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Abstract. Many benchmarks and challenges for AI and AGI exist, which help 
to reveal both short- and long-term topics and directions of research. We ana-
lyze elementary school Olympiad math tasks as a possible benchmark for AGI 
that can occupy a certain free niche capturing some limitations of the existing 
neural and symbolic systems better than other existing both language under-
standing and mathematical tests. A detailed comparison and analysis of implica-
tions of AGI is provided. 
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1 Introduction 

Having some metric to estimate progress in a certain domain is considered as a neces-
sity in contemporary AI practice. At the same time, there is no generally accepted 
standard AGI benchmark, although theoretical metrics of AGI exist (e.g. [1]) as well 
as different empirical tests and challenges have been proposed (e.g.1). However, each 
of them either requires a real AGI to pass it, or, in contrary, can be (partially) solved 
by narrow AI techniques, or at least favors a certain approach to AGI or a type of 
proto-AGI systems (for example, reinforcement learning models will be favored by 
certain environments, while such challenges as General Game Playing discourage the 
use of learning at all). It is a not uncommon opinion that comparing different proto-
AGI or measuring progress towards AGI in an unbiased way is very hard [2]. 

Nevertheless, AGI benchmarks are far from worthless by themselves, and possess 
a considerable methodological importance, because they help to understand limita-
tions of the existing methods and reveal possible directions of further research. 

Interestingly, even though standard benchmarks exist for many domains in narrow 
AI, these benchmarks fail to specify an ultimate goal even within rather particular 
tasks, and optimizing some metric is not an end in itself but only an intermediate goal, 
which we managed to formulate based on our current understanding of the task, 
which can be imprecise or even misleading. It frequently appears that the state-of-the-
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art methods are steadily improving their scores on some benchmark, but are doing this 
in the way we just “don’t like”, and then the benchmarks themselves start to being 
criticized and improved upon. For example, the visual question answering (VQA) 
datasets were criticized [3] for lacking compositional questions, allowing confidently 
answering questions without looking at images, etc., which were fixed in other 
benchmarks (e.g.. [4]), which, in turn, had other drawbacks and limitations and were 
further improved upon. However, these drawbacks were not so obvious from the be-
ginning, and a perfect benchmark would be difficult to create even for such restricted 
task as VQA. This should be even truer for AGI. 

In this paper, we do not pretend to create an ultimate AGI metric, but discuss yet 
another possible AGI-ish benchmark, which, however, has some advantages and can 
have a certain utility as discussed below. The basic idea is to compose a dataset using 
elementary school mathematical Olympiad tasks. A similar proposal to use mathe-
matical puzzles as a challenging competition for AI [5] has been made, but without 
referring to Olympiad tasks as a source for arranging a concrete dataset and without 
relevance to AGI. In the following sections, we compare this idea with some related 
benchmarks highlighting differences and consequences for AGI, which are worth 
discussing even before creating the benchmark itself. 

2 Related Works and Discussion 

Natural Language Understanding 
Language is frequently considered as one of the main differences between human and 
animal intelligence. An extreme form of focusing on language is expressed in “equa-
tion”: “language – sound = thinking”. The seminal Turing test was essentially a natu-
ral language understanding (NLU) test, while the main point of Searle’s Chinese room 
argument was to show that computers (physical symbol systems) are incapable of 
language understanding in principle. Nowadays, many benchmarks in narrow AI exist 
for question answering, dialogs, text generation and other language processing tasks. 

Modern deep neural network (DNN) models may show nearly human or even su-
perhuman scores on some benchmarks. However, the way they do this (in comparison 
with more traditional symbolic systems) is the source of ongoing debates. Is it really 
possible to map arbitrary sentences to a large, but fixed vector space of their mean-
ings? Do DNN models really understand sentences, or mostly memorize huge text 
corpora and recall them? Is it possible to understand texts in natural language without 
even attempting to represent real-world situations, described in them? 

