
Adaptive Neuro-Symbolic Network Agent

Patrick Hammer

Department of Computer & Information Sciences
College of Science and Technology

Temple University
Philadelphia PA 19122, USA
patrick.hammer@temple.edu

Abstract. This paper describes Adaptive Neuro-Symbolic Network Agent,
a new design of a sensorimotor agent that adapts to its environment by
building concepts based on Sparse Distributed Representations of sen-
sorimotor sequences. Utilizing Non-Axiomatic Reasoning System theory,
it is able to learn directional correlative links between concept activa-
tions that were caused by the appearing of observed and derived event
sequences. These directed correlations are encoded as predictive links be-
tween concepts, and the system uses them for directed concept-driven ac-
tivation spreading, prediction, anticipatory control, and decision-making,
ultimately allowing the system to operate autonomously, driven by cur-
rent event and concept activity, while working under the Assumption of
Insufficient Knowledge and Resources.

Keywords: Non-Axiomatic Reasoning · Sensorimotor · Artificial Gen-
eral Intelligence · Procedure Learning · Autonomous Agent

1 Introduction

Adaptive Neuro-Symbolic Network Agent (ANSNA), is a new design of a sen-
sorimotor agent derived from Non-Axiomatic Reasoning System (NARS) theory
proposed by Pei Wang (see [1]). It adapts to its environment by building con-
cepts based on Sparse Distributed Representations [2] of sensorimotor sequences,
rather than based on Compound Terms that are typical for NARS. It does so by
taking theory of compositionality of bit vectors as proposed by [3] into account,
which not only captures union and difference operations between bit vectors,
but also ways to encode hierarchical structure within them.

Making use of Non-Axiomatic Reasoning System theory, ANSNA is able to
learn directional correlative links between concept activations that were caused
by the appearing of observed and derived event sequences. These directed cor-
relations are encoded as predictive links between concepts, and the system uses
them for directed concept-driven activation spreading, prediction, anticipatory
control and decision-making. All that allows the system to operate autonomously
under the Assumption of Insufficient Knowledge and Resources, driven by cur-
rent context, determined by event and concept activity.
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2 Similar work and philosophical differences

ANSNA borrows most of its theory from the Non-Axiomatic Reasoning Sys-
tem proposed by Pei Wang (see [1]), while using the inference control theory of
ALANN [5], which is a NARS-variant designed by Tony Lofthouse. What makes
ANSNA really different from NARS is however the complete absence of Terms
and explicit Inheritance relationships, coming from a philosophically very dif-
ferent path: while NARS tries to model a general-purpose thinking process with
highly flexible ways to compare, transform, and generally deal with any kind of
information that can somehow be expressed in Narsese (NARS’s formal internal
and I/O language), ANSNA concentrates completely on sensorimotor.

For NARS, sensorimotor capability, which consists mainly of procedural and
temporal inference on sensor & motor events, is just a special case of rich rea-
soning abilities its Non-Axiomatic Logic (NAL) supports. NAL also includes
declarative reasoning abilities about sets, arbitrary relations, and inheritance-
relationships that are all there to support dealing with conceptual knowledge
that doesn’t necessarily have any grounding in actual sensorimotor experience.
ANSNA takes the position where knowledge that has no possible grounding
in the system’s sensorimotor experience is not necessarily meaningless (as it
can clearly relate to other knowledge), but surely was so far useless to a goal-
driven decision-maker, as it would mean that the meaning of that knowledge is
completely orthogonal to everything ANSNA has ever experienced through its
sensors so far, both external and internal. In NARS this situation is by far not
unusual, a user entering a new Inheritance relationship (term123 → term242)
consistent only of new terms, term123 and term242, leaves the system’s memory
with a floating pair of concepts that have so far no relation to any other concepts
whatsoever, meaning also no relation to sensorimotor concepts, and how such a
relation should be established through correlations is a difficult problem. Such a
problem does not exist in ANSNA, as it is assumed that all information is con-
sumed through external (vision, touch, sound, temperature, other modalities...)
and internal sensors (battery level, structural integrity, etc.).

According to ANSNA philosophy, relating new user-given abstract terms to
sensorimotor experience is not something an AGI has to do, but that building
compositions of sensorimotor patterns is everything necessary. That is, because
in ANSNA every composition simply cannot even be “not grounded”, since every
information, without exception, ultimately is forced to enter ANSNA through
the system’s sensors. Also in a NARS operating in a robot without Narsese-
communication channel, it is usually not happening, and not at all necessary,
that new atomic terms will be created, in such a case the set of atomic terms are
pre-defined by the designer, consisting of pre-defined sensor encodings and prob-
ably revisable background knowledge that was loaded on the robot beforehand.
In that sense, a semantic code is inevitable, meaning the universe of mental dis-
course will be spanned by possible compositions of events following pre-defined
encodings of sensory data (plus combinations with background knowledge, in
NARS). Even though NARS itself does not assume a fixed semantic code, in
that case it is undeniably present. This is however no contradiction with that
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such a system can acquire the meaning of observed events, where the meaning
of an event has both structural and empirical aspects.

