
Causal schema network in model-based
reinforcement learning

Andrey Gorodetskiy1, Alexandra Shlychkova1, and Aleksandr I. Panov1,2

1 Moscow Institute of Physics and Technology
2 Artificial Intelligence Research Institute, Federal Research Center “Computer

Science and Control” of the Russian Academy of Sciences
gorodetskiyandrew@gmail.com

aleksandrashlychkova@gmail.com
panov.ai@mipt.ru

Abstract. One of the unresolved problems of machine learning is the
inefficiency of transfer learning. One of the mechanisms that are used
to solve this problem in the area of Reinforcement Learning is a model-
based approach. In the paper we are expanding the schema networks
method which allows to extract the logical relationships between objects
and actions from the environment data. We present algorithms for train-
ing a Causal Schema Network, predicting environmental conditions using
a circuit network, as well as an algorithm for selecting actions to achieve
the best reward. The results are compared with the results of other im-
plementations of the Schema Network network and Deep Q-Network.

Keywords: Schema Network · Causal Network · Reinforcement learning
· Model-based reinforcement learning

1 Introduction

For an artificial agent acting in real-world conditions, it is necessary to generalize
the experience gained in order to not learn from scratch after a slight change
of the environment. A human does not relearn the policy of interaction with a
familiar object, but only slightly corrects it, when object’s characteristics are
changed. For this, logical relationships between objects and their characteristics
are used at different levels of generalization. For example, in the Atari game
Breakout, the colors of the bricks do not matter and the natural agent does not
change the policy when they change. For an artificial agent, such a generalization
is possible using some universal model-based learning algorithm. In this paper,
we propose a new approach to the learning of universal models for reinforcement
learning in game environments - Causal Schema Network, which is an extension
of the early work of Schema Network [1].

A Schema Network is an object-oriented model of the environment that con-
sists of binary schemas [1]. In this architecture the agent receives a frame from
the environment, then this frame is divided into a grid of square cells (e.g. pix-
els). Schemas reflect the interconnection of objects in a certain window of view

2 A. Gorodetskiy et al.

(several neighboring cells): each schema predicts the reward or the presence or
absence of an object of some type in the current cell using information of presence
of objects in the corresponding neighboring grid cells in current time.

Due to the binary structure of the schemes, it is possible to represent pre-
dictions as a directed graph. A node in this graph is an indicator of the receipt
of a reward, the performance of some action or the presence of some object in a
certain cell of the grid at some point in time. The edge is drawn in the graph if
the value at corresponding position of the corresponding schema is 1. In fact, the
edges indicate the presence of a causal relationship between the events "an object
of this type is present in the cell" and "received reward." An agent can find a
node with a positive reward reachable from the current state of the environment
and plan actions to get it.

Since the graph has fairly generalized properties, the trained Schema network
can be used in conjunction with the classifier for environments with similar
interaction dynamics, which provides advantages in transfer learning.

2 Related work

Representation of logical interconnection often helps to increase an efficiency of
transfer learning. Various methods are used to represent the logical relationships
of objects: in the [1] Schema Network, these are specially introduced binary
Schemas with binary logic. In Logical Tensor Networks [7], it is proposed to
use real logic. To further apply the obtained relationships for planning, you
can provide them as additional data for a neural network. For example, in [6]
schemas are passed to a neural network. Authors in [8] add logical relationships
to the input of a neural network using logical tensor network. Another approach
is to build a dependency graph and search for a reachable state with a positive
garbage.

The usage of the Schema Network[1] in reinforcement learning consists of two
main points: training a network to predict environmental state and construct a
prediction graph with the subsequent search for the best reachable node.

Consider the learning process. The Schema Network uses object-oriented ap-
proach described in [3]. Knowing the types of environment objects, a Schema
Network is able to identify the logical connections between them. A similar ap-
proach was used in Interaction Network [2], for which, however, no planning
algorithms were developed to achieve a reward. If we consider the problem of
prediction the type of cells (which correspond to the nodes in the graph), then it
may be viewed as a classification task. For that problems Convolutional neural
networks are used as in [4]. However, this approach requires a priori knowledge
about the structure of the graph, while the Schema Network allows to obtain
knowledge of the connection of objects automatically from the environment.

