
Cognitive Module Networks for Grounded Reasoning

Alexey Potapov1,2, Anatoly Belikov1, Vitaly Bogdanov1, Alexander Scherbatiy1

1SingularityNET Foundation, The Netherlands
2ITMO University, St. Petersburg, Russia

{alexey, vitally, abelikov, alexander.scherbatiy}@singularitynet.io

Abstract. The necessity for neural-symbolic integration becomes evident as

more complex problems like visual question answering are beginning to be ad-

dressed, which go beyond such limited-domain tasks as classification. Many ex-

isting state-of-the-art models are designed for a particular task or even bench-

mark, while general-purpose approaches are rarely applied to a wide variety of

tasks demonstrating high performance. We propose a hybrid neural-symbolic

framework, which tightly integrates the knowledge representation and symbolic

reasoning mechanisms of the OpenCog cognitive architecture and one of the

contemporary deep learning libraries, PyTorch, and show how to implement

some existing particular models in our general framework.

Keywords: grounded reasoning, cognitive architectures, neural module net-

works, visual question answering

1 Introduction

Most contemporary cognitive architectures (CAs) are considered as hybrid [1]. How-

ever, it is difficult to find an architecture that tightly integrates a powerful symbolic

reasoning with modern deep neural networks (DNNs). At the same time, such neural-

symbolic integration of learning and reasoning constitutes a separate important field

of research1. Unfortunately, there are just a few attempts to create a general frame-

work, within which neural-symbolic models for solving different tasks can be devel-

oped. Moreover, conceptually sound approaches usually don’t rely on the contempo-

rary frameworks and practical models of deep learning and efficient engines of sym-

bolic reasoning, but implement a particular type of models with specific inference

procedures, for which mapping between neural networks and logical expressions is

established (e.g. [2]).

Some general-purpose neural-symbolic frameworks, which combine contemporary

DNN and symbolic reasoning tools, do exist. DeepProbLog [3] is one such frame-

works. Unfortunately, examples of its applications are mostly limited to such toy

problems as recognizing a pair of MNIST digits conditioned on their known sum.

Other works on a hybrid neural-symbolic approach based on deep probabilistic pro-

1 http://www.neural-symbolic.org/

http://www.neural-symbolic.org/

gramming (e.g. [4]) also don’t show how state-of-the-art models for various bench-

marks can be created within them. At the same time, one can encounter a variety of

modern individual solutions to specific problems based on ad hoc hybrid models,

which are quite efficient, but narrowly applicable (e.g. the Transparency by Design,

TbD, model [5]).

One of the prominent examples of this situation can be found in the field of visual

reasoning, in particular, Visual Question Answering (VQA) that requires explicit

reasoning capabilities. In particular, VQA implies variable binding, handling which is

considered as a classical problem for connectionist models [6]. Although contempo-

rary attention models incorporated into DNNs (in particular, in VQA [7]) partially

address this problem, but without compositionality featured by symbolic approach.

On the one hand, DNNs achieve state-of-the-art results on some VQA datasets

containing real-world images, and the use of contemporary DNN models and frame-

works in visual processing seems essential. However, it is convincingly argued [8]

that pure neural models tend to learn statistical biases in datasets (in particular, strong

language priors, e.g. [9]) and to map inputs to outputs directly instead of explicitly

modeling the underlying reasoning processes that results in a considerable decrease of

performance on specially designed datasets (such as CLEVR [10] or GQA [11]). On

the other hand, application of pure symbolic reasoning systems, which supposes that

the input images are preliminarily processed by a vision subsystem and converted into

symbolic form, is not robust and has low performance.

Apparently, hybrid solutions are desirable in order to account for all aspects of

VQA. However, state-of-the-art VQA models frequently use narrow imperative pro-

gram executors instead of general declarative reasoning systems (see, e.g. [5][8]).

In this work, we propose a framework of hybridization of the integrative cognitive

architecture OpenCog with symbolic inference engine operating on declarative

knowledge bases with modern deep learning libraries supporting gradient descent

optimization of differentiable functions over real-valued (subsymbolic) parameters.