Structural meaning is determined by the composition following the semantic
code, which encodes how the pattern is observed/composed from sensorimotor
experience. For instance there is no way for the system to see the observation of
a red ball as structurally identical to an observed blue ball. However, it needs to
be possible for the system to learn that a blue ball carries overlapping meaning,
not only by being a similar structural composition / semantic code word, but
also that nudging a blue ball in similar circumstances, will have similar conse-
quences like nudging a red ball in similar contexts. And that can be done without
having the user entering an explicit Inheritance relationship into the system, and
without an explicit Inheritance altogether, as whether experienced event a is a
special case of another event b can implicitly be represented by sensorimotor
relations, that is, if a leads to the consequences we expect from b, it is naturally
a special case of the former even though it may structurally differ.

Of course, the semantic code needs to be rich, not in quantity, but in quality.
Same as a set of lego technic pieces needs to be rich in variety and fit together
nicely to support the construction of a large variety of machines, the semantic
code needs to be rich in variety and fit together in such a way, that the agent
is able to conceptualize experienced aspects of its environment in an effective
way. This can happen through a large variety of perceptual attributes, such as,
for example, Color, PositionX, PositionY, Pitch, Frequency, Temperature, Pres-
sure and Battery Level. Color, PositionX and PositionY can encode information
from a visual field, for instance. Once a basic semantic code is in place, the
encoders are present, everything the system experiences will be seen in terms
of the attributes these encoders present, by ANSNA. The more comprehensive,
the richer the context will be, and the better will ANSNA be able to make sense
of its environment through compositions of sensorimotor events. This leads to
the last key difference to OpenNARS and ANSNA, the usage of Sparse Dis-
tributed Representations (long, sparse bit vectors, SDR’s), and usage of Pentti
Kanerva’s [3] insights about how hierarchical structure can be encoded in them.
Clearly, differently than Sparse Distributed Memory (SDM) [6], ANSNA is not
just a model of memory, and thus, as we will see, its event-based design require-
ments make its memory architecture different than SDM, while preserving some
of SDM’s key properties. For instance, mapping events with similar SDR’s to
similar concepts, supporting content-addressable memory.

3 Data Structures

ANSNA’s memory consists of two priority queues, one contains concepts and the
other current events (Events Buffer).

Event: Each Event consists of a SDR with a NAL Truth Value, an Occur-
rence Time, and a Attention Value that consists of the priority of the event and
a durability value that indicates the decay rate of the priority over time.
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A SDR is a large bit-vector with most bits being zero, in ANSNA all SDR’s
are of equal length n.

SDR structure: With a,b being SDR’s we can now define the following
functions calculating a new SDR based on a existing one, using theory borrowed
from P. Kanerva [3]: SDRSet(a, b) := a|b where | is the bitwise or operation.
SDRTuple(a, b) := ΠS(a)⊕ΠP (b) where ΠS and ΠP are two random permuta-
tions selected when ANSNA starts up, they remain the same after that.

Additionally encoding functions E as proposed in [7] are used to encode
similar numbers to similar SDR’s, and terms are encoded into random SDR’s
deterministically. This way, arbitrary hierarchical compositions can be encoded
into ANSNA, and as we will see later, effectively compared with each other
based on a per-bit basis. For now it is sufficient to see that two input encodings
SDRTuple(E(brightness), E(3.23)) and SDRTuple(E(brightness), E(3.5)) will
lead to similar SDR’s, meaning most 1-bits will overlap. We will omit E from now
on, and see that SDRSet(green, light) will have more 1-bits in common with
light than sound. Of course SDRTuple and SDRSet can be arbitrary nested
with each other, essentially forming a tree which leafs are for instance SDR-
encoded terms or numbers, and structurally similar trees will lead to similar
SDR’s.

Concept: Concepts in ANSNA are summarized sensorimotor experience,
they are the components of ANSNA’s content-addressable memory system and
are named by interpolations of the events SDR’s that matched to it (described in
more detail in the next section). Processed events can match to different concepts
with various degree, but in a basic implementation a winner-takes-all approach
can be taken, matching the event only to the most specific matching case that
was kept in memory, and processing it as such.