A dependency graph is constructed from the trained Schema Network. Find-
ing the reachable state of the environment in which a reward is received can be
considered as a degenerate estimate of the posterior maximum and solved using
the max-product belief propagation [5].

Causal schema network in model-based reinforcement learning 3

3 Causal Schema Network model

Causal Schema Network (CSN model) learns dynamics of the environment and
can be used to predict next states of the environment. At some point of view,
CSN represents both transition and reward functions of the environment.

Model gets an image from the environment, which represents an agent’s cur-
rent observation. This image is parsed into entities. Each entity has the same
set of properties represented by binary variables called here attributes.

In our implementation there are M different types of objects in the environ-
ment. Entity is a pixel of the image, j-th attribute of the entity is True if object
of j-th type crosses the pixel. Each image contains N pixels, hence the num-
ber of entities is also N . At the time t algorithm gets from environment matrix
st of shape (N ×M), which represents information about a particular type of
object each pixel belongs to. Rows of st corresponds to entities and columns to
attributes. This matrix is added to frame stack of size 2.

Then in a number of steps we build matrix Xt, called augmented matrix.
First, st is augmented horizontally, by adding to i-th entity, that is located in
i-th row, attributes of its R−1 spatial neighbours. This augmentation results in
zt matrix of shape (N ×MR). Performing this operation on each element of the
frame stack, finally we construct Xt as horizontal concatenation of (zt−1, zt, At),
where At is a matrix with same rows, each of which equals to one-hot encoded
action at, that was taken at time t.

Then schemas are learned. All schemas are represented by

W = (Wi : i = 1..M),

where Wi is a matrix of schemas for j-th attribute prediction. wj
i is j schema

from Wi. W are used for prediction of next state Yt - matrix of attributes.
After planning agent gets action at at time t. {Xu}u=t

u=0 is transformed to replay
memory (X,Y), where lines of X - unique lines of matrices {Xu}u=t

u=0. If x is jth
line of X in the moment t then j-th line if Y is attributes of entity, which is in
the center of w.

Schemas represent rules of the environment. Each schema computes next
state from certain attributes of entities from previous states using operation
AND:

Schema : (Attributes ∪Actions)k → Attributes ∪Rewards

If several schemes predict same attribute result is computed with operation
OR (see fig.3).

Data preprocessing is performed as follows:

1. Input is picture from the environment in the moment t contains M different
types of objects.

2. One-hot encoded type of object is assigned to pixel if that object crosses
that pixel

3. Concatenated one-hot encoded vector is line of matrix Xt (see fig.3).

4 A. Gorodetskiy et al.

Fig. 1. Instantiation graph of schemas using all attributes

Fig. 2. Transformation of data from the environment into learning format

Causal schema network in model-based reinforcement learning 5

4. X ′t is concatenated Xt, Xt−1 and one-hot index of action (Pic.3).
5. After performing an action agent gets Y from the environment which agent

learns to predict.
6. Add to experience replay unique pairs of lines from X ′t, Yt with the same

index.
7. Experience replay = (X,Y) .

Fig. 3. Getting prediction from data

4 Learning new schemas

The learning process consists of several stages. Firstly, check the correctness of
the existing schemes: try to predict the current state using existing shames. If a
certain schema produces a false positive result, then it is incorrect and needs to
be deleted. Further, for each type of object we will try to obtain new schemes.
If current Schema Net predicts all data for the attribute correctly then no new
schemes needed. Otherwise choose one random sample with positive target from
data that is not predicted by the current Schema Net and put it in the set solved.
Then find such schema that does not give a false positive result throughout the
entire previous history, predicts 1 for vectors in solved and, at the same time,
predicts 1 for the maximum number of other vectors from previous history that
are not predicted yet. Add all vectors for which new schema predicts 1 to set
solved. After that find schema with minimal norm which predicts 1 for vectors
in solved and does not give a false positive result throughout the entire previous
history. Depending on the minimization algorithm, the result of an optimization

6 A. Gorodetskiy et al.

may need to be binarized to be a schema vector. Then we apply a logical filter:
some heuristic that allows to make the learning process more effective.

Wi is matrix of schemes in the moment t for prediction of ith attribute. At
the moment 0 prediction is False. Schema is correct if it does not produce a
false positive result. All incorrect schemes are deleted.

