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Abstract. A novel computational model (CoDD) utilizing combinatory logic to
create higher-order decision trees is presented. A theoretical analysis of general
intelligence in terms of the formal theory of pattern recognition and pattern for-
mation is outlined, and shown to take especially natural form in the case where
patterns are expressed in CoDD language. Relationships between logical entropy
and algorithmic information, and Shannon entropy and runtime complexity, are
shown to be elucidated by this approach. Extension to the quantum computing
case is also briefly discussed.

1 Introduction

The theoretical foundations of general intelligence outlined in The Hidden Pattern [7]
and formalized in earlier works going back to 1991 [5] are fundamentally grounded
in the notion of pattern. Minds are conceived as patterns emergent in physical cogni-
tive systems, and emergent between these systems and their environments. Intelligent
activity is understood as the process of a system recognizing patterns in itself and its
environment, including patterns in which actions tend to achieve which results in which
contexts, and then choosing actions to fit into these recognized patterns.

The formalization of the pattern concept standardly used in this context is based on
algorithmic information – in essence a pattern in x is a compressing program for x, a
program shorter than x that computes x. The definition can be extended to incorporate
factors like runtime complexity and lossy compression, but the crux remains algorith-
mic information. As program length depends on the assumed underlying computer, this
formalization approach has an undesirable arbitrariness as its route, though of course
as entity sizes go to infinity this arbitrariness becomes irrelevant due to bisimulation
arguments.

Here we present a conceptually cleaner foundation for the pattern-theoretic analysis
of general intelligence, in the form of a new formulation of the pattern concept in terms
of distinctions and decisions. We present a specific computational model – Combina-
torial Decision Dags or CoDDs – with a high degree of naturalness in the context of
cognitive systems, and use CoDDs to explore the relationship between distinction, pat-
tern, runtime complexity, Shannon entropy and logical entropy. We also briefly indicate
extensions of these ideas to the quantum domain, in which Boolean distinctions are re-
placed with amplitude-labeled quantum distinctions and classical patterns are replaced
by ”quatterns.”



The goal is to provide a clear and simple mathematical framework that intuitively
matches the requirements of general intelligence, founded on a computational model
designed with the requirements of modeling cognitive systems in mind.

2 Conceptualizing Pattern in Terms of Distinction and Decision

Taking our cue from G. Spencer-Brown [10], let us begin our with the elemental notion
of distinction.

A distinction is a distinction between one collection of entities A and another col-
lection of entities B. Two distinctions are distinguished from each other if:

– One distinguishes A1 from B1

– The other distinguishes A2 from B2

– It’s not the case that A1 and A2 are identical and B1 and B2 are identical.

Consider a program that takes certain inputs and produces output from them. We
are then moved to ask: Can we think about the ”simplicity” of a process as ρersely
related to the number of distinctions it makes? I.e. is the ”complexity” of a program well
conceived in terms of the number of pairs of legal inputs to which it assigns different
outputs? 1

This line of thinking meshes naturally with the concept of logical entropy [3] –
where the logical entropy of a partition of n elements is the percentage of pairs (x, y)
of elements so that x and y live in different partition cells. If we consider a program
as a partition of its inputs, where two inputs go into the same partition cell if they
produce the same output, then the logical entropy of this partition is one measure of the
program’s complexity. The simpler programs are then the ones with the lowest logical
entropy.

There is an interesting relationship between program length and this sort of program
logical entropy. For each N there will be some upper bound to the logical entropy of
programs of lengthN , and it’s not hard to see that most programs of lengthN will have
logical entropy fairly near this upper bound.