Each concept has a SDR (its identifier), and Attention value consisting of a
priority and a durability value, a Usage value, indicating when the concept was
last used (meaning it won the match competition for an event, as we will see
later) and how often it was used since its existence. Also it has a table of pre-
and post-condition implications that are essentially predictive links, specifying
which concepts activate which others, and a FIFO for belief and goal events, and
has multiple responsibilities:

To categorize incoming events by matching them to its SDR: to become
good representatives, concepts have to encode useful and stable aspects of a
situation, conceptual interpolation, explained in the next section, helps here;
To support revision, prediction and explanation for native events, events for
which this concept wins the matching competition; To maintain how relevant the
concept is currently and how useful it was in total so far; Learning and revising
preconditons and consequences by interacting with an for temporal inference
incoming event.

Matching events to concepts: An event can match to multiple concepts
with a truth value “penalty” according to the match. Let S and P be a SDR. We
want that S can be said to be a special case of P , or can stand for P , denoted by
S → P , if most of the bits in P also occur in S, but not necessarily vice versa.
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So S =SDRSet(red,ball) should be a special case of P =SDRSet(ball). It has
most the features of ball, but also has the redness feature, meaning a red ball
can effectively stand for, or be treated as a ball too.

We will now formalize this idea using a NAL truth value, which is a frequency-
confidence tuple (f, c) = ( w+

w++w−
, w++w−
w++w−+1 ) where w+ is positive evidence and

w− negative evidence. The truth value of S → P can be established as follows:
Let’s define each 1-bit in the SDR to be a NAL sentence (see [8]), where each of
these 1-bits, at position i, in S, encode biti = 1.

One case of positive evidence for S → P , is a common property S and P both
share. Such as the fact that bit5 is a 1-bit. On the other hand, a case of negative
evidence would be a property possessed by P that S does not possess. Given
that, we can define the positive evidence as: w+ := |{i ∈ {1, ..., n}|Si = Pi = 1}|
and the negative evidence as w− := |{i ∈ {1, ..., n}|Si = 1 ∧ Pi = 0}|.

If the event E has truth value TE , to apply the penalty of ”treating it as
concept C”, the truth value becomes Truth Deduction(Tmatch, TE), which will
then be used in the inference rule within the concept for deriving further events.

That is motived by that if event E is a special case of the pattern it is encoded
by, SDRE, and SDRE is a special case of SDRC, as the match determined,
then we have E → SDRE with truth value TE and SDRE → SDRC with truth
value Tmatch := SDR Inheritance(S, P ). Using the deduction rule as specified
in [8], we end up with E → SDRC, allowing to treat the event as if it would
have the SDR SDRC.

Please note there is also a symmetric match defined by Truth Intersection(
SDR Inheritance(a,b), SDR Inheritance(b,a)) as we will need later. For a tuple
of truth values ((f, c), (f2, c2)) Truth Intersection leads to (f ∗ f2, c ∗ c2) and
Truth Deduction to (f ∗ f2, f ∗ f2 ∗ c ∗ c2), for the other truth functions we will
use, please see [8], they have all been described by Pei Wang in detail.

Event FIFO and Revision: While pushing a new event to the first position
when a matched event enters a concept’s FIFO, to resolve goal conflicts in respect
to a current decision, in the goal event FIFO, revision with the highest confident
element when projected to the goal occurrence time (where projected means
multiplicatively penalized for occurrence time difference dt according to αdt,
where α is a truth projection decay parameter) has to happen, the result will
then be pushed to the first FIFO position. Of course, the revision (which sums
up the positive, and negative evidence of both premises) can also happen in
the belief event FIFO, this make sure that two conflicting sensory signals that
happen concurrently, will be merged, allowing to better deal with contradicting
sensory information. 1

Implication Table and Revision: In NARS terms, Implications in ANSNA
are eternal beliefs of the form a⇒ b, which essentially becomes a predictive link
for a and a retrospective link in b, each going to a separate implication table
(preconditions and postconditions).

1 A detail: As in [9], only revise if the evidental base does not overlap , and only
if the revised element when projected to the occurrence-time middle between both
elements is higher than the premises’s.
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An implication table combines different implications, for instance a⇒ b and
a ⇒ c to describe the different consequences of a in the postcondition table of
concept a. Implication tables are ranked by the truth expectations of the beliefs,
which for a given truth value (f, c) is defined as (c ∗ (f − 1

2 ) + 1
2 ).