Some tests and challenges exist, which try showing the lack of understanding in the 
existing models. One example is the Winograd Schema Challenge (WSC) [6]. Ques-
tions in WSC follow the same pattern and contain an ambiguous pronoun to be asso-
ciated with nouns using knowledge and commonsense reasoning. WSC is reasonably 
difficult: best models demonstrate ~70% accuracy that is not too low, though, to de-
prive of hope for solving this challenge by incrementally improving and tweaking the 
existing models. Also, it may appear that the challenge can be solved using purely 
linguistic knowledge and simple ontological relations. Another drawback of WSC is 



that it contains only 150 schemas, which apparently cannot be used for training and 
extracting necessary knowledge from the dataset itself (although its recent analogue, 
WinoGrande [https://leaderboard.allenai.org/winogrande/], contains 44k problems). 

The standard General Language Understanding Evaluation (GLUE) benchmark [7] 
includes WSC along with other 8 NLU tasks including sentiment analysis, semantic 
similarity of sentences, and others. Each of these tasks highlights one or another as-
pect of language understanding, and all together they cannot be called narrow. How-
ever, they all are still too focused on the language domain itself. For example, the 
Corpus of Linguistic Acceptability (CoLA) requires distinguishing between (gram-
matically) acceptable and inacceptable sentences, e.g. “John tried to be a good boy” 
and “Who does John visit Sally because he likes?” correspondingly. 

Consider the following question from WSC as an example: “Joan made sure to 
thank Susan for all the help she had [given/received]. Who had [given/received] 
help?”. Apparently, in order to answer it, a model does need to “know” that it is usu-
ally a person, who receives help, who thanks a person who helps. However, it doesn’t 
really need to understand what it means to help. What it really needs is just an onto-
logical relation – not its real-world grounding. 

Other NLU tasks can require using some factual encyclopedic knowledge, but 
without its real understanding. Some tests involve scientific knowledge also. For ex-
ample, the Aristo project [8] dataset includes such questions as “Which object in our 
solar system reflects light and is a satellite that orbits around one planet? (A) Moon 
(B) Earth (C) Mercury (D) Sun”, which requires not only language processing and 
basic reasoning abilities, but also commonsense and scientific knowledge representa-
tion and manipulation. Such tests have their own utility, but they don’t require an 
understanding of what it means to orbit around a planet or to reflect light. What is 
necessary is just a set of relations or facts “The Moon orbits around the Earth”, “The 
Earth is a planet”, etc. Indeed, these are so-called open book questions for understand-
ing of qualitative relationships. 

Let us consider a few examples of elementary school math tasks for comparison: 
• A group of girls stands in a circle. Emily is the fifth on the left from Mary and 

the sixth on the right from Emily. How many girls are in the group? 
• Nikole takes a sheet of paper and cuts it into 9 pieces. She then takes one of 

these pieces and cuts it into 9 smaller pieces. She then takes another piece and 
cuts it into 9 smaller pieces and finally cuts one of the smaller pieces into 9 
tiny pieces. How many pieces of paper has the original sheet been cut into? 

• How many different cubes are there with two faces colored green and four 
faces colored yellow? 

Imagine how these tasks can be solved by an AI system, e.g. a DNN model. It 
should be noted that the tasks are quite unique. There can be a few more tasks involv-
ing standing in circles or cutting sheets of paper, but they will be formulated in a dif-
ferent way and require inferring other consequences. At the same time, quite a large 
number of different tasks exist, and these tasks are not wiredrawn, but “real-world” in 
sense that they are really given to human children. Apparently, our AI system cannot 
just memorize the training dataset and recall similar tasks. These tasks don’t require 
the extensive use of factual encyclopedic knowledge (which can be memorized), but 



suppose a deeper understanding of what a circle is or what cutting is that goes beyond 
pair-wise relations between symbolic atoms and requires at least some modeling of 
corresponding “physical” situations. It will not be enough to map the sentences into 
some semantic vector space. The system will most likely require having an internal 
model of girls standing in a circle and explicitly reason over it. 

 We believe such tasks are more indicative of what “understanding” is and their 
formulations cover quite a wide spectrum of aspects of natural language also (but of 
course not all of them, e.g. sentiment analysis is not covered). We don’t say that other 
NLU tests are worse, but we claim that the mentioned math tasks require dealing ex-
plicitly with an additional important aspect of natural language understanding, which 
is rarely highlighted in other NLU tasks (which, however, better cover some other 
aspects). Besides NLU, these math tasks require some form of reasoning, which is 
also important for AGI benchmarking. 

