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 Abstract. We consider a task-oriented approach to AGI, when any cognitive 

problem, perhaps superior a human ability, have sense given a criterion of its 

solution. In the frame of this approach, we consider the task of purposefulness 

behavior in a complex probabilistic environment, where behavior is organized 

through self-learning. For that purpose we consider the cognitive architecture 

based on the Functional Systems Theory (TFS). The architecture is based on the 

main notions of this theory: goal, result, anticipation of the result. The logical 

structure of this theory was analyzed and used for the control system of the pur-

poseful behavior development. This control system contains the hierarchy of 

functional systems that organize the purposeful behavior. The control system 

was used for the agents modeling that solve the foraging task.  

Keywords: Architecture, Functional Systems Theory, adaptive control system, 

purposefulness behavior, goal-directness behavior 

1 Introduction 

At the moment there is no unitary approach to AGI development. Maybe the most 

popular approach for now is neural networks of different kind. While this approach is 

widespread and practically useful for some “intellectual” tasks, it still has its well-

known flaws: huge amount of data needed for the network to become effective, high 

computational cost and the infamous "black box problem", preventing us from under-

standing how the result of calculations was obtained. All these problems compel us to 

look for other approaches. 

 We consider a task-oriented approach to AGI, when any cognitive problem, per-

haps superior a human ability, have sense given a criterion of its solution. In the frame 

of this approach, we consider the task of purposefulness behavior in a complex prob-

abilistic environment, where behavior is organized through self-learning. 

 Purposefulness behavior was deeply studied in the USSR and Russia in the 

framework of the Theory of Functional Systems (TFS), which describes the organiza-

tion of purposefulness behavior aimed at satisfying a certain need [1]. In this theory 

                                                      
1 The first and second authors are financially supported by the Russian Science Foundation 

grant #17-11-01176 in part concerning the formal model and the first author also by the 

Russian Foundation for Basic Research # 19-01-00331-a in other parts. 

mailto:vityaev@math.nsc.ru


 2 

the elaboration of an action plan to achieve the goal is carried out on the basis of ex-

isting experience by predicting the achievement of the goal and all its subgoals, orga-

nized hierarchically. This prediction, even before any action begins, is accompanied 

by the formation of a mechanism controlling the achievement of the goal and sub-

goals by the corresponding groups of receptors responsible for recording the 

achievement of the subgoals and the goal. These groups of receptors form a certain 

complex receptor for achieving the subgoals and goals, which is called the acceptor of 

action results. Thus, TFS is quite consistent the with task-oriented approach to AGI 

and, in addition, it was worked out in detail and experimentally confirmed. 

 In this paper, we present a formalization of TFS based on logical-probabilistic 

learning driven by detecting the most specific rules of behavior. Prediction of achiev-

ing goals and sub-goals is carried out by an inductive-statistical inference of predic-

tions based on these most specific rules. Such rules have a number of important prop-

erties. Firstly, they can be detected by special logical-probabilistic neurons that satisfy 

the Hebb rule [2]. Secondly, their predictions in accordance with the inductive-

statistical conclusion are consistent [3]. The preference of a particular actions plan is 

carried out taking into account the probability of predicting the goal achievement. 

This model may be implemented in the frame of probabilistic programming [4]. 

 In our approach we can see some parallels to Jeff Hawkins's Hierarchical Tem-

poral Memory (HTM), as it is also based on prediction and biologically inspired. But 

with regard to the organization of purposeful behavior, TFS has been worked out in 

much more detail. Our system is more structurally simple due to the difference in 

mathematical foundations and actions plan, based purely on a prediction with a high-

est probability of the goal achievement.  

 Another relatively close approach is SOAR [5], a classic architecture that solves 

multiple tasks including the purposefulness behavior. Its inference is also based on 

"if-then" rules, but not on probabilistic predictions.  

