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Abstract. The necessity for neural-symbolic integration becomes evident as 

more complex problems like visual question answering are beginning to be ad-

dressed, which go beyond such limited-domain tasks as classification. Many ex-

isting state-of-the-art models are designed for a particular task or even bench-

mark, while general-purpose approaches are rarely applied to a wide variety of 

tasks demonstrating high performance. We propose a hybrid neural-symbolic 

framework, which tightly integrates the knowledge representation and symbolic 

reasoning mechanisms of the OpenCog cognitive architecture and one of the 

contemporary deep learning libraries, PyTorch, and show how to implement 

some existing particular models in our general framework. 

Keywords: grounded reasoning, cognitive architectures, neural module net-

works, visual question answering 

1 Introduction 

Most contemporary cognitive architectures (CAs) are considered as hybrid [1]. How-

ever, it is difficult to find an architecture that tightly integrates a powerful symbolic 

reasoning with modern deep neural networks (DNNs). At the same time, such neural-

symbolic integration of learning and reasoning constitutes a separate important field 

of research1. Unfortunately, there are just a few attempts to create a general frame-

work, within which neural-symbolic models for solving different tasks can be devel-

oped. Moreover, conceptually sound approaches usually don’t rely on the contempo-

rary frameworks and practical models of deep learning and efficient engines of sym-

bolic reasoning, but implement a particular type of models with specific inference 

procedures, for which mapping between neural networks and logical expressions is 

established (e.g. [2]). 

Some general-purpose neural-symbolic frameworks, which combine contemporary 

DNN and symbolic reasoning tools, do exist. DeepProbLog [3] is one such frame-

works. Unfortunately, examples of its applications are mostly limited to such toy 

problems as recognizing a pair of MNIST digits conditioned on their known sum. 

Other works on a hybrid neural-symbolic approach based on deep probabilistic pro-
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gramming (e.g. [4]) also don’t show how state-of-the-art models for various bench-

marks can be created within them. At the same time, one can encounter a variety of 

modern individual solutions to specific problems based on ad hoc hybrid models, 

which are quite efficient, but narrowly applicable (e.g. the Transparency by Design, 

TbD, model [5]). 

One of the prominent examples of this situation can be found in the field of visual 

reasoning, in particular, Visual Question Answering (VQA) that requires explicit 

reasoning capabilities. In particular, VQA implies variable binding, handling which is 

considered as a classical problem for connectionist models [6]. Although contempo-

rary attention models incorporated into DNNs (in particular, in VQA [7]) partially 

address this problem, but without compositionality featured by symbolic approach. 

On the one hand, DNNs achieve state-of-the-art results on some VQA datasets 

containing real-world images, and the use of contemporary DNN models and frame-

works in visual processing seems essential. However, it is convincingly argued [8] 

that pure neural models tend to learn statistical biases in datasets (in particular, strong 

language priors, e.g. [9]) and to map inputs to outputs directly instead of explicitly 

modeling the underlying reasoning processes that results in a considerable decrease of 

performance on specially designed datasets (such as CLEVR [10] or GQA [11]). On 

the other hand, application of pure symbolic reasoning systems, which supposes that 

the input images are preliminarily processed by a vision subsystem and converted into 

symbolic form, is not robust and has low performance. 

Apparently, hybrid solutions are desirable in order to account for all aspects of 

VQA. However, state-of-the-art VQA models frequently use narrow imperative pro-

gram executors instead of general declarative reasoning systems (see, e.g. [5][8]). 

In this work, we propose a framework of hybridization of the integrative cognitive 

architecture OpenCog with symbolic inference engine operating on declarative 

knowledge bases with modern deep learning libraries supporting gradient descent 

optimization of differentiable functions over real-valued (subsymbolic) parameters. 

Attempts to bridge the symbolic/subsymbolic gap via such hybridization of sym-

bolic reasoning and deep neural networks in OpenCog has been done before [12][13]. 

However, they were aimed at specific DNN architectures (a version of DeSTIN sys-

tem and a hierarchical attractor neural network), and didn’t support end-to-end train-

ing of the DNN model as a component of a pipeline that includes symbolic reasoning. 