2.1 Shannon entropy, program specialization and runtime complexity

The relationship between logical entropy and Shannon entropy is also worth exploring.
Consider a case where each possible input for a program is represented as a (gener-

ally long) bit string.
Given the set of distinctions that a program makes (considering the program as a

partition of its inputs), we can also ask: If we were to effect this set of distinctions via a
sequence of distinctions ρolving individual entries in input bit-strings, how long would
the sequence need to be? E.g. if we break things down into: First distinguish portion

1 Note that the inputs and outputs of programs may also be programs – i.e. we can consider our-
selves in an ”algorithmic chemistry” TY pe domain [4] [6] comprising a space S of programs
that map inputs from S into outputs in S. This can be formalized in various ways including set
theory with an Anti-Foundation Axiom.)



I1 of input space from portion I2 of input space (using a single bit of the input), then
within I1 distinguish subregion I11 from subregion I12 (using another bit of the input),
etc. – then how many distinctions need to be in this binary tree of distinctions?

The leaves of this binary decision tree are the partition elements; and the length of
the path from the root to a given leaf, is the number of binary questions one needs to
ask to prove that some input lies in that particular partition cell.

This decision tree is closely related to the Shannon entropy of the partition implied
by the program. Suppose we have a probability distribution on the inputs to the program.
The Shannon entropy of this distribution is a lower bound on the average length of the
path from the root of the tree to a leaf of the tree, i.e. a lower bound on the ”average tree
depth.” (The average is taken over all possible inputs drawn from the distribution.)

The optimal binary decision tree for the partition, relative to a given distribution on
the bit strings being partitioned, can be considered as the one for which the average
length from root to leaf is minimal. Not knowing the distribution on inputs, a heuristic
is to guess the optimal tree will be one of those with the fewest nodes.

If we assume a simplified computational model in which one binary distinction is
made per unit time, then the average depth of this binary decision tree is related to the
average runtime complexity of the program. It tells you how long it would take, on
average over all possible inputs, to run the program on an abstract machine making one
distinction (based on one bit of the input string) per unit time. For fixed input length N ,
this is, it would seem, a lower bound for the average runtime complexity of the program
on a machine with rapid access to enough memory to store this huge tree.

Other, more practical instantiations of the same program achieve greater compact-
ness by ρolving operations other than simply comparing individual bits of input strings.
These other instantiations may run faster on machines that don’t have rapid access to
enough memory to store a huge binary decision tree. They involve ”overhead” in the
sense that they use more complex mechanisms to do what could be more simply done
using a series of binary judgments based on input bits; but these complex mechanisms
allow a lot of binary judgments to be carried out using a smaller amount of memory,
which is better in the case of a computing system that has rapid access only to a rela-
tively small amount of memory, and much slower access to a larger auxiliary memory.

This binary decision tree can be viewed as a ”program specialization” of the original
program to the case of input sequences of length N or less. Like most program special-
izations it removes abstraction and creates tremendous bloat ρolving a lot of nested
conditionals.

Given a program (or a process more generally), then, we can characterize this pro-
gram via the set of distinctions it makes between its inputs. Given a distribution over the
inputs, one can calculate the logical entropy of the set of distinctions (which is a mea-
sure of how complex is the action of the program in terms of its results), and one can
also calculate the average depth of the optimal binary decision tree for emulating the
action of the program, which is a measure of how complex is the action of the program
in terms of its runtime requirements. Of course one can also quantify the distinction-set
implied by the program in a lot of other ways; these are merely the simplest relevant
quantifications.



Philosophically, if we begin with the partition of input space rather than the pro-
gram, we can view the construction of the binary decision tree as a form of the emer-
gence of time. That is: time arises from the sequencing involved in constructing the
binary decision tree, which intrinsically incorporates a notion of one decision occurring
after another. The ”after” here basically has the semantics ”in the context of” – the next
step is to be interpreted in terms of the previous step, rather than vice versa. The no-
tion of complex structures unfolding over time then emerges from the introduction of
”memory space” or ”size” as a constraint – i.e. from the desire to shrink the tree while
leaving the action the same, and increasing the average runtime as little as possible.