Attempts to bridge the symbolic/subsymbolic gap via such hybridization of sym-

bolic reasoning and deep neural networks in OpenCog has been done before [12][13].

However, they were aimed at specific DNN architectures (a version of DeSTIN sys-

tem and a hierarchical attractor neural network), and didn’t support end-to-end train-

ing of the DNN model as a component of a pipeline that includes symbolic reasoning.

The proposed framework enables integration of OpenCog with arbitrary DNN

models providing means to backpropagate errors from conclusions to DNNs through

symbolic inference trees. This allowed us not only to reproduce the example used to

illustrate DeepProbLog [3], but also to re-implement the TbD model [5] with the use

of the general symbolic reasoning engine operating over declarative knowledge in-

stead of imperative program executor specifically design for CLEVR VQA dataset.

2 Motivation: Grounded Reasoning

As it is shown in [14], the OpenCog’s language Atomese suits well to express queries

about image content, for example, in the task of semantic image retrieval. These que-

ries are executed by OpenCog’s reasoning subsystems such as the Unified Rule En-

gine (URE), in particular, with the Probabilistic Logic Networks (PLN) rule set, and

the Pattern Matcher over the labels assigned by DNNs to the detected objects.

For example, the following query in Atomese can retrieve a video frame that con-

tains a bounding box recognized as a helicopter (and easily can be extended to more

complex queries):

BindLink
 VariableList
 VariableNode “$Frame”
 VariableNode “$BB”
 AndLink
 InheritanceLink
 VariableNode “$Frame”
 ConceptNode “Frame”
 InheritanceLink
 VariableNode “$BB”
 ConceptNode “Helicopter”
 MemberLink
 VariableNode “$BB”
 VariableNode “$Frame”
 ListLink
 VariableNode “$Frame”
 VariableNode “$BB”

Here, BindLink specifies the rule with three parts: a variable declaration, a pattern

to be found in Atomspace, a graph to be formed for each matched subgraph (for dif-

ferent variable groundings). InheritanceLink is used to indicate that some bound-

ing box (which is distinguished by its name, e.g. ConceptNode “BB-03-11”) is

recognized as an object of some specific class, and MemberLink is used to indicate

that the bounding box belongs to a certain frame. In order to successfully retrieve

information, OpenCog will just need inheritance and member links for frames and

bounding boxes (each of which is represented as an atom, e.g. ConceptNode) to be

stored in Atomspace.

However, the simplest way to perform visual reasoning, which consists in prelimi-

nary processing images with DNNs and inserting the descriptions of the images into

Atomspace with consequent pure symbolic reasoning, is far from enough even in the

case of image retrieval. One may want to find images with either a happy child or a

jumping boy, which can be the same. This means that assigning one label per object

or bounding box in image is not enough.

The problem is even more obvious if we consider the task of VQA, in which more

complex questions are frequent, e.g. “are the people looking in the same direction?”

or “are the chairs similar?” Apparently, to answer these questions, one should not

simply reason over symbolic labels, but should go down to the level of image features

that implies a deeper neural-symbolic integration. Although complete disentangle-

ment of reasoning from vision and language understanding can work for such datasets

as CLEVR [15], we consider such disentanglement not as an achievement, but as

oversimplification, which is not scalable to real-world reasoning.

Thus, what we want to make our system to reason about is not mere symbols, but

symbols with their groundings (e.g. grounded predicates), which are calculated by

demand in the course of reasoning.

Let us assume for example that we have a VQA system, which detects a number of

bounding boxes (BBs) in the image and describes them with some high-level features

(that is quite typical for models developed for some benchmarks [7]). A naïve neural-

symbolic system will apply a multinomial classifier to these features to produce most

probable labels for bounding boxes (maybe a few such classifiers to recognize objects

and their attributes). Each output neuron of such classifier can be considered as a

grounded predicate corresponding to a certain concept (e.g. “boy”, “happy”, etc.).

Instead of precomputing truth values of all these predicates, the system can com-

pute only those predicates, which are necessary. For example, the question “Is the boy

happy?” requires to check predicates “boy” and “happy”, while the question “What

color is the car?” can use a symbolic knowledge base to select predicates correspond-

ing to concepts inherited from the concept “color”.