The proposed framework enables integration of OpenCog with arbitrary DNN 

models providing means to backpropagate errors from conclusions to DNNs through 

symbolic inference trees. This allowed us not only to reproduce the example used to 

illustrate DeepProbLog [3], but also to re-implement the TbD model [5] with the use 

of the general symbolic reasoning engine operating over declarative knowledge in-

stead of imperative program executor specifically design for CLEVR VQA dataset. 

2 Motivation: Grounded Reasoning 

As it is shown in [14], the OpenCog’s language Atomese suits well to express queries 

about image content, for example, in the task of semantic image retrieval. These que-



ries are executed by OpenCog’s reasoning subsystems such as the Unified Rule En-

gine (URE), in particular, with the Probabilistic Logic Networks (PLN) rule set, and 

the Pattern Matcher over the labels assigned by DNNs to the detected objects. 

For example, the following query in Atomese can retrieve a video frame that con-

tains a bounding box recognized as a helicopter (and easily can be extended to more 

complex queries): 

BindLink 
  VariableList 
    VariableNode “$Frame” 
    VariableNode “$BB” 
  AndLink 
    InheritanceLink 
      VariableNode “$Frame” 
      ConceptNode “Frame” 
    InheritanceLink 
      VariableNode “$BB” 
      ConceptNode “Helicopter” 
    MemberLink 
      VariableNode “$BB” 
      VariableNode “$Frame” 
  ListLink 
    VariableNode “$Frame” 
    VariableNode “$BB” 

Here, BindLink specifies the rule with three parts: a variable declaration, a pattern 

to be found in Atomspace, a graph to be formed for each matched subgraph (for dif-

ferent variable groundings). InheritanceLink is used to indicate that some bound-

ing box (which is distinguished by its name, e.g. ConceptNode “BB-03-11”) is 

recognized as an object of some specific class, and MemberLink is used to indicate 

that the bounding box belongs to a certain frame. In order to successfully retrieve 

information, OpenCog will just need inheritance and member links for frames and 

bounding boxes (each of which is represented as an atom, e.g. ConceptNode) to be 

stored in Atomspace. 

However, the simplest way to perform visual reasoning, which consists in prelimi-

nary processing images with DNNs and inserting the descriptions of the images into 

Atomspace with consequent pure symbolic reasoning, is far from enough even in the 

case of image retrieval. One may want to find images with either a happy child or a 

jumping boy, which can be the same. This means that assigning one label per object 

or bounding box in image is not enough. 

The problem is even more obvious if we consider the task of VQA, in which more 

complex questions are frequent, e.g. “are the people looking in the same direction?” 

or “are the chairs similar?” Apparently, to answer these questions, one should not 

simply reason over symbolic labels, but should go down to the level of image features 

that implies a deeper neural-symbolic integration. Although complete disentangle-

ment of reasoning from vision and language understanding can work for such datasets 



as CLEVR [15], we consider such disentanglement not as an achievement, but as 

oversimplification, which is not scalable to real-world reasoning. 

Thus, what we want to make our system to reason about is not mere symbols, but 

symbols with their groundings (e.g. grounded predicates), which are calculated by 

demand in the course of reasoning. 

Let us assume for example that we have a VQA system, which detects a number of 

bounding boxes (BBs) in the image and describes them with some high-level features 

(that is quite typical for models developed for some benchmarks [7]). A naïve neural-

symbolic system will apply a multinomial classifier to these features to produce most 

probable labels for bounding boxes (maybe a few such classifiers to recognize objects 

and their attributes). Each output neuron of such classifier can be considered as a 

grounded predicate corresponding to a certain concept (e.g. “boy”, “happy”, etc.). 

Instead of precomputing truth values of all these predicates, the system can com-

pute only those predicates, which are necessary. For example, the question “Is the boy 

happy?” requires to check predicates “boy” and “happy”, while the question “What 

color is the car?” can use a symbolic knowledge base to select predicates correspond-

ing to concepts inherited from the concept “color”. 

Of course, this requires using a one-class classifier for each concept instead of a 

multinomial classifier, which can only calculate truth values of all predicates simulta-

neously. However, this is not really a drawback, because no two concepts are precise-

ly mutually exclusive. A boy is also a child (and interestingly, we can frequently rec-

ognize children without recognizing them as boys or girls, so it is more likely that we 

use different grounded predicates to recognize classes and subclasses instead of rec-

ognizing subclasses only and inferring classes symbolically). Even more, an object 

can be simultaneously black and white, and even a boat can have a shape of a banana. 