Recently, SuperGLUE [9] benchmark was proposed with a new set of natural un-
derstanding tasks. Although these tasks are more difficult, they are also purely textual 
and do not heavily require symbol (textual entities) grounding. 

 
Visual (and Physical) Reasoning 
The lack of necessity of grounding linguistic entities in the real world in purely tex-
tual NLU tasks is not a novel observation and has been addressed in multimodal 
benchmarks, which most often rely on visual input. Interestingly, many school 
mathematical tasks involve images, and can be considered as questions about images, 
which make them similar to VQA tasks. 

As mentioned above, the earlier VQA datasets were criticized for that relatively 
high scores on them could be achieved with the use of superficial correlations be-
tween textual tokens in questions without both reasoning and clear grounding of 
words in images. Some of consequent datasets (e.g. [3]) introduced different biases in 
training and test subsets to prevent using superficial correlations. More interesting is 
that considerable efforts have been made to stimulate the focus on reasoning in VQA. 
In particular, CLEVR is a synthetic dataset with simple scenes, but complex questions 
about objects and their spatial relations. Later, similar complex questions were gener-
ated using Visual Genome for real-world scenes [10]. 

Images in math problems are mostly composed of abstract shapes or simple objects 
and are closer to CLEVR in this respect, but they are not generated by a simple formal 
process. They are much closer to real-world VQA than CLEVR in terms of “open-
endedness”. Although they don’t require recognizing a great variety of real objects 
(which is of course an important, but a sort of vision-domain-specific property), they 
require a deeper image understanding than traditional VQA datasets. Consider Fig. 1. 

 
Fig.1.  Which ropes will be tightened into knots if they are pulled by the ends? 

 



It can be seen that while VQA tasks require just extracting bounding boxes of dis-
crete objects and discrete relations between them, math tasks require analyzing im-
ages in finer details. Also, while a DNN might be able to learn from thousands of 
examples some features enough to answer the question about the ropes, it will not 
generalize to other such tasks and learn from few examples. 

Apparently, school math problems require much more complex and open-ended 
reasoning in comparison to synthetic questions of low diversity, which are really 
compositional but hardly require reasoning. Indeed, they can be answered by a direct 
seq2seq mapping of textual questions to imperative programs. 

We don’t claim that math questions with images form a perfect VQA dataset, but 
such a dataset can be quite indicative in terms of structural image understanding and 
visual reasoning (showing how far the state-of-the-art VQA models from real visual 
reasoning even over such simplistic images). 

It should be noted that there are types of tasks, which use images and (optionally) 
textual questions as input, although they are not considered as VQA tasks. One exam-
ple of such tasks is Physical Bongard Problems (e.g., [11]), which requires categoriz-
ing simple synthetic scenes based on their physical properties (e.g. stable/unstable 
configuration, small objects fall down, etc.). 

Physical Bongard Problems are conceptually similar to the math tasks under dis-
cussion in that answers to them don’t directly follow from images, but require some 
internal representation of depicted situations, over which reasoning is carried out. Of 
course, there are many differences in details, and these two sets of problems don’t 
intersect, but complement each other. Physical Bongard Problems also don’t contain 
textual questions and are devoted to a relatively restricted subdomain of naive physics 
(concretely, dynamics and object interaction). Both these properties are good for some 
purposes, but make Physical Bongard Problems hackable by narrow methods (espe-
cially taking into account that not too many problems exist). 

Elementary school mathematical Olympiad tasks don’t require extensive physical 
knowledge or detailed simulation. Instead, they highlight the necessity to represent 
scenes or situations in a way that allows reasoning over them. 