Input : X - matrix NT * MR, Y - matrix M * NT)
Output: w - schema

if XWi 6= Yi then
find x ∈ X, such that xWi 6= Yi|x
solved = {x}

else
return

w = argmin
∑

n:Yn=1

(1− xn)w and (1− xn)w > 1|yn = 0 and

(1− x)w = 0|x ∈ solved

solved = {x|xWi 6= Yi|x and xw = Yi|x}
wnew = argminw|w|1 and (1− xn)w > 1|Yn = 0) and (1− x)w = 0|x ∈ solved)
return wnew

The scheme is binarized as follows: w = |w| > α, where α is hyperparameter.

5 Planning algorithm

The purpose of planning is to find a sequence of actions that will lead the agent
to positive reward.

The input to the planner is the frame stack of size 2 consisting of environment
state matrices. The planning process consists of several stages:

1. Potential reachability analysis;
2. Target queuing;
3. Finding the path to the target.

Using the schema vectors obtained at the training stage, the future states of
the environment are predicted for T time ticks ahead by a chain of matrix
multiplications. Let sjt be the j-th column of the state matrix st. Then:

sjt+1 = XtWj
~1 ,

where Xt is the augmented matrix and Wj is the j-th matrix of the schema
weights.

When building an augmented matrix, we consider that the agent performs all
possible actions at each time step. This allows us to get all the possible options for
the next state st superimposed on each other in the same matrix. For positively

Causal schema network in model-based reinforcement learning 7

predicted attributes, concrete instances of the corresponding schemas on the
factor graph are instantiated.

Having predictions for the future environment states on T ticks ahead, the
desired target nodes of the factor graph are selected, upon reaching which the
agent will receive a positive reward. Such nodes are added to the target queue.

qt = sorted by time potentially reachable positive reward nodes
= [r+closest . . . r

+
farthest]

It is required to find the minimal consistent configuration of the G graph with
the activated target node. In this configuration, the values of the attribute and
reward nodes show their actual reachability. The action nodes at represent the
actions that must be taken to reach the target node. To find such a configuration,
the next node is selected from the target queue and passed to the backtrace_-
node(v) function, which returns a value indicating whether such a configuration
is found.

Algorithm: plan_actions
Input: q - queue of target nodes
Output: actions - sequence of actions to reach the nearest target node (if

such sequence is found)

while q is not empty do
target ← next element from q;
is_success = backtrace_node(target);
if is_success then

actions ← {ai ∈ G : i ∈ [1..T]};
break;

end

The is_reachable attribute of the graph nodes stores the actual reachability
of the node subject to currently selected actions, or None if the reachability is
not known.

When searching for a path to activate the node at time t, schemas are tried
in the following order:

1. action independent
2. coinciding with the current constraint on the action at time t, if any
3. others

After training stage, some schema vectors may depend on actions, while in the
dynamics of the environment there is no such dependence. This occurs because
during training events correlated, but did not have a causal relationship.

For correct planning, it is necessary to find a consistent configuration of the
graph constructed by prediction on such vectors. It may happen that due to
incorrect dependencies it will be impossible to satisfy all of them, and none of
the reward nodes will be reachable. These reward nodes turned out to be active
in the prediction because all actions nodes were considered active.

8 A. Gorodetskiy et al.

Algorithm: backtrace_node
Input : v - target node

Sv - set of schemas that activate node v
Output: actual node reachability, planned actions

v.is_reachable ← False;
for s ∈ Snode do

if s.is_reachable is None then
backtrace_schema(s);

if s.is_reachable then
v.is_reachable ← True;
break;

end

Algorithm: backtrace_schema
Input : s - target schema

Vs - set of nodes, s is conditioned on
Output: actual s reachability

s.is_reachable ← True;
for v ∈ Vs do

if v.is_reachable is None then
backtrace_node(v);

if not v.is_reachable then
s.is_reachable ← False;
break;

end

5.1 Replanning

Modified backtrace_node algorithm can handle these conflicts. We maintain an
array of joint constraints on the active action node for each time tick. During
graph traversal, we either satisfy these constraints or replan nodes committed to
them if there is no other path to the target. The modified algorithm is described
as follows:

1. try to activate the node with an action-independent schema
2. if there is no constraint on the current tick, try to activate the node with

any schema
3. try to select a schema that satisfies the constraint on the current tick
4. replan all vertices that require current constraint

– find all actions that being constraints would not prevent the activation
of any conflicting node

– sequentially start replanning path to each conflicting node using the
action acceptable by all

– if all nodes have been replanned successfully, change the constraints at
all layers affected by replanning

Causal schema network in model-based reinforcement learning 9

During the replanning process, a new conflict situation may arise. Then new
replanning process should be recursively started.

