grammar dictionary.

This methodology requires some way to generate series of sentences from
proposed grammars. One approach is to use a given grammar to guide the at-
tention within a Tree Transformer [9]. The standard Tree Transformer approach
guides attention based on word-sequence segmentation that is driven by mutual
information values between pairs of adjacent words. One can replace these prob-
abilities with mutual information values between pairs of words that are linked
in partial parses done according to a provided grammar.

Currently we are using a simpler stochastic sentence generation model in
our proof-of-concept experiments, and planning to shift to a Tree Transformer
approach for the next phase of work.

So, the rule R guides the generation of sentences like S = “The small kids
play football”. The rule R* guides the generation of sentences like Sx =“The
kids small play football”. The language model says P(S) > P(S*) — arguing
in favor of adding R to one’s grammar (and then continuing the incremental
learning process).

Alternatively, instead of producing mutated rules, one could also compare
the probabilities of sentences generated with the rule under evaluation against
those of a set of reference sentences of the same length, like those in the corpus
used to derive the grammar, or the word categories obtained previously.

3 Proof of concept

Scalable implementation and testing of the ideas described above is work in
progress; here we describe some basic examples we have explored so far, which
validate the basic concepts (but do not yet provide a thorough demonstration).
We chose to perform our initial experiments using BERT, due to its popularity
in several downstream tasks (e.g. word sense disambiguation by [10]). 2

! Notice that connectors in the rules for small and kids also have to be modified to
accommodate this mutation, i.e. they need to swap kids+ to kids-

2 In particular, we use Huggingface’s implementation of BERT, contained in their
“transformers” package [11] https://huggingface.co/transformers
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Following the workflow of the grammar induction process, we first show an
example of word sense disambiguation, then one for word category formation,
and finally grammar rule evaluation.

3.1 Word sense disambiguation

For an initial simple experiment, we created a small corpus of 16 sentences
containing 146 words, out of which 8 are clearly ambiguous (for a human). Both
syntactic and semantic ambiguities were included.

Some practical considerations for our proof of concept WSD experiment are
as follows:

— We use the average of the last 4 attention layers of BERT as word instance
embeddings, following the second best result from the original paper [2] in
a Named Entity Recognition task?.

— When the BERT tokenizer splits an out-of-vocabulary word into subwords,
we use the arithmetic mean of the embeddings of each sub-token, following
[10].

— For clustering, we tried the out-of-the-box KMEANS, DBSCAN and OP-
TICS models in scikit’s sklearn library?.

We ran the corpus through our disambiguator, and found that KMeans clus-
tering did the best job at separating word senses in our test. Using 2 clusters,
the algorithm achieved an F1-score of 0.91. As examples, the disambiguation for
the word “fat”, which was perfect, looks as follows:

Cluster #0 samples:

santiago became FAT after he got married

there are many health risks associated with FAT

the negative health effects of FAT last a long time
Cluster #1 samples:

the FAT cat ate the last mouse quickly

there is a FAT fly in the car with us

The clustering for “time”, on the other hand, had one mistake, and looks like
this:

Cluster #0 samples:

i was born and raised in santiago de cuba , a long TIME ago
my mouse stopped responding at the same TIME as the keyboard
the negative health effects of fat last a long TIME

Cluster #1 samples:

you will TIME the duration of the dress fitting session

TIME will fly away quickly

The disadvantage of using this straightforward implementation of KMeans is
that one has to specify the number of clusters. When requesting more clusters

3 The best result uses the concatenation of the same 4 last layers, which creates
embeddings that are 4 times longer, but it’s only marginally better.
* https://scikit-learn.org/stable/index.html
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than there are senses for a word, the algorithm spreads instances with similar
meanings to different clusters. This is especially the case with words that we
wouldn’t consider ambiguous, like function words (we have sought to filter these
by explicitly not disambiguating the top 10% most frequent words in the corpus).
However, this may not be a terrible problem in our use case, as the word cate-
gory formation algorithm will simply create more word-sense vectors per word,
which then it could cluster together in the same word category. Future WSD
experiments will involve alternative like automatically learning K, or using EM
as an alternative.