Of course, this requires using a one-class classifier for each concept instead of a

multinomial classifier, which can only calculate truth values of all predicates simulta-

neously. However, this is not really a drawback, because no two concepts are precise-

ly mutually exclusive. A boy is also a child (and interestingly, we can frequently rec-

ognize children without recognizing them as boys or girls, so it is more likely that we

use different grounded predicates to recognize classes and subclasses instead of rec-

ognizing subclasses only and inferring classes symbolically). Even more, an object

can be simultaneously black and white, and even a boat can have a shape of a banana.

One can argue that all these predicates can still be pre-calculated before reasoning

without too large overhead. However, it is not really the case, when we are talking

about relations between objects in images, especially those, which require descending

on the level of image features or even pixels.

Moreover, the reasoning system can influence the sequence of operations per-

formed by the vision system or influence the output of different levels of the vision

system by imposing priors dependent on the current state of the cognitive system (e.g.

in neural-symbolic generative models). For example, in the TbD model, a sequence of

applications of DNN modules is constructed in a symbolic (although not declarative)

way (see fig. 1).

Fig. 1. Module network answering, “How many blocks are tiny blue objects or big

purple metallic objects”

Here, grounded predicates or functions are applied to the whole image instead of

bounding boxes, and they produce attention maps and features that are fed to the next

DNN modules, although one can imagine that modules are selected by the reasoning

system dynamically depending on the already obtained results and background

knowledge.

Here, we aim not at discussing, what models better fit to visual (or, more generally,

grounded) reasoning, but at designing a framework, which allows combining dynami-

cally arbitrary DNN models with knowledge-based symbolic reasoning. Since one of

the main motivations for this is to replace an ad hoc hand-coded imperative “reason-

er” (program executor) in Neural Module Networks with an entire cognitive architec-

ture, we call this approach Cognitive Module Networks.

3 Cognitive Module Networks

The best way to achieve the stated above goal would be to keep the possibility of

using the DNN modules in the existing Neural Module Networks while replacing only

hard-coded program executors with a general reasoning engine. Thus, what we need

from OpenCog is to chain forward applications of DNN modules in a similar way as

the program executors do. Technically important issue is the necessity to construct

this chain of applications as an uninterrupted computation graph that supports error

backpropagation by the corresponding DNN library.

On the side of OpenCog, such application can be carried out by executing

GroundedSchemaNodes and GroundedPredicateNodes (which differ in that the

former returns Atoms while the latter returns TruthValues). Some restrictions of

the existing API for GroundedSchemaNode were to be overcome to achieve the

necessary functionality. In particular, execution of methods of dynamically created

objects rather than static objects, and passing tensors (data structures specific to a

certain DNN library) between calls to GroundedSchemaNodes without conversion

are desirable. Different solutions to these problems are possible. However, we will not

go into technical detail here and focus more on a conceptual level.

Consider the following code in Atomese that corresponds to the question “Is the

zebra fat?” (or more precisely, “Is there a fat zebra in the image?”).

SatisfactionLink
 VariableNode “$X”
 AndLink
 InheritanceLink
 VariableNode “$X”
 ConceptNode “BoundingBox”
 EvaluationLink
 GroundedPredicateNode “py:runNN”
 ListLink(VariableNode(“$X”), ConceptNode(“zebra”))
 EvaluationLink
 GroundedPredicateNode “py:runNN”
 ListLink(VariableNode(“$X”), ConceptNode(“fat”))

Its execution by Pattern Matcher will cause the enumeration of all ConceptNodes

that inherit from “BoundingBox” and pass them to the wrapper function runNN,

which will take visual features for the given bounding box (e.g. attached as Values

to ConceptNodes) and pass them to the DNN that corresponds to the provided class

to be recognized (e.g. “zebra” or “fat”). Depending on implementation, it can be one

DNN that accepts word embeddings as input, or there can be many small classifiers

over high-level visual features (e.g. taken from ResNet or such) – each classifier for

each concept. Then, runNN should convert the DNN output to OpenCog’s Truth-
Value, over which AndLink acts. Thus, all bounding boxes will be retrieved that

classified simultaneously as “zebra” and “fat”.