6 Experiments

Fig. 4. Atari Breakout

The model was evaluated on the Atari Breakout game.
The goal of the game is to knock down bricks with a
ball, substituting a moving platform under it. There
are no random factors in the environment.

The action space consists of the following actions:
do not move, move left, move right. As an observa-
tion, the agent receives an RGB image and informa-
tion about a particular type of object each pixel be-
longing to. Rewards are distributed as follows: +1 for
knocking down a brick, -1 for dropping a ball past the
platform, 0 in other cases.

In this environment, the agent is able to show an
adequate game on ∼20 hand-crafted schema vectors.
During training, however, vectors do not cover sam-
ples in the replay buffer so effectively, and their num-
ber was limited to 220 units.

The episode was limited to 512 frames. For this
amount of frames, one can hit the ball about 7 times
without losing it. Figure 5 shows that the agent starts to play successfully after
3 episodes. A distinctive feature of the schema network is the efficient transfer

0 1 2 3 4 5 6 7
number of episodes

0

1

2

3

4

5

6

7

re
w

ar
d

pe
r

ep
is

od
e

Fig. 5. Model evaluation on a standard Breakout

of the trained model to environments with similar dynamics. However, during

10 A. Gorodetskiy et al.

our experiment of transferring the trained model to the same environment with
two balls, some problems of the approach were revealed. When bouncing, the
ball can fly off in different directions, depending on the part of the paddle into
which it hit and paddle’s velocity. At the same time, several balls appear in the
predicted future states of the environment, flying in different directions. The
model cannot distinguish between balls from different realizations of the future,
and considers the nearby balls from different realizations to be the flight path
of another ball, predicting its appearance in the next state. This leads to the
generation of many virtual balls in the predicted states.

Evaluation on the environment with two balls without additional training
showed average score of 7, meaning that agent plays effectively with one ball
and catches the second in half of cases. Agent with hard-coded schema vectors
showed perfect score.

7 Conclusion

In this paper, we proposed an original implementation of the universal logical
model of environment dynamics for model-based reinforcement learning. Our ap-
proach, which we called Causal Schema Network, is a modification and extension
of Schema Network for RL. We described in detail the algorithmic implementa-
tion of the proposed method and conducted basic experimental studies on the
Breakout environment. Code of the model can be obtained in the repository:
github.com/cog-isa/schema-rl.

References

1. Ken Kansky, Tom Silver, David A. Mely, Mohamed Eldawy, Miguel Lazzaro-
Gredilla, Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, Dileep
George: Schema networks:Zero-shot transfer with a generative causal model of in-
tuitive physics.In ICML., (2017).

2. Battaglia, Peter, Pascanu, Razvan, Lai, Matthew, Rezende, Danilo Jimenez, et al.:
Interaction networks for learning about objects, relations and physics.In Advances
in Neural Information Processing Systems, pp 4502-4510, (2016).

3. Diuk, Carlos, Cohen, Andre, and Littman, Michael L.: An Object-Oriented Repre-
sentation for Efficient Reinforcement Learning. In Proceedings of the 25th interna-
tional conference on Machine learning, pp. 240–247. ACM, (2008).

4. Kipf, T. N., andWelling, M.: Semi-supervised classification with graph convolutional
networks. In ICLR, (2017).

5. Hagai. Attias.: Planning by probabilistic inference. In AISTATS, (2003).
6. Sam Toyer, Felipe Trevizan, Sylvie Thieubaux, Lexing Xie: Action Schema Net-

works: Generalised Policies with Deep Learning. (2018).
7. Luciano Serafini, Artur d’Avila Garcez: Logic Tensor Networks: Deep Learning and

Logical Reasoning from Data and Knowledge. (2016).
8. Samy Badreddine , Michael Spranger: Injecting Prior Knowledge for Transfer Learn-

ing into Reinforcement Learning Algorithms using Logic Tensor Networks (2019).

https://github.com/cog-isa/schema-rl

	Causal schema network in model-based reinforcement learning