 Our architecture is not only plausible from a biological point of view, but also 

quite effective: it learns to explore the environment and achieve goals in it much fast-

er than reinforcement learning and neural networks. Also it can achieve more com-

plex, two-stage goals in the same environment, when the classic approaches cannot do 

anything with. The results of experiments confirming this are presented in section 5. 

2 The Theory of Functional Systems of Brain Function 

The theory of functional systems (TFS) developed by P.K. Anokhin and many other 

distinguished scientists of his school is, at the moment, one of the few known theories 

in which the concepts of goal, purpose, result, and goal-directed activity are principal 

ones and which exposes the physiological mechanisms that implement these concepts.  

 Desire is not passive. It makes no sense to desire if there is no possibility to get 

closer to satisfying the desire by some actions or activity. Desire is active, but mean-

ingless without purposefulness – it causes the organism to be active and display some 

behavior in order to satisfy it. Thus the concept of goal emerges. Activity and actions 

are always goal-directed. If there is no goal for an action, it is unclear when it should 

be terminated. Let us define the goal as such an activity/behavior that is aimed at sat-

isfying certain criteria. A goal cannot be attained without having a criterion of its at-
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tainment; otherwise we can always assume that the goal has already been attained. 

Such a definition of goal allows us to define the result of attaining the goal as that, 

what we obtain by meeting the criterion and attaining the goal (fulfilling the desire). 

Between the concepts of goal and result, the following relationship holds: the result is 

obtained when the goal is attained and the criterion of its availability is "triggered". 

But when the goal is being set, we have the goal but not the result. 

 The definition of goal is paradoxical since the activity/behavior of satisfying some 

criteria does not essentially presuppose knowledge of how to attain the goal; you can 

set a goal without defining either how it can be attained, or by what means, or when. 

This paradoxicalness of the goal concept we call the goal paradox. For the paradox 

solution we need an experience. As will be seen later on, in the framework of the the-

ory of functional systems, brain activity during goal-directed behavior is seen as being 

constantly occupied by solving the goal paradox, and determining by what means, 

when, and how to attain goals.  

 Let us proceed to outline the theory of functional systems, in which the concepts 

of goal, result, and goal-directed activity are principal ones, and which analyzes the 

physiological mechanisms of these concepts. 

 The theory of functional systems (TFS) is a theory of systems, whose function is 

to attain goals (satisfy needs) by solving the goal paradox. Therefore, we will outline 

the theory of functional systems as a theory of solving goal paradoxes, and describe 

how the brain determines by what means, when, and how goals can be attained.  

 As achieving results consists in satisfying some criteria, this achievement should 

be registered in some way. In the physiological sense, what constitutes a criterion for 

registering the attainment of a result? According to P.K. Anokhin, this is physiologi-

cally realized by a “special receptor apparatus” [7]. The signaling of this receptor ap-

paratus about obtaining a result (i.e., on the lack of deviation from the optimal level of 

metabolism) and attaining the goal is called reverse afferentation. 

 Now we can explain, within the framework of TFS, how goals are being physio-

logically set by the organism. An organism needs to constitute a goal in TFS. The 

goal (and its attainment criterion) firstly signals by means of reverse afferentation that 

there is a lack of some need; secondly, it sets a goal to wait for a signal, indicating 

that the results have been attained; and thirdly, it provides energy and actually forces 

the organism to attain the goal. Thus, the physiological mechanism of goal-setting in 

fact consists of the emergence of a need.  

 The interaction of different goals and results is organized in several ways accord-

ing to TFS: by the “principle of the dominant”, by the “hierarchy of results” and by 

“result models”.  

3 Central mechanisms of functional systems 

“According to P.K. Anokhin, the central mechanisms of functional systems that sup-

port goal-directed behavioral acts have a similar structure” [7]. Let us examine in de-

tail the architecture of goal-directed activity, as well as the physiological mechanisms 

of solving the goal paradox. 