2.2 Grounding Pattern in Distinction

A pattern being a ”representation as something simpler” – the core intuition underlying
the classic compression-based conceptualization of pattern – can be formulated in terms
of distinction as follows.

Suppose one has

– an ”invariant-set”, meaning a function ρ that distinguishes certain distinctions that
are relevant and certain that are not

– a program F that makes certain distinctions among its potential inputs (by mapping
them into different outputs)

Then we may say: P is a pattern in F , relative to ρ, if it makes all the distinctions
F does that ρ identifies as relevant, but makes fewer distinctions than F overall...

Extending this, we could say that: P is an approximate pattern in F if: it makes K
fewer distinctions than F overall, and misses fewer than K of the distinctions F does
that ρ identifies as relevant

To incorporate runtime complexity, if we have a weighting on the distinctions judged
relevant by ρ, we could require additionally that the optimal binary decision tree for
P has lower average root-to-leaf length than the optimal binary decision tree for F
(relative to this weighting). This means that in a certain idealized sense, P is ”funda-
mentally faster” than F .

The degree of runtime optimization provided by P in this sense could be included
in the definition of approximate pattern as a multiplicative factor.

3 A Quantum Definition of Pattern

To extend these ideas in the direction of quantum computing, we extend the notion of
a dit (a distinction) to that of a qudit – a distinction btw two entities, labeled with a
(complex) amplitude.

Assume as above one has an ”invariant-set” defining function ρ that assigns a “rel-
evance amplitude” to each qudit in its domain; and assume one is given a quantum
program F whose inputs are vectors of amplitudes, and that maps each input into dif-
ferent outputs with different amplitude-weights.

Associate P (for instance) with a ”distinction vector” P ∗ that has coordinate entries
corresponding to pairs of the form [input set 1, input set 2] where the entry in the



coordinate is the amplitude assigned to the distinction between the output produced by
P on input set 1 and the output produced by P on input set 2 . . .

Then P is a quattern in F , relative to ρ, if

– |<ρ><F ∗ − P ∗>| is small
– |P ∗| < |F ∗|

So one can define a quattern intensity degree via a formula like
(|F ∗| - |P ∗|) * ( |ρ| - |<ρ><F ∗ − P ∗>| ) / |ρ|
This ends up looking a bit like the good old definition of pattern in terms of com-

pression, but it’s all about counting distinctions (qudits) now.
A quantum history is a network of interlinked qudits... So a quantum distinction

graph is a network of qudits between quantum distinction graphs.
Runtime complexity can also be analyzed similarly to in the ”classical” case con-

sidered above.
Recall the basic concept of a quantum decision tree [2]. In a simple, straightforward

formulation, algorithm on inputs of size n works on 3 registers I,B,W where I has
log(n) qubits and is used to write a query, B has one qubit and is used to store the
answer to a query andW is the workspace register with polynomially many qubits. The
query steps are modeled as particular unitary operators, and the algorithm is allowed to
perform intermediate computations between the queries in the form of unitary operators
independent of the input.

In this formalism, a k-query decision treeA is the unitary operatorA = UkOUk−1 . . . U1OU0

and the output of the algorithm is the value obtained when the first qubit of A|0, 0, 0>
is measured in any given basis.

The quantum decision tree complexityQ 2 is the depth of the lowest-depth quantum
decision tree that gives the result f(x) with probability at least 2/3 for all s. Another
quantum decision tree complexity measure, QE , is defined as the depth of the lowest-
depth quantum decision tree that gives the result f(x) with probability 1 in all cases (i.e.
computes exactly). Other variations are obviously possible. These sorts of measures are
evidently analogues of the approach to runtime complexity proposed above. It has been
shown that the Shannon entropy of a random variable computed by the function f(X)
is a lower bound for theQE quantum decision tree complexity of f citeshi2000entropy.

In assessing the degree to which P is a quattern in F , one can then look at the
quantum decision tree complexity of P versus that of F , similarly to how in the classical
case one looks at the size of the decision tree associated with P versus that of the
decision tree associated with F .