One can argue that all these predicates can still be pre-calculated before reasoning 

without too large overhead. However, it is not really the case, when we are talking 

about relations between objects in images, especially those, which require descending 

on the level of image features or even pixels. 

Moreover, the reasoning system can influence the sequence of operations per-

formed by the vision system or influence the output of different levels of the vision 

system by imposing priors dependent on the current state of the cognitive system (e.g. 

in neural-symbolic generative models). For example, in the TbD model, a sequence of 

applications of DNN modules is constructed in a symbolic (although not declarative) 

way (see fig. 1). 

 
Fig. 1. Module network answering, “How many blocks are tiny blue objects or big 

purple metallic objects” 



Here, grounded predicates or functions are applied to the whole image instead of 

bounding boxes, and they produce attention maps and features that are fed to the next 

DNN modules, although one can imagine that modules are selected by the reasoning 

system dynamically depending on the already obtained results and background 

knowledge. 

Here, we aim not at discussing, what models better fit to visual (or, more generally, 

grounded) reasoning, but at designing a framework, which allows combining dynami-

cally arbitrary DNN models with knowledge-based symbolic reasoning. Since one of 

the main motivations for this is to replace an ad hoc hand-coded imperative “reason-

er” (program executor) in Neural Module Networks with an entire cognitive architec-

ture, we call this approach Cognitive Module Networks. 

3 Cognitive Module Networks 

The best way to achieve the stated above goal would be to keep the possibility of 

using the DNN modules in the existing Neural Module Networks while replacing only 

hard-coded program executors with a general reasoning engine. Thus, what we need 

from OpenCog is to chain forward applications of DNN modules in a similar way as 

the program executors do. Technically important issue is the necessity to construct 

this chain of applications as an uninterrupted computation graph that supports error 

backpropagation by the corresponding DNN library. 

On the side of OpenCog, such application can be carried out by executing 

GroundedSchemaNodes and GroundedPredicateNodes (which differ in that the 

former returns Atoms while the latter returns TruthValues). Some restrictions of 

the existing API for GroundedSchemaNode were to be overcome to achieve the 

necessary functionality. In particular, execution of methods of dynamically created 

objects rather than static objects, and passing tensors (data structures specific to a 

certain DNN library) between calls to GroundedSchemaNodes without conversion 

are desirable. Different solutions to these problems are possible. However, we will not 

go into technical detail here and focus more on a conceptual level. 

Consider the following code in Atomese that corresponds to the question “Is the 

zebra fat?” (or more precisely, “Is there a fat zebra in the image?”). 

SatisfactionLink 
  VariableNode “$X” 
  AndLink 
    InheritanceLink 
      VariableNode “$X” 
      ConceptNode “BoundingBox” 
    EvaluationLink 
      GroundedPredicateNode “py:runNN” 
      ListLink(VariableNode(“$X”), ConceptNode(“zebra”)) 
    EvaluationLink 
      GroundedPredicateNode “py:runNN” 
      ListLink(VariableNode(“$X”), ConceptNode(“fat”)) 



Its execution by Pattern Matcher will cause the enumeration of all ConceptNodes 

that inherit from “BoundingBox” and pass them to the wrapper function runNN, 

which will take visual features for the given bounding box (e.g. attached as Values 

to ConceptNodes) and pass them to the DNN that corresponds to the provided class 

to be recognized (e.g. “zebra” or “fat”). Depending on implementation, it can be one 

DNN that accepts word embeddings as input, or there can be many small classifiers 

over high-level visual features (e.g. taken from ResNet or such) – each classifier for 

each concept. Then, runNN should convert the DNN output to OpenCog’s Truth-
Value, over which AndLink acts. Thus, all bounding boxes will be retrieved that 

classified simultaneously as “zebra” and “fat”. 

This simple code already does a sort of variable grounding for neural networks and 

use of declarative knowledge, which neural networks lack otherwise. However, this 

solution didn’t allow for training DNNs based on conclusions made by the reasoner, 

and it has an ad hoc interface to run particular networks. 

In the companion paper [16], we describe how differentiable rules for URE can be 

constructed that enables both learning tensor truth values and learning formulas for 

rules themselves by gradient descent. In this paper, we extend this approach by using 

predicates and schemas grounded in DNN models. More precisely, we focus more on 

a DNN-centered framework, which can be adopted by the deep learning community. 