 Afferent synthesis. The afferent synthesis, which includes the synthesis of moti-

vational excitation, memory, contextual and triggering afferentation, constitutes the 
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initial stage of a behavioral act of any complexity. Motivational Excitation. As we 

know, the goal is set by an emerging need. But in case of goal-directed behavior, it 

transforms into a motivational excitation. But a motivational stimulus does not consist 

in the excitation of receptors which stand ‘on guard’ for some physiological constant 

– it is rather an excitation of ‘central brain structures’ initiated by the arising need. It 

is the motivational stimulus that constitutes the goal set in the organism in case of 

goal-directed behavior. As in the case of needs, the motivational stimulus not only 

sets a goal but also energetically supports its attainment. Memory. The whole se-

quence of stimuli that has led to goal attainment is recorded during reinforcement, 

starting with the motivational stimulus. Motivational stimulus extract from memory 

all previous sequences of actions which have led to attaining the result. Situational 

Afferentation. While recording a memory trace, the situation in which the result is 

attained is also being recorded. This situation is registered, along with the motivation, 

as a necessary precondition for attaining the result. Thus, the motivational stimulus in 

this situation “extracts from memory” only those ways of attaining the goal that are 

possible in the given situation. Triggering Afferentation. The fourth component of 

afferent synthesis is the triggering afferentation. It is essentially the same as the situa-

tional afferentation with the difference that it involves the time and place of attaining 

the result. 

 Consequently, the goal paradox is solved for the most part during afferent synthe-

sis, as it’s here that the “what”, “how”, and “when” of goal attainment are determined. 

Therefore, taking experience and environment into account, the motivational excita-

tion as a goal automatically solves the goal paradox and determines by what means, 

how, and when can the goal be attained.  

 Decision-making. At the stage of afferent synthesis, motivational excitation can 

extract from memory several ways of attaining the goal. At the stage of decision mak-

ing, only one of them is selected – thus forming the “program of actions”. 

 Acceptor of Action Results. Suppose a program of actions is chosen. At that 

point, there is no guarantee yet that the final result will necessarily be attained, nor 

even intermediate ones. The goal can only be attained if each of the intermediate re-

sults of the current program of actions will be attained. Motivational excitation “ex-

tracts from memory” the entire sequence and the hierarchy of results that should be 

attained during the program of actions. This sequence and hierarchy of results are 

defined in TFS as the acceptor of action results. Therefore, while being transformed 

into a particular goal, the motivational excitation extracts from the memory a particu-

lar criteria of this goal attainment. This consists of the whole sequence and the hierar-

chy of criteria of results which must be attained in the process of attaining the goal 

and performing the program of actions, i.e. the acceptor of action results. Thus, the 

acceptor of action results anticipates the particular criteria of attaining the goal.  

 Transforming motivational excitation as a goal into a particular goal transforms 

the original paradoxical goal – for which it is not determined by what means, how, 

and when it can be attained – into a non-paradoxical particular goal, for which the 

final goal (and result) is divided into sub-goals (and sub-results), so that for each sub-

goal it is already known by what means, how, and when it can be attained. 
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4 Formal model of TFS 

Now let us assume that our model constitutes the control system of some animat that 

operates in discrete time 0,1, ...t  as it was done in [6]. Suppose the animat has a set 

of sensors 
1, ..., nS S  which characterize both the state of the animat itself and of ex-

ternal environment. Each sensor 
iS  has a set of possible indications 

iVS . The animat 

also has a set of available actions in the environment 
1{ , ..., } mA a a . Any action that 

animat performs at a moment 
it  may result at a moment  1it  in some changes in the 

environment, and, consequently, in its sensors indications. Since the animat «per-

ceives» the world only through its sensors, then from its point of view the system's 

state at any given point in time can be written as a vector of all sensors indications 

1( ) ( , ..., ) nV t v v , where i iv VS  is the indications of the the i-th sensor at the mo-

ment t, and the states with same sensor indications are indistinguishable for it. The set 

of all possible states of the system is denoted by 
1 2( ... )    nS VS VS VS . 