Similarly to in the classical case, the runtime complexity measure depends in a
messy but apparently inevitable way on assumptions regarding the memory of the un-
derlying computing machine. In the quantum case, if we restrict the workspace W fur-
ther than just saying it has to be polynomial in the input size n, then we will in generally
get larger decision trees.

Also similarly to the classical case, here real computation usually involves quan-
tum circuits that do more than just query the input repeatedly and combine the query
results – thus resulting, much of the time, in smaller programs that however involve



more complex operators. But the size of the quantum decision tree complexity sum-
marizes, in a sense, the temporal complexity involved in doing what the program does,
at a basic level, without getting into tricks that may be used to accelerate it on vari-
ous computational architectures with various processing speeds associated with various
particularly-sized memory stores.

3.1 Weidits and Weitterns

What we have done above with amplitude-valued distinctions, one could do perfectly
well for distinctions labeled with others sorts of weights. Quaternions e.g. would seem
unproblematic, as Banach algebras over quaternions are understood and relatively well-
behaved. The notion of qudit and quattern in this way can be generalized to weidit
and weittern, defined relative to any sort of weight, not necessarily complex number
weights.

4 Combinatorial Decision Dags: A Pattern-Based Computational
Model

One can also use these ideas to articulate a novel, foundationally pattern-oriented uni-
versal computational model. Of course there are numerous universal computational
models already in practical and theoretical use, but one that is grounded in distinc-
tions and patterns may be especially useful in a cognitive modeling and AGI context, if
one adopts a view of general intelligence that places pattern at the coore.

It is straightforward to make the decision-tree rendition of programs recursive – just
take a bit-string encoding of a decision tree and feed it as input to another decision tree.
In this way we create decision trees that represent higher-order functions. We just need
to add encoder and decoder primitives, mapping back and forth between decision trees
and bit strings, to our basic language.

This leads us to the notion of Combinatorial Decision Dags (CoDDs). Defining a
k’th order decision dag as one that takes k−1’st order decision dags as inputs, it is clear
that k’th order decision trees (or dags) are equivalent to SK combinator expressions,
thus have universal expressive capability among Turing computable functions.

To be a bit more explicit: In this context, programs are viewed roughly as follows:

– Start with (higher order) decision trees, then find cases where there is a pattern P
in subtree TX relative to subtree TY .

– Then replace TXwith P plus a pointer to TY as P ’s input (this is ”pattern-based
memo-ization”)

– Repeat, and eventually one gets a compact, complex program rather than a forest
of recursively nested decision trees

Here P is of course a function that can be represented as a decision tree, or else as a
decision tree with pattern-based memo-ization as described above.

The K combinator Kyx = y (using curried notation) is a function so that, given
any input y, Ky is a decision-tree that always outputs y. Given the encoding of (first



or higher order) decision trees as bit strings, K combinator for bit string inputs can be
applied to any decision tree as input.

The S combinator has the form Sfxy = (fx)(fy). So if (still currying) we have a
tree taking (a bit-string-encoded version of) another tree as input,

TX1
TX2

and we then have the same pattern in both T1 and T2,

(PTY2
)(PTY1

)

we get universal computing power by memo-izing the P into

SPTY1
TY2

What is interesting here conceptually is that we are obtaining totally general pattern
recognition capability, from the simple ingredients of

– Decision trees (i.e. single-feature queries and conditionals)
– Recursion (mapping decision trees into bit strings and vice-versa)
– Recognition of simple repeated patterns (i.e. the same P is a pattern in both TY2

and its argument TY1
)

This gives a novel perspective on the meaning and power of the S combinator. S
is recognizing a simple repeated pattern. The universality of SK shows basically that
all computable patterns can be built up from simple repetitions – if the ”building up”
involves recursion and higher order functions.

In a phrase: Distinction, If, Repetition-Recognition and Recursion Yield Universal
Computation.