 
Mathematical Tests 
We have compared school math tasks with NLU and VQA tasks showing their utility 
in AGI testing, but one may wonder if there are other existing benchmarks based on 
math tasks. Indeed, the ability of mathematicians to decompose, abstract and solve 
real world problems was the golden standard of thinking and intelligent processing 
during evolution of AI research agenda especially at the early stages of AI field estab-
lishment. To solve even simple math puzzles humans use analytical abilities such as 
logical and spatial-temporal reasoning as well as intuition, understanding and com-
mon sense. To find out if AI systems have capabilities of handling non-trivial math 
and reasoning problems several challenges have already been proposed. IMO (Inter-
national Mathematical Olympiad) Grand Challenge2 is probably one of the most well 
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known. This challenge calls for building an AI system that can win a gold medal in 
the IMO competition among humans. 

It may appear that the IMO Grand Challenge already brings our proposal to its ul-
timate form. However, there is an essential difference between them. IMO tasks are 
purely mathematical and are provided to AI in a formalized representation. 

In contrast, texts of elementary school math tasks don’t define formal constructions 
for conducting inference, but describe real-world situations, which require construct-
ing some models that formalize these situations with higher or lower precision. For 
example, if we consider two objects moving towards each other, we can sum up their 
velocities only as an approximation (in contrast to the relativity theory, we suppose 
existence of some global time and no speed limit). Thus, formalization is achieved not 
by a direct text2math mapping, but through simulation (imagination) of the situation. 

Even after reconstructing the situation, the task can remain underformalized. In 
fact, complete formalization and inference over it can be cumbersome even in pure 
math tasks. Indeed, consider the task “prove that at least one of two numbers is divisi-
ble by 3 if their product is divisible by 3” – a fully formalized solution may be sur-
prisingly long, especially if it doesn't rely on lemmas about simple factoring. At the 
same time, we can imagine that the product of two number is composed of 3 and the 
rest part, which is divided into two pieces belonging to different initial numbers, and 
“3” should “go” into one of them making it divisible by 3. It is convincing, although 
not really formal. Answers to less formal tasks can be obtained by “physical” simula-
tion or via knowledge-based reasoning. For example, for the task of cutting a sheet of 
paper, we can imagine how this sheet is cut, although we need to suppose some com-
monsense-based invariance during this simulation, i.e. to figure out if it matters or not 
where it is cut, in what order, etc. Alternatively, we can just know that cutting a sheet 
of paper destroys it, and thus cutting one piece into 9 pieces increases the total num-
ber of pieces by 8. But even if start with this simplistic “formalization of cutting” and 
represent the process as an algorithm that takes a list with one element as input and 
iteratively removes one random element from the list and inserts 9 new elements into 
it, a complete formal proof that the length of the list produced by this algorithm is 
independent on random choices will be not that short. 

Consider the task “Bella colors all the small squares that lie on the two longest di-
agonals of a square grid. She colors 2021 small squares. What is the size of the square 
grid?”. When we write down equation 2size–1=2021 relying on the fact that the num-
ber of squares in the longest diagonals is the same as the size of the board, and they 
have one common square, the answer is obvious. But it’s semi-formal. To be com-
pletely formal, it should contain definitions of boards, diagonals, etc. as mathematical 
objects. These definitions can be cumbersome. Of course, we can rely on formerly 
proved lemmas about diagonals, etc. (we can imagine Agda or Coq-style definition of 
boards, diagonals, coloring and so on as dependent types), but still the mapping to this 
formalization is not that straightforward. 

Even when some tasks rely on physics to a nearly zero extent, and suppose a more 
direct translation into, say, algebraic representation, they are first translated into some 
representation of a “real-world” situation. In fact, the skill of using algebraic repre-
sentation is not natural and should be specially developed prior to solving math tasks 



per se (and actually, it was discovered by humankind just a few centuries ago) as was 
pointed out by George Pólya long time ago. Only higher-grade tasks become purely 
mathematical, when pupils have developed an internal representation of this abstract 
domain separately (or on top of) perceptual world representation and simulation. 

Consider the task: “Bill lacks 8 cents to buy the apple, while Mary lacks 1 cent to 
buy the apple. How much does the apple cost if Bill and Mary cannot buy it even if 
they put their money together?” It is very simple mathematically, and it supposes 
quite a straightforward complete formalization, but still, humans (both children and 
adults) rarely solve it via this complete formalization. Rather, they arrive at the solu-
tion semi-formally. First of all, we’d be surprised: how is it possible that they have 
not enough money together if Mary lacks just 1 cent? Eureka! Bill has no money at 
all. We don’t bother with writing down the following system: a+8=x, b+1=x, a+b<x, 
a≥0, b≥0. Besides the fact that the last two inequalities require some background 
knowledge and commonsense assumptions, this is not really how we solve this task. 

