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Abstract. Market Making is high frequency trading strategy in which
an agent provides liquidity simultaneously quoting a bid price and an
ask price on an asset. Market Makers reaps profits in the form of the
spread between the quoted price placed on the buy and sell prices. Due
to complexity in inventory risk, counterparties to trades and information
asymmetry, understating of market making algorithms is relatively unex-
plored by academicians across disciple. In this paper, we develop realistic
simulations of limit order markets and use it to design a market mak-
ing agent using Deep Recurrent Q-Networks. Our approach outperforms
a prominent benchmark strategy from literature, which uses temporal-
difference reinforcement learning to design market maker agents. The
agents successfully reproduce stylized facts in historical trade data from
each simulation.
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1 Introduction

The electronification of securities trading has transformed traditional human-
driven markets into predominantly automated, where high frequency trading
(HFT) typically exceeds 80% of total volume traded in U.S listed equities [16, 17].
HFT is a form of automated trading in which security positions are turned over
very quickly by leveraging advanced technology and the associated extremely
low latency rates [18]. Market Making is HFT based strategies contributing to
market liquidity by matching buyer and seller orders. The profit is earned as
the spread between the quoted price placed on the buy and sell prices. With
every-growing minuscule limit order book (LOB) data, complexity in inventory
risk, counterparties to trades and information asymmetry, understating of mar-
ket making algorithms is relatively shallow [3, 2, 26]. This paper uses a variant
of Deep Recurrent Q-Networks (DRQN) to design market making agents inter-
acting with realistic limit order book simulation framework.

A number of market making strategies have been proposed across disciple,
including finance [3, 7], econophyics [16] and machine learning[5, 2, 26]. Earlier
work in finance considers maker making as a problem of stochastic optimal con-
trol, where order book dynamics are designed using control algorithms after de-
veloping the arrival and execution model [3, 6] to understand the price impact,
adverse selection, risk measures, and inventory constraints.
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Another prominent approach, agent based model (ABM), ranging from zero
intelligence to intelligent variants are used to study market making, but are typ-
ically evaluated in simulated markets without using real market data. It gives
the modeler flexibility to churn out potentially emergent phenomenon as a re-
sult of interaction between agents. With evolving technology-based disruption in
HFT, the existing learning models and empirical models are deficient and may
no longer be appropriate. Reinforcement learning (RL) has been applied for
market making [26], algorithmic trading [31], optimal execution [20], and foreign
exchange trading [9]. However, defining hand-crafting features in reinforcement
learning for agents to learn while interacting within a dynamic environment is a
major throttle block. Also, RL could be slow to learn in large state spaces and
the methods did not generalize (across the state space).

Deep learning eliminates the need for manual feature design, thus finding
compact representations in high-dimensional data. It also helps to generalize
across states improving the sample efficiency for large state-space RL prob-
lems. Augmenting deep learning with reinforcement learning, deep reinforcement
learning (DRL), enables RL to scale to problems with high-dimensional state and
action spaces. The outstanding success stories of DeepMind’s, kick-starting with
superhuman level performance in Atari 2600 video games [19], AlphaGo [25], and
AlphaStar [28] proves the effectiveness of DRL. However, only a few works is fea-
tured optimal execution [21], market making [10], and high frequency trading
[31] as compared to the games.

The success of such single DRL’s can be accredited to the use of experi-
ence replay memories, which legitimate Deep Q-Networks (DQNs) to be trained
efficiently through sampling stored state transitions. However, despite the ever-
increasing performance on popular benchmarks such as Atari 2600 games, DQN
struggle to generalize when evaluated in different environments. It does not per-
form well in partially observable domains [13], overestimate action values under
certain conditions [12], and not efficient when experience replay needs to be pri-
oritized [24]. Deep Recurrent Q-Networks (DRQN) [13] proposed using recurrent
neural networks, in particular, LSTMs (Long Short-Term Memory) solves the
above problem by replacing the first post-convolutional fully connected layer
with an LSTM layer in DQN setting. With this incorporation, DRQN has mem-
ory capacity so that it can even work with only one input rather than a stacked
input of consecutive frames. Double DQN [12] obliterate the overestimation prob-
lem in DQN, resulting in more stable and reliable learning. By prioritizing expe-
rience, authors [24] achieved a new state of art human-level performance across
benchmark Atari games.