Different than in OpenNARS, where it is clear whether revision can happen
dependent on whether the terms are equal, two items in ANSNA can have differ-
ent degree of SDR overlap. To deal with this, both revision premises are penalized
with symmetric SDR match SDR Similarity, leading to Truth1 and Truth2 us-
ing Truth Intersection, and revision will only occur if revision(Truth1,Truth2)
has a higher confidence than both Truth1 and Truth2. When a new item en-
ters the table, it is both revised with the closest SDR candidate (the revised
result will be added to the table, if it was a proper result), and also the original
Implication will be added to the table.

Conceptual Interpolation: Conceptual interpolation, inspired by [6], is
the process by which concept’s SDR adapts to the SDR’s of the matched events,
in such a way that the SDR of the concept becomes the average case among
the matched event SDR’s. This allows the concepts to become useful ”pro-
totypes” under the presence of noise, useful in the sense that a newly seen
noisy pattern can be reconstructed. A way to implement this is idea is to
add a counter for each bit in the SDR. Each 1-bit of the matched event in-
creases the corresponding counter by 1*u, and each 0-bit decreases it by 1*u,
where u =Truth Expectation(SDR Inheritance(e,c)), meaning an event that bet-
ter matches to the concept will have a stronger influence on it. If the counter is 0
or smaller, the corresponding concept SDR’s bit will be 0, else 1. This effectively
means that iff there is more positive evidence for the bit in the matched event
SDR’s to be 1 than 0, it will be 1 in the concept SDR they were matched to too.

4 Attentional Control

While on a conceptual level Attentional Control in ANSNA allows the processing
of different items with individual speeds (as also NARS [1], [12] and Hofstadter’s
group’s creations [11]), the details in ANSNA mostly follow the Adaptive Logic
and Neural Network (ALANN) control model by Tony Lofthouse, which was
developed for a NARS implementation over the last two decades, based on ex-
pertise about Spiking Neural Networks. Although a convincing prototype exists
[5], unfortunately this model was not published in a scientific publication yet, so
its background is explained in addition to implementation details.

Every NARS, and AGI in general, faces the problem of fulfilling practically
infinite resource-demands with a finite amount of resources [12] which are ulti-
mately limited by the processor speed and the RAM available on the machine
it runs on. An Attention model [13] can solve this problem as it allows to selec-
tively perform inferences based on contextual cues, which primary importance
the ALANN model stresses. It does so by building an analogy to the brain, which
is known to be able to save energy by keeping only a tiny proportion of neurons
active at the same time [14]. In biological neural networks, spike cascades ap-
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pear, where spikes are sent from one neuron to the next, and, potentially even
further, if the action potential threshold of the source neuron is overcome ([15]),
while avoiding re-activations through cyclic connections by enforcing a certain
refractory/latency period. The priority value of the spike sent to the target neu-
ron depends on the synapse strength and the current action potential, the latter
we will call concept priority. In ALANN, the synapse strength is assumed to
correspond to the strength of a certain experienced pattern, which is summa-
rized by a NAL [8] truth value corresponding to a belief that is related to the
concept the neuron represents. Using NAL as a foundation, this is natural, as
concept node Lighting can have related beliefs like Lighting ⇒ Thunder, in
that sense, the belief acts like a link connecting concept Lighting to Thunder,
making the Lighting concept emit Thunder events that are received by the
latter, and whenever that happens, also the concept priority of Thunder will
be increased naturally due to the spike derivation, based on the priority value
of the spike, and will decrease quickly. From now on, we will refer to spikes as
events, neurons as concepts, synapse strength as belief truth, also to take a safe
distance from actual claims of how the wetware actually functions. In ANSNA,
action potential thresholds are never fixed, instead it is realized by enforcing a
fixed number of active events to be selected from a global priority queue that
is ranked by the event priorities, and where the topmost k items are selected.
Using this model, ANSNA consists of the following attention update functions:

Attention forgetEvent: Forget an event using exponential decay. To make
lazy update possible, the decay is stronger the longer it wasn’t selected anymore.
Also this one needs to be radical, there is only a very small window in time in
which it is likely for the target concept to generate further derivations, to make
sure derivations are still contextually relevant.

Attention forgetConcept: Forget a concept with exponential decay, again,
the more, the longer it wasn’t selected anymore, additionally a lower “priority
threshold” is established, that is dependent on the concept’s usefulness. This
threshold hampers useful concepts to be forgotten. Usefulness is calculated in
the following way: age = currentTime - lastUsed, v = useCount / age, usefulness
= v / (v + 1.0); Additionally the neural-network-motivated activation spreading
functions applied to event derivations are:

Attention activateConcept: Activates a concept because an event was
matched to it, proportional to the priority of the event. The idea here is that the
concept sums up the appearing event priorities while leaking priority over time,
this way the active concepts tend to be currently contextually relevant ones.