On a set of states of the system 
1 2( ... )    nS VS VS VS  we define a set of predi-

cates 
1{ , ..., } kPS P P  each of which is calculated on the basis of sensors indications. 

Each state of the system can thus be written as a vector 
1( , ..., ), {0,1} k is p p p  of 

predicates values from PS  where 1 means validity of a predicate and 0 – its falsity. 

The state may be described by a subset of predicates 

1 1 1( , ..., ), , ..., , ..., 
e e

e e e e

i i i i ks p p p p p p . The animat's task is to attain a certain goal. 

Let us define a goal Goal as a state of the system 
1

( , ..., )
goal

goal goal

Goal i is p p  which it is 

required to attain. A notation 
1

( , ..., )
goal

goal goal

i ip p  means that predicates 
1

, ...,
goal

goal goal

i ip p  

should be true when the goal is attained. 

Let us clarify concepts of event and history. By an event 
0( , , ) ee s s a  we will under-

stand a singular fact of transferring the system from the state 0 0

0 1( , ..., ) ks p p  into a 

state 
1( , ..., ) e e

e ks p p  as a result of an action a  and by a history of events – a set of 

pairs ( , )te t  where 
1( , , )t t te s s a  is an event and t is a moment in time when this 

event has occurred.  

 Let us define a rule R that predicts a change of a state(s) after the execution of an 

action a as a transformation 0( ) a

ep
R s s , where: 

0s  – is the initial state of the 

system 
1 0

0 0( , ..., )i ip p ; 
es  – is the final state of the system

1
( , ..., )

e

e e

i ip p ; a  – is an ac-

tion that transforms the initial state into the final one; p  – is the probability with 

which the action transforms the initial state into the final one.  

Let us first define a functional system 1( , , ..., , ) Goal n FSCFSC s R R p  that realizes 

one action. Functional system FSC  performs transformations 1 , ...,

0 n

FSC

R R

Goalp
s s , 

where 
1

( , ..., )
goal

goal goal

Goal i is p p  – is the target state of the functional system, 1, ..., nR R  – 

are rules of the form 0 a

Goalp
s s , using which from various initial states 

0s  and 
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some action a the system can get to the target state 
Goals  (fig. 1). An estimate of the 

probability of attaining a goal by a functional system can be calculated based on the 

statistics of attaining goals: if n is the number of cases in which a request to attain a 

goal 
Goals  was received and m is the number of cases in which the selected rules and 

sequences/hierarchies of actions led to attaining the goal Goals , then FSCp m n . 

In general case functional systems are sequences and the hierarchies of the func-

tional systems FSC . A functional system 
1( , , ..., , )  Goal n FSFS s FSC FSC p  that 

combines a sequence of functional systems of the form FSC  is defined as: 

 
1

1 2 1

, ...,

0 ... ...    
 n

goal FS FSC FSCn

FSC FSC

goals s s p p p
FS s s , where   

 
1 1
1 1

1

, ...,

1 0 1( ) v

FSC

R R

p
FSC s s ,

2 2
1 2

2

, ...,

2 1 2( ) v

FSC

R R

p
FSC s s  ... 1 , ...,

1( ) 
n n

vn

FSCn

R R

n n goalp
FSC s s   

 

are functional systems of the type FSC . The goal of the functional system FS  is to 

successively attain goals 
1 2

...  
goal

s s s  using functional systems 
1,..., nFSC FSC  

with a resulting probability 
1

...
FS FSС FSСn

p p p .  

5 Experiments 

For investigation of the control system behavior two experiments were set. We ex-

plored the foraging task. In this task some agent explores the area and gathers pabu-

lary objects. There are no subgoals in this task, so in the second phase we have com-

Fig. 1. Functional system that implements sensory corrections. 
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plicated this task by introducing a «tablet» that is needed to eat the pabulary object. In 

this case the subgoal is eating the tablet before eating the pabulary object.  