This simple code already does a sort of variable grounding for neural networks and

use of declarative knowledge, which neural networks lack otherwise. However, this

solution didn’t allow for training DNNs based on conclusions made by the reasoner,

and it has an ad hoc interface to run particular networks.

In the companion paper [16], we describe how differentiable rules for URE can be

constructed that enables both learning tensor truth values and learning formulas for

rules themselves by gradient descent. In this paper, we extend this approach by using

predicates and schemas grounded in DNN models. More precisely, we focus more on

a DNN-centered framework, which can be adopted by the deep learning community.

Current implementation supports PyTorch backend, although Tensorflow and other

backends can be added in the future.

As described in [16], if formulas attached to URE rules are implemented as opera-

tions on PyTorch tensors, application of a sequence of formulas corresponding to the

chain of reasoning steps found by URE will yield a PyTorch computation graph, over

which errors from final conclusions to PyTorch variables can be backpropagated. For

example, PLN rule set for URE can help us to infer the truth value of the conclusion

EvaluationLink
 PredicateNode “green”
 ConceptNode “apple-001”

using modus ponens from the truth values of premises:

ImplicationLink
 PredicateNode “apple”
 PredicateNode “green”
EvaluationLink
 PredicateNode “apple”
 ConceptNode “apple-001”
With the use of tensor truth values and PyTorch implementation of the formula for

modus ponens, the error can be propagated from the truth value of the conclusion to

the truth values of the premises.

If we replace PredicateNode in the above example with GroundedPredicat-
eNode, which can in particular execute a DNN that outputs the probability that some

object in an image can be recognized as an apple, then the PyTorch computation

graph will include this DNN as a subgraph, and error will be propagated through the

truth value (probability) produced by it to its weights. Instead of just adjusting truth

values, we will train neural networks to output such values that lead to correct conclu-

sions inferred by the reasoning system. Since the OpenCog reasoning subsystems

perform the process of rewriting subgraphs of a (hyper)graph composed of Atoms,

they can compose and execute an arbitrary graph (architecture) of neural modules.

In order to make this possible, DNN modules should be attached to atoms, to

which variables in queries can be bound. CogNets library (its experimental implemen-

tation can be found here 2) provides class CogModule that inherits from

torch.nn.Module. On the one hand, CogModule objects can behave as ordinary

torch.nn.Module objects implying that if we take some module network and

change the inheritance of its modules to CogModule, it will continue working cor-

rectly. On the other hand, each CogModule object also attaches itself (through Val-

ues) to the specified Atom in Atomspace. Execution of neural modules attached to

Atoms is done through a special GroundedSchemaNode that extracts CogModule

objects from Atoms and passes arguments to them.

The basic application of CogNets will be to just inherit all modules in the TbD

model from CogModule. Then, we will be able to use OpenCog to execute queries

represented in the form of BindLinks. One question, which we don’t consider in

detail here, is how to obtain such queries from question in natural language. OpenCog

contains natural language processing components, in particular RelEx, that can be

used to parse questions and then convert them to Atomese queries. However, these

components have some limitations. Another possibility is to reuse the pre-trained

LSTM-based program generator from [8] (used in the TbD model also), which pro-

duces programs from questions, which they can be easily translated into Atomese.

This approach works well for CLEVR, although cannot be applied to the COCO VQA

benchmark in contrast to RelEx.

“Reasoning” in the TbD model is performed by executing an imperative program,

composed of a sequence of applications of DNN modules. For example, the question

“What color is the cylinder?” will be transformed to the consequent application of

filter_shape[cylinder] module and query_color module. The que-
ry_color module will take as input the image features masked by the attention map

produced by filter_shape[cylinder] module and outputs new feature map,

which is then passed to the final classifier. The multinomial classifier will calculate

the probabilities of all answers.