This is nothing so new mathematically, but it’s elegant conceptually to thus interpret
universality of SK in terms of pattern recognition.

5 Syntax-Semantics Correlation

The line of thinking regarding decision trees, patterns and computations presented
above provides a new way of looking at syntax-semantics correlation, which is a key
concept in probabilistic evolutionary learning [9]and some other AI algorithms.

Syntax-semantics correlation means the correlation between two distances:

– The distance between program P and program Q, in terms of the syntactic forms P
and Q take in a particular programming language

– The distance between P and Q, in terms of their manifestation as sets of input-
output pairs

If this correlation is reasonably high, then syntactic manipulations can be used as a
proxy or guide to semantic manipulations, which can provide significant efficiency
gains.



It is known that, for the case of Boolean functions, it’s possible to achieve a rela-
tively high level of syntax-semantics correlation in relatively local regions of Boolean
function space, if one adopts a language that arranges Boolean functions in a certain
hierarchical format called Elegant Normal Form (ENF). ENF can be extended beyond
Boolean functions to general list operations and primitive recursive functions, and this
has been done in the OpenCog AI Engine in the context of the MOSES probabilistic
evolutionary learning algorithm.

The present considerations, however, suggest a more information-theoretic approach
to syntax-semantics correlation.

Consider first the case of Boolean functions. Suppose we re-organize a Boolean
function as a decision tree, choosing from among the smallest such decision trees rep-
resenting the function the one that does more entropy-reduction toward the root of the
tree (so one would rather have the first decisions made while traversing the tree be the
most informative). Evaluating a pair of Boolean functions on a common distribution of
inputs, this should cause semantic and syntactic distance to be fairly correlated.

Specifically, for the semantic distance between two functions f and g defined on the
same input space, consider the L1 distance evaluated relative to a given probability dis-
tribution over inputs. For the syntactic distance, consider first the decision-tree versions
of f and g, where each node is labeled with the amount of entropy reduction the deci-
sion at that node provides. Then if one measures the edit distance between the trees for
f and g, but giving more cost to edits that involve more highly-weighted (more entropy-
reducing) nodes, one should get a syntactic distance that correlates quite closely with
semantic distance. If one ignore the weights and gives more cost to edits that occur
higher up in the trees, one should obtain similar but weaker correlation.

Of course, practical algorithms like XGBoost use greedy learning to form decision
trees and are thus crude approximations of the “most entropy-reducing among the small-
est decision trees” . . . the trees obtained from XGBoost don’t actually give the optimal
Huffman encoding, so their relationship with entropy is only approximate. How good
an approximation the greedy approach will give in various circumstances is difficult to
say and requires context-specific analysis.

Going beyond Boolean functions, if one adopts the pattern-based SK model de-
scribed above, one has a situation where each pattern in a decision tree T is equivalent
to a decision tree on an input space consisting of decision trees – and one can think
about the degree to which this pattern increases or reduces entropy as it maps inputs
into outputs. Similar to the Boolean case, one can use an edit distance that weights edits
to more entropy-reducing nodes higher; or one can simplify and weight more strongly
those edits that are further from the tree leaves.

In this context, the rewriting done via Reduct rules in OpenCog today becomes in-
terpretable as a form of pattern recognition. The guideline implied is that a Reduct rule
should only be applied if there is some reason to suspect it’s serving as a pattern in the
tree it’s reducing. I.e. for a rewrite rule source→ target, what we want is that when run-
ning the rule backwards as target← source, the backwards rule constitutes a pattern in
source. If this is the case, then the Reduct engine is carrying out repeated acts of pattern
recognition in a program tree, resulting in a tree that has less informational redundancy



than the initial version; and likely there is higher syntax-semantics correlation across
an ensemble of such trees than among a corresponding ensemble of non-reduced trees.