 The virtual world was modeled in which the agent can gather the pabulary objects.  

This world includes the rectangular field with 2525 cells. Each cell may be empty or 

include the «pabulary object» or «barrier». Barriers are placed only on the perimeter 

of the field. Agent is placed on one of the cells and may be oriented in one of the four 

directions. The possible actions 
1 2 3{ , , }a a a  of the agent are: step on the one cell 

ahead, turn left, turn right. 

In the first experiment some pabulary objects are placed randomly on the field. To 

eat the pabulary object agent needs to take a step on the cell where the pabulary object 

is located. In that case the pabulary object disappears from the cell and randomly ap-

pears on some other cell. 

Agent has sensors 
1 9, ...,S S , in which 

1 8, ...,S S  stand for the area around the agent 

and inform the agent about the objects placed on these cells, and 
9S  informs the agent 

about the object placed on the cell that agent occupies. 

The second experiment is more complicated than the first. In the cells of the field 

a «tablet» objects may be placed, which are randomly distributed. To eat the pabulary 

object agent needs to have a «tablet» object, which he needs to gather on the field. 

When the agent eats a pabulary object the gathered «tablet» object disappears and for 

eating a new pabulary object the agent needs to gather a new «tablet» object. The 

agent gathers a «tablet» object if it occupies the cell with this object. The agent may 

gather only one «tablet» object. When agent gathers a «tablet» object the cell be-

comes empty and a new «tablet» object randomly appears on the field.  

In the second experiment agent has ten sensors 1 9, ..., , pillS S S , where first nine are 

the same as in the first experiment and sensor pillS  informs the agent about availabil-

ity of the «tablet» object. 

For the estimation of the effectiveness of the control system we compared it with 

control systems based on the reinforcement learning, described in the work [8]. For 

comparison we used two control systems based on the Q-Learning. These algorithms 

consist in consecutive refinement of the estimation of the reward ( , )t tQ s a  summary, 

if in the state 
ts  the system acts as 

ta : 

( 1) ( ) ( ) ( )

1( , ) ( , ) ( max ( , ) ( , ))i i i i

t t t t t A t t tQ s a Q s a r Q s a Q s a 

    . 

The first system (Q-Lookup Table) uses table, which includes Q-values of all pos-

sible states and acts. Initially, the table is fulfilled randomly. Then the system in each 

act specifies the Q-value. 

The second system (Q-Neural Net) uses approximation of the function ( , )t tQ s a  

using neural networks. In that case for each act 
ia  a special neural network is used. In 

each time period the system chooses an action and neural network produces a greater 

value of the estimation Q-value. Then the action accomplishes, and weights of the 

neural nets are changed. 

For the estimation of the systems the period of agent functioning was divided on 

stages for 1000 steps. The estimation consists of the volume of the pabulary objects 
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gathered for a step of the work. After learning every system reaches some optimal 

value. During the experiment we can estimate the learning speed and corresponding 

optimal value. 

6 Results of the first experiment 

In the first experiment there were 24 predicates for sensors – three predicates 

( )iS empty , (
iS block ), (

iS food ) for each sensor 
iS , 1,...,8i . At the begin-

ning the control system contained only one functional system with purpose GoalS = 

9( )S food , when sensor 
9S  informs about pabulary objects in the central cell.  

This experiment had no subgoals. The main task of this experiment is the estima-

tion of the effectiveness of the functional system and its learning.    

On the fig. 2 there are results of comparison for different control systems. For 

each control system the mean values for 20 experiments are presented. The duration 

of each experiment is 50,000 steps of the agent. The number of pabulary objects on 

the field is 100. 

It is seen from the figure that the control system based on the semantic probabilis-

tic inference is fully learned during the 1000 steps. Control systems based on the neu-

ral nets (Q-Neural Net) learn more slowly and become fully learned after nearly 

10,000 steps. The slow learning of the Q-Lookup Table follows from the huge num-

ber 2496 of states with three possible actions.  