Thus, if we directly apply the TbD model just replacing its program executor with

OpenCog, we will gain not too much, because these Atomese queries will be nested

applications of GroundedSchemaNodes. Although these GroundedSchemaNodes

will be presented in Atomspace knowledge base, OpenCog’s reasoning capabilities

will not be involved.

However, we can explicitly introduce the query variable $X, replace the query

module with the corresponding filter module filter_color[$X], and ask the rea-

soning engine to find such value of $X which will produce a non-empty final atten-

tion map. Therefore, the question “What color is the cylinder?” can be represented

declaratively in Atomese:

AndLink

2 https://github.com/singnet/semantic-vision/tree/master/experiments/opencog/cog_module

https://github.com/singnet/semantic-vision/tree/master/experiments/opencog/cog_module

 InheritanceLink
 VariableNode “$X”
 ConceptNode “color”
 EvaluationLink
 GroundedPredicateNode “py:filter”
 ConceptNode “cylinder”
 EvaluationLink
 GroundedPredicateNode “py:filter”
 VariableNode “$X”

if we use a specially coded static Python function filter, which executes a correspond-

ing DNN module depending on the name of the given argument. Here, we will need

to add to Atomspace such facts as

InheritanceLink(ConceptNode(“red”),ConceptNode(“color”))

Pattern Matcher will be able to enumerate different colors and call different fil-
ter_color modules, for which PLN will infer the truth value of the given AndLink.

CogNets provide a general wrapper function CogModule.callMethod to extract

Python objects attached to Atoms and call their method with automatic unwrapping of

their arguments from Atoms and wrapping their results back into Atoms in such a

way that, in particular, forward methods of torch.nn.Module objects can be used

as is. Thus, the above code with the use of CogNets will look like

AndLink
 InheritanceLink
 VariableNode “$X”
 ConceptNode “color”
 EvaluationLink
 GroundedPredicateNode “py:CogModule.callMethod”
 ListLink
 ConceptNode “cylinder”
 ConceptNode “call_forward_tv”
 ConceptNode “image”
 EvaluationLink
 GroundedPredicateNode “py:CogModule.callMethod”
 ListLink
 VariableNode “$X”
 ConceptNode “call_forward_tv”
 ConceptNode “image”

CogModule.callMethod will extract the Python object (which will be a DNN

module as CogModule object here) attached to ConceptNode “cylinder” and

execute its call_forward_tv method (which is the method of CogModule inherit-

ed from torch.nn.Module), which will extract Python object (PyTorch tensor here)

from ConceptNode “image” and execute forward method of the DNN module

reducing its output to the tensor truth value. CogNets library provides a syntactic

sugar in Python to form the necessary Atomese expressions concisely.

One can see that this allows for assembling modules in neural module networks us-

ing symbolic knowledge and reasoning over (probabilistic) logic expressions with

variable grounding. This opens the path to real visual reasoning. For example, At-

omspace can contain the fact that left(X,Y) :– right(Y,X). Applying this fact during

the chain of reasoning performed by URE will result in transforming the module net-

work and using relation[right] module instead of relation[left] module of

TbD. In particular, given the question “To the left of what object is the green pyra-

mid?” humans will most likely find the green pyramid first and then look to the right

of it. Direct conversion of the question into the imperative program cannot represent

such visual reasoning, while it can appear naturally within our approach.

In contrast to the TbD model with its hard-coded program executor, our approach

can naturally be applied not to CLEVR, but also to COCO VQA and even to the ex-

ample given in the paper on ProbLog [3], namely to recognize digits on a pair of

MNIST digits conditioned on their sum. The premise for the query (requiring the sum

to be 7) with two VariableNodes of NumberNode type will look like

AndLink
 EqualLink
 PlusLink
 VariableNode(“$X”)
 VariableNode(“$Y”)
 NumberNode “7”
 EvaluationLink
 GroundedPredicateNode “py:CogModule.callMethod”
 ListLink
 VariableNode “$X”
 ConceptNode “call_forward_tv”
 ConceptNode “image1”

 EvaluationLink
 GroundedPredicateNode “py:CogModule.callMethod”
 ListLink
 VariableNode “$Y”
 ConceptNode “call_forward_tv”
 ConceptNode “image2”

4 Conclusion

We have considered an approach to neural-symbolic integration, within which

knowledge-based reasoning is carried out over symbols grounded in perception

through deep neural networks, that, in particular, allows the symbolic reasoner to

interoperate with execution of neural modules and to assemble a neural module net-

work on fly depending on the current input and background knowledge.