The main contribution of this paper is to develop realistic simulations of limit
order markets and use it to design a market making agent using DRQN. The
simulation framework takes account of the agent’s latency and have build-up
maker/taker fees as defined in NYSE. We modify the classical DQRN archi-
tecture and incorporate double Q-learning and prioritized experience to take
account of volatile, illiquid and stagnant markets. Our approach outperforms a
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prominent benchmark strategy from literature, which uses temporal-difference
reinforcement learning to design market maker agents.

2 DRL SIMULATION FRAMEWORK

2.1 Environment: Simulation Framework.

We have designed a simulation framework over realistic market design, market
engine, communication interface, and the Financial Information eXchange (FIX)
protocol 1, an open standard that is used extensively by global financial markets.
This framework is unconstrained on historical data, represents realistic exchange
and makes no assumptions about the market. We have designed a simulation
framework over realistic market design, market engine, communication interface,
and the Financial Information eXchange (FIX) protocol 2, an open standard that
is used extensively by global financial markets. This framework is unconstrained
on historical data, represents realistic exchange and makes no assumptions about
the market. From a high-level perspective, the simulation framework comprises
of two entities, agents and market, as shown in Figure 1.

Agents Market
Market Data

Orders

Fig. 1: High-level simulation framework.

Markets act as communication nodes, which listen for agents to make connec-
tions and process incoming orders, aggregating to order books, creating trades
according to a matching engine designed for each instrument, etc. Matching
engines provide the transactional integrity for an electronic trading venue, mar-
ketplace, or exchange using various algorithms to facilitate the matching of buy-
ers and sellers. The most common is price/time priority or First In First Out
(FIFO). FIFO ensures that all orders at the same price level are filled according
to time priority.

2.2 Agents: Trading Strategies.

In our simulation framework, we populate the market with two types of agents,
namely, market makers and market takers. The agents interact with the mar-
ket using order type, price, and quantity according to their internal logic. The
submitted order in limit order book is then matched using price-time priority

1 FIX Trading Community, ”Financial Information eXchange (FIX) Protocol,”
https://www.fixtrading.org/.

2 FIX Trading Community, ”Financial Information eXchange (FIX) Protocol,”
https://www.fixtrading.org/.
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algorithms from matching engine. The latency manager build in the simula-
tion framework manages the whole history with suitable timestamp for order to
help the agents maintain their inventory tight. The trading strategies of the two
agents are discussed below.

Maker’s Strategy: In this paper, we implement a realistic market making
strategy taking account of the order size which was missing in the past litera-
ture [26]. It is roughly based on the liquidity providing strategy described in a
prominent research study [14].

At each event time t, the total quantity of liquidity Qt market maker willing
to provide a fixed proportion of their available capital Ct is defined as:

Qt = ωCt (1)

The market maker’s available capital, Ct, comprises of starting capital plus
the profits accumulated from buy and sell trades up to time t, and the profit or
loss from the remaining inventory holdings:
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where, mt is the history of all trades in time t, dt is liquidity demand in time
t, pa,bt is bid/ask price of a asset at time t and p̄t is observed market mid-price
at time t.

The limit order size that a market maker is willing to buy or sell is defined
as:
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where, It, Ī are inventory at time t and maximum inventory respectively; Υ
for accounts for adverse selection and tc is price change period.

The total quantity of liquidity Qt market maker wish to supply is equitably
chopped into buy and sell orders. This is additionally subdivided into N distinct
limit orders on each side of the order book. The splitting is done to adjust
inventory at an optimum level. The risk of adverse selection is accounted for
using the last term with Υ as a parameter. For detail discussion on the variables
defined above is carried on in the research article [14].