The results of this experiment demonstrate that the control system based on the 

semantic probabilistic inference works rather effectively and more effectively than 

systems based on the Reinforcement Learning.  

     Fig 2. Amount of the food gathered by the agent with different control systems. 

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

G
e

th
e

d
 m

e
a

l 

Steps (1000 тактов) 

Semantis inference Q-Neural Net Q-Lookup Table Random Walk



 9 

7 Results of the second experiment. 

The following experiment is principally different as the task may be divided in two 

parts: at first – to find a «tablet» object and then to find pabulary objects. The purpose 

of this experiment is to demonstrate the ability of automatic subgoals formation.  

 The agent now has 32 predicates – four predicates for each sensor 
iS , 1,...,8i : 

( )iS empty , (
iS block ), (

iS food ) и (
iS pill ) and one predicate (

pillS yes ) 

for the state when the agent has a «tablet» object and one predicate 
9( )S food  for 

the state when the pabulary object is in the central cell under the agent. 

At the beginning the control system of the agent has only one functional system 

with the purpose 
GoalS =

9( )&( )pillS yes S food  , when the agent has a «tablet» 

object and finds a pabulary object. 

During the experiment the control system of the agent had always found the sub-

goal 2

GoalS = ( )pillS yes  and formed a corresponding functional system. When the 

agent had no tablet in possession, the control system passed the control to the subsys-

tem for the search of a tablet, and, after finding the tablet and achieving the goal 2

GoalS

= ( )pillS yes , the upper level control system started searching the pabulary objects. 

The results of the experiment are presented on the figure 3. On the figure the mean 

values for 20 experiments are presented for each control system.  In each experiment 

the agent had 100,000 steps. The number of pabulary objects and «tablet» objects on 

the field was 100 for each. 

As seen from the figure, the control system based on the semantic probabilistic in-

ference was working more effectively than systems based on the reinforcement learn-
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ing. Control systems based on the reinforcement learning showed almost no learning 

ability and worked unstable. They cannot learn the need of the «tablet» objects for the 

goal achievement during the reasonable time and have passed by «tablet» objects after 

100,000 steps of learning. Additional experiments demonstrated that control system 

(Q-Neural Net) can sometimes learn during the 300,000 – 500,000 steps. 

References 

1. Anokhin, P.K.: Biology and neurophysiology of the conditioned reflex and its role in adap-

tive behaviour, Oxford etc.: Pergamon press, pp. 574. (1974). 

2. Vityaev E.E. A formal model of neuron that provides consistent predictions. Biologically 

Inspired Cognitive Architectures 2012. Proceedings of the Third Annual Meeting of the 

BICA Society (A. Chella, R.Pirrone, R. Sorbello, K.R. Johannsdottir, Eds). In Advances in 

Intelligent Systems and Computing, v.196, Springer: Heidelberg, New York, Dordrecht, 

London. 2013, pp. 339-344. 

3. Vityaev, E., Odintsov, S. How to predict consistently? // Trends in Mathematics and Com-

putational Intelligence In: Studies in Computational Intelligence, 796, María Eugenia 

Cornejo (ed), 2019, 35-41. 

4. Avi Pfeffer. Practical Probabilistic Programming. Manning Publications, 2016, pp.456. 

5. Laird, John E. The Soar Cognitive Architecture. MIT Press, 2012. 

6. Muhortov V.V., Khlebnikov S.V., Vityaev E.E.: Improved algorithm of semantic probabilis-

tic inference in task of 2-dimention animat // Neuroinformatics, v. 6(1), pp. 50-62. (in Rus-

sian). 2012. 

7. Sudakov K.V.: The general theory of functional systems. Moscow: Medicine, p.222. (in 

Russian). 1984. 

8. Sutton R., Barto A. Reinforcement Learning: An Introduction. – Cambridge: MIT Press, 

1998. – p. 342.  

 

 

 

 