One can claim that the abstract world of IMO-type math problems is no less impor-
tant than the world of clocks, buses, sheets of paper and so on, and the ability to solve 
IMO tasks is more indicative from the AGI-ish point of view. However, all real-world 
tasks (related not necessarily to everyday environment, but to any object or system of 
scientific study) differ from IMO tasks in that they involve very complex objects, 
many properties of which are not necessary, while some other important properties 
are missing and should be filled in with default or commonsense values. Isolating the 
problem (even already given in natural language) from the rest of Universe and repre-
senting it in a solvable way is absent in IMO Grand Challenge, and it can be more 
difficult than solving a formalized task. 

The main difficulty of applying symbolic systems to real-world tasks consists in 
translating input data into representations, over which these systems can reason. At 
the same time, end-to-end trainable deep learning models have rather weak reasoning 
capabilities (and fail to learn to reason as well). 

Indeed, recently an attention of the research community has been shifted to 
estimation of the ability of DNN models to solve math-alike problems. Neural models 
successfully handle many of the general text problems, but parsing and answering 
math questions is a very special task which is at least at the first glance can not be 
directly generalized from standard pretrained model. However some of the 
researchers are trying to experimentally evaluate such generalization properties of 
DNN models at least in restricted problem-set conditions. 

In the paper [12] researchers introduce the Mathematics Dataset consisting of 
many different types of mathematics problems that cover topics in algebra, 
arithmetics, basic combinatorics and probability theory. There are two types of tests: 
interpolation and extrapolation tests. Interpolation tests assume that all types of 
questions were presented during the training but test set questions have to be 
presented at most 2% of the total test set size. Extrapolation tests estimate 
generalization capabilities of the trained models to work with tasks, which differ from 
training ones by larger numbers, more numbers involved in equation, more 
compositions, and (if it was a probability question) larger samplers. The authors have 
also examined several popular general purpose models. All of the models were 



modern neural architectures for solving sequence-to-sequence problems: recurrent 
neural architectures, and attentional/transformer architecture. The authors also claim 
that they tried to use advanced neural models with external memory, like 
Differentiable Neural Computers [13], which could be potentially well suited for 
solving mathematical questions. But it is reported that there is no significant outcome 
from the usage of these models. The researchers also have shown some interesting 
flaws in models performance on very simple tasks of adding series of “ones”, where 
“one” appears n times for n>5. It is especially interesting because the models could 
correctly predict results for longer sequences of far bigger numbers. The major 
takeaway from this study is that the modern DNN models do not generalize well to 
the specific problem domain like math questions even in well-controlled 
environments consisting of formally defined tasks though in natural language. 

Interestingly enough, more recent Tensor Product Transformer model [14] has 
shown some promising results on the Mathematics Dataset. The dataset includes tasks 
like “What is the first derivative of 13*a**2 – 627434*a + 11914106?” or even such 
complex tasks as “Let r(g) be the second derivative of 2*g**3/3 – 21*g**2/2 + 10*g. 
Let z be r(7). Factor –z*s + 6 – 9*s**2 + 0*s + 6*s**2”, which is mathematically 
involved, but doesn’t require reasoning over or formalizing real-world situations and 
corresponds to a closed domain. 

Elementary school mathematical Olympiad tasks are difficult simultaneously for 
neural and symbolic systems, while most of the other benchmarks favour either 
symbolic or neural approaches (or at least seem to favour). Apparently, passing IMO 
Grand Challenge requires much more sophisticated symbolic reasoning, which is not 
covered by elementary school math tasks, but passing the former will also not make 
the goal of solving the latter any closer. So, these are really different benchmarks. 