At each event time, t, market maker update parameters, Θat and Θbt , which is

required for deriving relative prices, Da,bt . The market makers encounters adverse
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selection risk when posting limit orders at fixed distance from mid price p̄t. The
volatility of mid prices in the previous five periods is chosen as proxy for the
risk with Λ governing the sensitivity of the bid-ask spread to volatility. The
bid-ask spread is set as linear function of above volatility subject to minimum
constant, ξ. After setting bid/ask, further orders are placed either side of book
above/below former price using parameter τ . The pricing strategy for ith limit
order of market maker is defined by equations below:

pa,b,it = p̄t +Θa,bt · St ± min
(
Λσ(t−1:t−5), ξ

)
± i · (10−τ ), (4)

where, spread, St, is a moving average of the market half-spread [26].
The market making agents at each event time t can clear its outstanding

orders in the limit order book using two criteria. The first corresponds to clear-
ing its inventory using a market order if it has not been executed at the end
of trading. The second criterion, instead, takes account of the current market
condition to remove the order from the limit order book. In particular, we define
a cancellation probability as:

Ψt = 1 − exp−ψ·volp (5)

where, ψ is sensitivity parameter and volp is the perceived volatility [4].
The market maker follows simple heuristics to cancel orders in the limit order

book. First, the range of ∓20 from the most recent transaction price is identified.
Then, the existing order is investigated for outside price range. If there are orders
outside the range, then the Ψt percent of the order will be canceled from the order
book, rest remaining.

Taker’s Strategy: As discussed above, the market takers wishes to fill his/her
trade immediately by agreeing with the currently listed prices on the order book.
While trading large asset over the day, the market taker tends to minimize price
impact and trading cost. In our simulation framework, market makers follow mo-
mentum strategy. A momentum strategy is modern equivalent to classical day
traders, who earn profits from market movements by taking liquidity aggres-
sively. In this simple momentum trading strategy, the trend is captured using a
price change rate, ∆pt =

p(t)−p(t−tc)
p(t−tc)

, where, pt is the price of the asset at time

t and tc is the price change period.
The size of the market order is proportional to the strength of the price rate

change subject to inventory constraint. That is, the size of the market order will
be:

dMK,t = (δ) · (∆pt) ·

(
1 −

(
IMT,t−1

ĪMT

)h)
(6)

where δ is sensitivity of order size to price movement parameter, IMT,t is
market taker’s inventory at time t, Ī is maximum inventory and h controls the
order size as as IMT,t approaches to Ī.
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2.3 State Representation.

The state representation is composed of agent-state and market-state, such that
it contained the information about agent’s position as well as market features.
The agent-state is described by following variables: Inventory at time t, It; Active
quoting distances, normalized by spread, St; Market maker’s update parameters,
Θat and Θbt , which is required for deriving relative prices, Da,bt ; Past price history,
nh, to recognize the market trend or risk; and Cancellations probability, Ψt, used
to clear outstanding orders in the limit order book.

The complexity of the market is represented by the market state, which con-
tains the partial observable state of the limit order book at each event period,
as well as any prior information from previous periods. In this paper, we in-
clude the following market features, as which are described in benchmark paper
[26]: Bid-Ask spread; Mid-price move; Queue imbalance [6]; Volume imbalance
[30]; Orderbook depth[30]; Signed volume; Perceived volatility [4] and Relative
strength index.

2.4 Action Space.

In our market making setting, the possible actions the agent has to decide con-
sists of four options, ”buy,” ”hold,” ”sell,” and ”cancel”. The agent can buy/sell

fixed multiple of integer values at particular price pa,bt at time t. The cancellation
also can be done in only integer values. At the end of trading, the market maker
clears its inventory using a market order if it’s not executed or canceled.

2.5 Reward Functions.

The reward function in this paper is traditional profit and loss (PnL), which
keeps track of money gained or lost. The agents try to maximize the profits
it accumulates during a trading day subjects to the inventory. To incorporate
realism as per the existing market design, the marker-taker fee model is also in-
cluded. The market-taker fee model is a pricing structure in which an exchange
customarily pays its members a per-share rebate to supply (i.e., ”make” ) liq-
uidity and levy on them a fee to remove (i.e., ”take” ) liquidity. For example,
the agents may be charged 0.0030 per share for taking liquidity from the market
(i.e., 3 dollars per 1000 shares) and gets a rebate of 0.0020 per share for posting
liquidity (i.e., 2 dollars per 1000 shares). For more details on fee structure, please
refer to the official website of NYSE 3.