We have implemented a framework, which embodies this approach with the use of

the contemporary cognitive architecture and deep learning library, namely OpenCog

and PyTorch. This implementation enables such integration of OpenCog with arbi-

trary DNN models that allows for error backpropagation from conclusions to DNNs

through symbolic inference trees.

On example of neural-symbolic models widely used for the CLEVR benchmark,

we have shown how a domain-specific program executor, which assembles neural

module networks using given linear sequences of imperative commands, can be re-

placed with a general-purpose reasoning engine operating over a declarative

knowledge base that can equally be used to reproduce models implemented within

other frameworks, in particular, ProbLog.

References

1. Duch, W., Oentaryo, R.J., Pasquier, M.: Cognitive Architectures: Where Do We Go from

Here. Frontiers in Artificial Intelligence and Applications (Proc. 1st AGI Conference), vol.

171, pp. 122–136 (2008)

2. Besold, T.R., et al: Neural-Symbolic Learning and Reasoning: A Survey and Interpreta-

tion. arXiv preprint, arXiv: 1711.03902 (2017)

3. Manhaeve, R.M., et al.: DeepProbLog: Neural Probabilistic Logic Programming. arXiv

preprint, arXiv: 1805.10872 (2018)

4. Overlan, M.C., Jacobs, R.A., Piantadosi, S.T.: Learning abstract visual concepts via prob-

abilistic program induction in a Language of Thought. Cognition, vol. 168, pp. 320-334

(2017)

5. Mascharka, D., Tran, Ph., Soklaski, R., Majumdar, A.: Transparency by Design: Closing

the Gap Between Performance and Interpretability in Visual Reasoning. arXiv preprint,

arXiv: 1803.05268 (2018)

6. Fodor, J. A., Pylyshyn, Z. W.: Connectionism and cognitive architecture: A critical analy-

sis. Cognition, 28(1–2), 3–71 (1988)

7. Singh, J., Ying, V., Nutkiewicz, A.: Attention on Attention: Architectures for Visual Ques-

tion Answering (VQA). arXiv preprint, arXiv: 1803.07724 (2018)

8. Johnson, J.: Inferring and Executing Programs for Visual Reasoning. arXiv preprint,

arXiv: 1705.03633 (2017)

9. Agrawal, A., et al.: Don’t just assume; look and answer: Overcoming priors for visual

question answering. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.

4971–4980 (2018)

10. Johnson, J., et al.: CLEVR: A Diagnostic Dataset for Compositional Language and Ele-

mentary Visual Reasoning. arXiv preprint, arXiv: 1612.06890 (2016)

11. Hudson, D.A., Manning, Ch.D.: GQA: A New Dataset for Real-World Visual Reasoning

and Compositional Question Answering. arXiv preprint, arXiv: 1902.09506 (2019)

12. Goertzel, B.: Perception Processing for General Intelligence: Bridging the Symbolic/ Sub-

symbolic Gap. AGI’12, Springer: Lecture Notes in Computer Science, vol. 7716, pp. 79-

88 (2012)

13. Goertzel, B.: OpenCog NS: A Deeply-Interactive Hybrid Neural-Symbolic Cognitive Ar-

chitecture Designed for Global/Local Memory Synergy. Proc. AAAI Fall Symposium Se-

ries FS-09-01, pp. 63-68 (2009)

14. Potapov, A.S., et al.: Semantic image retrieval by uniting deep neural networks and cogni-

tive architectures. AGI’18, Springer: Lecture Notes in Computer Science, vol. 10999, pp.

196-206 (2018)

15. Yi, K., at al.: Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language

Understanding. arXiv preprint, arXiv: 1810.02338 (2018)

16. Differentiable Probabilistic Logic Networks. To be published