Of course, there are also other tests, which don’t suppose formalized math tasks as 
input. For example, GEOS [15] and ARIS [16] projects are closely related to Aristo, 
but GEOS is focused on answering geometry questions with supporting diagram in-
formation, while ARIS suggests dealing with elementary arithmetic problems. A typi-
cal example of the GEOS problem is the following (Fig. 2) 

 

 
Fig.2.  In the figure, triangle ABC is inscribed in the circle with center O and 

diameter AC. If AB=AO, what is the degree measure of angle ABO? 
 

The figures as well as the textual descriptions in GEOS are much more restricted, 
and their formal representation in terms of such predicates as Equals(AB, AO), IsTri-
angle(ABC), IsCenterOf(O, circle), Is(AC, diameter) can be extracted rendering 
GEOS not too useful for testing AGI systems. 



Here is one task from ARIS problem set: “Last week Tom had $74. He washed 
cars over the weekend and now has $86. How much money did he make washing 
cars?” It can be seen that the questions are concerned with very basic arithmetic, but 
the main challenge is to extract necessary information from the plain text description. 

Another interesting initiative is the SemEval [17] project that provides a bench-
mark for testing AI abilities to pass high school Scholastic Achievement Tests (SAT). 
The dataset consists of 2200 training, 500 development, and 1000 test questions 
which were derived from Math SAT study guides. The question can have or have not 
some supplementary reference information presented in the form of a diagram. 

Both ARIS and SemEval are similar to the elementary school mathematical Olym-
piad tasks in that the problem of understanding the task is more difficult than the 
problem of solving its formalized version. However, the ARIS and SemEval contain 
much more standard tasks of not too many types, which formalization is typically 
more straightforward, and which require much more restricted representations and 
simpler reasoning or problem solving capabilities. There are also other challenges and 
systems, which try to solve even more restricted forms of math problems and puzzles. 
One such system is LOGICIA [18], which is trying to deal with logic grid puzzles. 

These are creativity, diversity, and originality of Olympiad tasks, which make them 
especially interesting from the AGI testing perspective in comparison to more re-
stricted mathematical tests, which are good for advancing state-of-the-art models 
locally. Even if the training set is large enough, the process of solving tasks from the 
test set will not be routine. Consider the following task as an example: using 6 match-
sticks is it possible to create 4 equilateral triangles? 

Apparently, it is not yet another task on symbolic differentiation abundant both in 
test and training sets. It is unique and its only difficulty (even for humans) is to 
choose the correct solution space. A default formalization of this problem has no 
solution on the plane, but is easily solvable in 3D. An AI system that really under-
stands natural language should not just represent coordinates of matchstick ends as 
points in 3D, but should consider 2D formalization also (what is about non-Euclidian 
spaces?), and even more, should consider points formed by intersections of matches, 
and should ask if it is allowed to break matches into pieces. 

3 Conclusion 

We have discussed (elementary) school mathematical Olympiad tasks as a rich source 
for (proto-)AGI systems benchmarking. The domain of these tasks is open-ended and 
diverse. Instead of requiring vast but shallow encyclopedic knowledge about facts and 
pair-wise relations, they require a more restricted amount of commonsense knowledge 
grounded in simulation or abstract models of reality. This renders memorization 
adopted by most DNN models not too useful. 

The tasks under discussion require some creative reasoning, which may be non-
trivial for elementary school pupils or even adults, but it is much less complex than 
what the existent automated theorem provers successfully deal with. The main prob-



lem here is to understand the task (e.g., but not necessarily, to adequately formalize it 
within some symbolic system), that is difficult for both neural and symbolic systems. 

Thus, elementary school math tasks require a diverse set of cognitive skills are 
challenging for the existing AI systems, while manageable by young children without 
special training and extensive domain-specific knowledge. 

Programming Olympiad tasks (as well as of other school subjects) can be used for 
a further extension of this idea. In fact, programming tasks highlight some issues even 
better. Indeed, it should be quite obvious that seq2seq models translating natural lan-
guage descriptions to the code will be useless in open-ended domains unless language 
is somehow grounded in an interpreter (that gives real meaning to text tokens and 
symbols). However, programming tasks are more involved and don’t replace math 
tasks, but extend them. They deserve a separate study in future work. 
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