Current implementation supports PyTorch backend, although Tensorflow and other 

backends can be added in the future. 

As described in [16], if formulas attached to URE rules are implemented as opera-

tions on PyTorch tensors, application of a sequence of formulas corresponding to the 

chain of reasoning steps found by URE will yield a PyTorch computation graph, over 

which errors from final conclusions to PyTorch variables can be backpropagated. For 

example, PLN rule set for URE can help us to infer the truth value of the conclusion 

EvaluationLink 
  PredicateNode “green” 
  ConceptNode “apple-001” 

using modus ponens from the truth values of premises: 

ImplicationLink 
  PredicateNode “apple” 
  PredicateNode “green” 
EvaluationLink 
  PredicateNode “apple” 
  ConceptNode “apple-001” 
With the use of tensor truth values and PyTorch implementation of the formula for 

modus ponens, the error can be propagated from the truth value of the conclusion to 

the truth values of the premises. 

If we replace PredicateNode in the above example with GroundedPredicat-
eNode, which can in particular execute a DNN that outputs the probability that some 

object in an image can be recognized as an apple, then the PyTorch computation 

graph will include this DNN as a subgraph, and error will be propagated through the 

truth value (probability) produced by it to its weights. Instead of just adjusting truth 

values, we will train neural networks to output such values that lead to correct conclu-



sions inferred by the reasoning system. Since the OpenCog reasoning subsystems 

perform the process of rewriting subgraphs of a (hyper)graph composed of Atoms, 

they can compose and execute an arbitrary graph (architecture) of neural modules. 

In order to make this possible, DNN modules should be attached to atoms, to 

which variables in queries can be bound. CogNets library (its experimental implemen-

tation can be found here 2 ) provides class CogModule that inherits from 

torch.nn.Module. On the one hand, CogModule objects can behave as ordinary 

torch.nn.Module objects implying that if we take some module network and 

change the inheritance of its modules to CogModule, it will continue working cor-

rectly. On the other hand, each CogModule object also attaches itself (through Val-

ues) to the specified Atom in Atomspace. Execution of neural modules attached to 

Atoms is done through a special GroundedSchemaNode that extracts CogModule 

objects from Atoms and passes arguments to them. 

The basic application of CogNets will be to just inherit all modules in the TbD 

model from CogModule. Then, we will be able to use OpenCog to execute queries 

represented in the form of BindLinks. One question, which we don’t consider in 

detail here, is how to obtain such queries from question in natural language. OpenCog 

contains natural language processing components, in particular RelEx, that can be 

used to parse questions and then convert them to Atomese queries. However, these 

components have some limitations. Another possibility is to reuse the pre-trained 

LSTM-based program generator from [8] (used in the TbD model also), which pro-

duces programs from questions, which they can be easily translated into Atomese. 

This approach works well for CLEVR, although cannot be applied to the COCO VQA 

benchmark in contrast to RelEx. 

“Reasoning” in the TbD model is performed by executing an imperative program, 

composed of a sequence of applications of DNN modules. For example, the question 

“What color is the cylinder?” will be transformed to the consequent application of 

filter_shape[cylinder] module and query_color module. The que-
ry_color module will take as input the image features masked by the attention map 

produced by filter_shape[cylinder] module and outputs new feature map, 

which is then passed to the final classifier. The multinomial classifier will calculate 

the probabilities of all answers. 

Thus, if we directly apply the TbD model just replacing its program executor with 

OpenCog, we will gain not too much, because these Atomese queries will be nested 

applications of GroundedSchemaNodes. Although these GroundedSchemaNodes 

will be presented in Atomspace knowledge base, OpenCog’s reasoning capabilities 

will not be involved. 

However, we can explicitly introduce the query variable $X, replace the query 

module with the corresponding filter module filter_color[$X], and ask the rea-

soning engine to find such value of $X which will produce a non-empty final atten-

tion map. Therefore, the question “What color is the cylinder?” can be represented 

declaratively in Atomese: 

AndLink 
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  InheritanceLink 
    VariableNode “$X” 
    ConceptNode “color” 
  EvaluationLink 
    GroundedPredicateNode “py:filter” 
    ConceptNode “cylinder” 
  EvaluationLink 
    GroundedPredicateNode “py:filter” 
    VariableNode “$X” 

if we use a specially coded static Python function filter, which executes a correspond-

ing DNN module depending on the name of the given argument. Here, we will need 

to add to Atomspace such facts as 

InheritanceLink(ConceptNode(“red”),ConceptNode(“color”)) 

Pattern Matcher will be able to enumerate different colors and call different fil-
ter_color modules, for which PLN will infer the truth value of the given AndLink. 