At a given event time t, lets us assume that market making agents post buy/

sell limit order of size qa,bt , he/she receives execution confirmation at time t+∆t.
The ∆t is vaguely referred as latency provided by the simulation framework, as
there is always time a lag between a request made and actual transaction done.
The much ignored transaction costs in academic literature is incorporated using

3 https://www.nyse.com/markets/nyse/trading-info/fees
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an exponential penalty on the number of shares executed and maker/taker fee
as defined in NYSE. Notably, we define the PnL function as:

RPnL(t) =
∑
mt

(
qat p

a
t − qbtp

b
t

)
− α

(
exp

q
a,b
t
∆t

)
± β

(
F(maker/takerfee)

)
(7)

3 Experiments and Results

We run the model for 1000 iterations to find relevant hyper-parameter using
random search. After that, we train the models for some ten million time steps
for intervals of 10000, which is equivalent to 500 trading days to collect data,
monitor and visualize the learning of the agent. Then, testing the environment
on the benchmark to see the agent’s learning pattern.

3.1 Results and Analysis.

The performance of the agents is compared in Figure 2. In-spite of handcrafted
strategy, where actions with various quantities are taken at different states, the
RL agent performs badly and not stable as compared to DRQN and DQN agents.
It is to be noticed that the trading strategy which RL agents follow doesn’t
take account of order size, cancellation, adverse selection, transaction cost and
volatility, which the current simulator introduces while interaction. Adding to
the same, the order matching is subject to market-takers, who trades on market
trends as described in agent’s trading strategies. DQN performance is stable , but
fails to outperform the DRQN. The reasoning may be linked to not efficient state
representation, overestimated action values, partial observability and pritorized
experience, which DRQN incorporates. The same is reflected in Figure 2. To
understand the performance better, we need to action selection with respect to
limit order book dynamics, which we plan to do next.
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3.2 Validation.

In agent-based models of financial markets, it is standard practice to measure
the validity of the model by investigating whether the order-book data have
particular characteristics, known as the ”stylized facts” [1]. We present some of
the stylized facts reproduced from historical trade data.

To reproduce stylized facts concerning price, we first calculate return, which
is given by r(t) = log(pt) − log(pt). The heavy tails (HT) in the distribution of
returns is depicted in Figure 3a. The normalized return distribution has a fatter
tail than green Gaussian distribution. Furthermore, the cumulative distributions
function [8, 1], shown as the blue (positive tail) and red (negative tails) in Figure
3b, exhibits power law (PL). The violet line is the asymptotic power-law function
with tail exponent 4.

(a) HT. (b) PL. (c) LOS. (d) LOC.

Fig. 3: Stylized facts.

We now switch from price to order size. The Figure 3c illustrates the prob-
ability density distribution (PDF) f(τ/τ̄) of limit order size (LOS) τ , where τ̄
is mean order size of individual stock. The green line is Gamma distribution fit
to the normalized order size. It is evident from the figure that the Gama distri-
bution fits remarkably good to empirical PDF. This is in line with the existing
literature [1], confirming the existence of heavy tail in limit order size. The limit
order cancellation (LOS) also follows Gama distribution which can be seen in
Figure 3d. The fitting procedure is the same as the limit order size.

4 Conclusions

In this paper, we have designed a market making agent using deep recurrent Q-
network that outperforms a prominent benchmark strategy, which uses temporal-
difference reinforcement learning. The market making agents interact with highly
realistic simulation of the limit order book, which till now is non-existence in
the academic research. The suitable modification in the exciting DRQN network
architecture [13] and training procedure allowed our agents to yield predomi-
nant performance. It paved the way for researchers to include latency in the
agent’s strategy and extend to portfolio with suitable hedging strategies rather
than single asset. Another direction is to incorporate order book data with deep
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reinforcement learning, and extend it to a multi-agent setting, where all agents
learn and trade simultaneously.
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