3.2 'Word category formation

Here, working with the same corpus as for WSD, we used the disambiguation
results described above to build word vectors, thus allowing for words to be cat-
alogued in more than one group. Rather than KMeans, we found that OPTICS,
a method that doesn’t require a parameter for the number of clusters and can
leave vectors uncategorized (shown below as Cluster #-1), offers a very good

cluster quality, with a good level of granularity.
The quality of the formed clusters (#0-14) is remarkable:

Cluster #-1: [fat, fat, ate, last, mouse, mouse, quickly, quickly,
., there, there, many, many, health, health, associated, with,
with, stopped, responding, same, time, as, will, fly, fly, negative,
of, a, a, long, in, us, tomorrow, she, she, was, was, wearing,
lovely, brown, brown, dress, attendees, did, not, properly, for,
occasion, became, after, got, married, ’, ’, s, deteriorated,

and, de, ,, ago, fitting, wasn, t, year, smith, protagonize, ]

Cluster #0: [the, my, his, ]

Cluster #1: [born, able, ]

Cluster #2: [raised, growing, bought, 1]

Cluster #3: [cat, keyboard, car, session, feed, family, microsoft, ]

Cluster #4: [duration, episode, series, ]

Cluster #5: [are, is, 1]

Cluster #6: [morning, night, ]

Cluster #7: [away, out, ]

Cluster #8: [they, he, i, you, ]

Cluster #9: [risks, effects, ]

Cluster #10: [at, to, ]

Cluster #11: [santiago, cuba, ]

Cluster #12: [time, will, long, ]

Cluster #13: [dress, and, ]

Cluster #14: [of, in, ]

An evident problem with this result is that most of the words remain in Cluster
#-1, which are the uncategorized words. Although we would expect the full
iterative grammar learning algorithm we propose to be able to live with that
and cluster some of the remaining words in the next pass, we will first try to
fine-tune the procedure to alleviate this situation, as well as explore some other
clustering algorithms. At the same time, we predict that the results will improve
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when we use a larger number of features (instead of only 16 sentences for a total
of 146 different features). A very simple expansion of the vocabulary to cluster
(not shown) already showed a similar number of more populated clusters.

3.3 Grammar Rule Evaluation

We show a simple use case for grammar rule evaluation, using the simple rule
modification strategy proposed in the methodology: swapping the direction of
the connectors that make up a rule, and comparing the sentences it generates
with and without the mutation.

For this experiment, we created a proof of concept grammar with 6 words di-
vided in 6 word categories: determiner, subject, verb, direct object, adjective, ad-
verb. Then, we assigned relationships among the classes. Using the semi-random
sentence generator, this grammar produces sentences like “the small kids eat the
small candy quickly.” (that being the longest possible sentence derived from this
grammar).

We then introduced some extra spurious rules to the grammar by hand.
From a total of 21 rules (15 correct ones vs. 6 spurious ones), the grammar can
generate sentences like “kids eat the the small candy kids eat candy the small
quickly quickly.”, which clearly shows that the grammar is not correct anymore
(this grammar has loops, so this is not even the longest sentence permitted by
these simple modification).

Finally, we ran our first version of the grammar rule evaluation algorithm, to
find out that all of the spurious rules were detected and rejected. Three of the
“correct” rules suffered the same fate.

It is interesting to notice that among the “correct” rules that were discarded,
at least one:

eat: kids-,
generates sentences with no direct object, like “the kids eat.” This sentence,
although valid, might not be very common for the BERT model, and thus obtain

a low probability. Similarly, the reverse of this rule, as modified by the rule
evaluation algorithm:

eat: kids+,

generates sentences like “eat the kids.”, which is also grammatically valid, and
maybe as common as the previous case. This would be one sensible explanation
for the rule’s rejection.

4 Conclusion and Future Work

Our proof-of-concept experiments give intuitively strong indication of the via-
bility of the methodology proposed for synergizing symbolic and sub-symbolic
language modeling to achieve unsupervised grammar induction. The next step
is to create a scalable implementation of the approach and apply it to a large
corpus, and assess the quality of the results. If successful this will constitute
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significant progress both toward unsupervised grammar induction, and toward
understanding how different types of intelligent subsystems can come together
to more closely achieve human-like language understanding and generation.
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