6 Connecting Algorithmic and Statistical Complexity: Larger
Higher-Order Decision Trees Have Higher Logical Entropy

There are well known theorems relating algorithmic information to Shannon entropy;
however these results have significant limitations. It appears one can arrive at a less
problematic relationship between information-theoretic uncertainty and compactness-
of-expression by comparing logical entropy with compactness of expression in the
CoDD formalism.

In the conventional algorithmic/Shannon case, if one has a source emanating bit
strings according to a certain probability distribution, then for simple (low complexity)
distributions the average Kolmogorov complexity of the generated bit strings is close to
the Shannon entropy of the distribution; but these two quantities may be wide apart for
distributions of high complexity.

To be more precise, one can look at the average code-word length one would ob-
tain by associating each bit-string with its maximally compressed representation as its
code-word (where the average is calculated according to the assumed distribution over
bit-strings); and then at the average code-word length one would obtain if one assigned
more frequent bit-strings shorter code-words, which is roughly the entropy of the dis-
tribution. The difference between these two average code-word lengths is bounded by
the algorithmic information of the distribution itself (plus a constant). [8].

This is somewhat elegant, but on the other hand, complex probability distributions
are the ones that we care most about in domains like biology, psychology and AI. So
it’s also unsatisfying in a way.

A decision tree implies a partition of its input space, via associating each input with
the partition defined by the path thru the decision tree that it follows. It is then intuitive
that, on average (roughly speaking – I will make this more precise below) a random
bigger decision tree will imply a partition w/ higher logical entropy than a random
smaller decision tree. The same intuitive reasoning applies to a random decision dag,
or a random k’th order decision dag. This is the CoDD incarnation of the intuition that
“bigger programs do higher entropy things.”

The crux of the matter is the simple observation that adding a decision node to a
CoDD can increase the logical entropy of the partition the CoDD represents, but it
can’t decrease it.

So if we measure the size of a CoDD as the number of decision nodes in it, then
we know that adding onto a CoDD will either increase the logical entropy or keep it
constant. (Why would it be kept constant? Basically if the added distinction made was
then ignored by other distinctions intervening between it and the final output of the
CoDD.)

If we view each step of adding a new decision node onto a CoDD as a random
process, then on the whole larger CoDDs (which involve more steps to be added onto
nothingness) are going to have higher logical entropy, as they involve more probably-
logical-entropy-increasing expansion steps.



So one concludes that, in the CoDD computational model

– adding onto a program does not decrease its logical entropy
– on average bigger programs have higher logical entropy

6.1 Connecting Algorithmic and Statistical Complexity in the Quantum Case

What is the quantum version of this conclusion? Baez [1] has presented an extension
of classical combinatory logic that applies to the quantum case; so by considering these
generalized combinators operating over quantum decision trees as described above,
along with a linear operator that flattens a quantum decision tree into a quantum state
vector, one obtains a natural concept of a quantum CoDD.

The argument becomes too involved to present here, but it seems to work out that
adding a new decision node to a quantum CoDD cannot decrease the quantum logi-
cal entropy – leading to the conclusion that a larger quantum CoDD will have greater
quantum logical entropy. Details of this case will be presented in a later paper.

7 Conclusion

Beginning from the foundational notion of distinction, we have shown a new path to
constructing and defining the concept of pattern, which has been used as the basis of
theoretical analyses of general intelligence. We have shown that the pattern concept
thus formulated leads naturally to a novel universal computational model, combinatory
decision dags. These CoDDs highlight subtle relationships between static program com-
plexity and logical entropy, and runtime complexity and Shannon entropy. Further the
key concepts appear to generalize to the quantum domain, potentially yielding elements
of a future theory of quantum cognitive processes and structures.

Further work will apply these concepts to the concrete analysis of particular classi-
cal and quantum cognitive processes, e.g. in the context of evolutionary program learn-
ing systems, probability and amplitude based reasoning systems, and integrative cogni-
tive architectures such as OpenCog.
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