CogNets provide a general wrapper function CogModule.callMethod to extract 

Python objects attached to Atoms and call their method with automatic unwrapping of 

their arguments from Atoms and wrapping their results back into Atoms in such a 

way that, in particular, forward methods of torch.nn.Module objects can be used 

as is. Thus, the above code with the use of CogNets will look like 

AndLink 
  InheritanceLink 
    VariableNode “$X” 
    ConceptNode “color” 
  EvaluationLink 
    GroundedPredicateNode “py:CogModule.callMethod” 
    ListLink 
      ConceptNode “cylinder” 
      ConceptNode “call_forward_tv” 
      ConceptNode “image” 
  EvaluationLink 
    GroundedPredicateNode “py:CogModule.callMethod” 
    ListLink 
      VariableNode “$X” 
      ConceptNode “call_forward_tv” 
      ConceptNode “image” 

CogModule.callMethod will extract the Python object (which will be a DNN 

module as CogModule object here) attached to ConceptNode “cylinder” and 

execute its call_forward_tv method (which is the method of CogModule inherit-

ed from torch.nn.Module), which will extract Python object (PyTorch tensor here) 

from ConceptNode “image” and execute forward method of the DNN module 

reducing its output to the tensor truth value. CogNets library provides a syntactic 

sugar in Python to form the necessary Atomese expressions concisely. 

One can see that this allows for assembling modules in neural module networks us-

ing symbolic knowledge and reasoning over (probabilistic) logic expressions with 



variable grounding. This opens the path to real visual reasoning. For example, At-

omspace can contain the fact that left(X,Y) :– right(Y,X). Applying this fact during 

the chain of reasoning performed by URE will result in transforming the module net-

work and using relation[right] module instead of relation[left] module of 

TbD. In particular, given the question “To the left of what object is the green pyra-

mid?” humans will most likely find the green pyramid first and then look to the right 

of it. Direct conversion of the question into the imperative program cannot represent 

such visual reasoning, while it can appear naturally within our approach. 

In contrast to the TbD model with its hard-coded program executor, our approach 

can naturally be applied not to CLEVR, but also to COCO VQA and even to the ex-

ample given in the paper on ProbLog [3], namely to recognize digits on a pair of 

MNIST digits conditioned on their sum. The premise for the query (requiring the sum 

to be 7) with two VariableNodes of NumberNode type will look like 

AndLink 
  EqualLink 
    PlusLink 
      VariableNode(“$X”) 
      VariableNode(“$Y”) 
    NumberNode “7” 
  EvaluationLink 
    GroundedPredicateNode “py:CogModule.callMethod” 
    ListLink 
      VariableNode “$X” 
      ConceptNode “call_forward_tv” 
      ConceptNode “image1” 

  EvaluationLink 
    GroundedPredicateNode “py:CogModule.callMethod” 
    ListLink 
      VariableNode “$Y” 
      ConceptNode “call_forward_tv” 
      ConceptNode “image2” 

4 Conclusion 

We have considered an approach to neural-symbolic integration, within which 

knowledge-based reasoning is carried out over symbols grounded in perception 

through deep neural networks, that, in particular, allows the symbolic reasoner to 

interoperate with execution of neural modules and to assemble a neural module net-

work on fly depending on the current input and background knowledge. 

We have implemented a framework, which embodies this approach with the use of 

the contemporary cognitive architecture and deep learning library, namely OpenCog 

and PyTorch. This implementation enables such integration of OpenCog with arbi-

trary DNN models that allows for error backpropagation from conclusions to DNNs 

through symbolic inference trees. 



On example of neural-symbolic models widely used for the CLEVR benchmark, 

we have shown how a domain-specific program executor, which assembles neural 

module networks using given linear sequences of imperative commands, can be re-

placed with a general-purpose reasoning engine operating over a declarative 

knowledge base that can equally be used to reproduce models implemented within 

other frameworks, in particular, ProbLog. 
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