Attention deriveEvent: The derived event gets higher priority if the in-
volved concept had a high priority (the derivation was contextually relevant),
and also gets higher priority if the truth expectation of the for the derivation
used belief (a belief event of belief event FIFO, or an Implication from a pre-
or post-condition table, as we will see later) was high (the synapse had high
strength).

Attention inputEvent: Priority positively correlated with the truth ex-
pectation of the input event.
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5 Operating cycle

Inference Schemas: The following describes all types of inference that can
happen in the operating cycle introduced next, and the truth functions that
apply are defined in [8], where a leading “!” means goal, and “.” means belief:

– Revision, in Event FIFO, and in Implication Table (Link growth):
{Implication/Event a, Implication/Event a} ` Implication/Event a

– Deduction (Prediction):
{Event a., Implication (a⇒ b).} ` Event b.
{Event b!, Implication (a⇒ b).} ` Event a!

– Induction (Link formation):
{Event a., Event b.} ` Implication (a => b).

– Abduction (Prediction):
{Event b., Implication (a⇒ b).} ` Event a.
{Event a!, Implication (a⇒ b).} ` Event b!

– Intersection (Concept formation):
{Event a., Event b., after(b, a)} ` Event SDRTuple(a, b).
{Event a., Event b., concurrent(b, a)} ` Event SDRSet(a, b).
where concurrent and after are excluding each other: when the occurrence time of a and b
is closer than a global system parameter, concurrent(a, b) is true, else either after(b, a) or
after(a, b) is true.

Operating Cycle: In each cycle, a fixed number of events (input or derived)
get taken out from Events Buffer and processed: a concept will be created for
them (if one with exact same SDR doesn’t already exist), and they match the
best asymmetrically matched concept available (not including the created one),
also increasing its priority using Attention activateConcept. The event (which
truth value was reduced consistent with the asymmetric match explained previ-
ously) then interacts with the events within the concepts FIFO for revision, as
explained previously. Also it interacts with the postcondition implication table
(the highest truth-expectation elements, a choice rule), triggering a Deduction2

if it is a belief event, and an abduction if it is a goal event. And it interacts with
the precondition implication table, triggering an Abduction if it is a belief event,
and a deduction if it is a goal event, both consistent with the Schemas.

Also the event gets sent to the k highest-priority concepts (not including the
matched one) as a “foreign concept”, not reducing its truth value (this interac-
tion is not a match, just a correlation in activity between event and concept!).
The only purpose of that interaction is to compose new, more complex tempo-
ral sequences that are themselves events to be processed, consistent with the
Intersection Schema in the table, using Attention deriveEvent to determine the
derived event’s Attention value. Additionally, sequence (a, b) leads to the for-
mation of hypothesis a⇒ b which directly enters the postcondition implication
table of a as a “predictive link” and precondition implication table of b as a
“retrospective link”. (Time durations are stored too, and averaged on revision)

All derived sequences enter the global Event Buffer, of which all elements
taken out from re-enter with adjusted Attention value as defined by Atten-
tion forgetEvent. Note that also the k used concepts get their priority reduced
by Attention forgetConcept. This means that all the attention updates are driven
by event processing. All summarized:

2 which generates an Anticipation, that if it won’t get confirmed, adds negative evi-
dence to the implication (predictive link) that generated the prediction. (as AERA)
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Fig. 1. Overview with Event Buffer and con-
cepts, plus their predictive links. Operating cy-
cle selects events from Event Buffer (priority-
biased), lets them interact with the matched
concept for Intersection, Deduction and Abduc-
tion, and with high-priority concepts for Tem-
poral Induction, and as result derives further
events that end up in Event Buffer, and predic-
tive links that end up in the implication tables.

Concept
Event FIFO

Event Bu�er
Intersection

Induction

Deduction
Abduction

Revision

Input

Selection

Implication Table

Decision Making Decision Making in ANSNA was taken from NARS [16]
and adjusted to fit well to ANSNA’s memory model:

Operations: These are a (SDR, Action) tuple, Action is a software procedure
without arguments, expected to finish in constant time. They are registered using
ANSNA RegisterOperation(SDR sdr, Action procedure) method. For now the
SDR serves mostly as an ID, but formats for motor operations allow the system
to see similar parametrizations as similar, for instance the SDR encoding of
(motor1,0.7) will naturally be more similar to (motor1,0.8) than to (motor1,0.2),
which opens interesting opportunities for fine-grained control.

Decision Making Rule: When a goal event gets matched to a concept and
added to its FIFO as described earlier, the goal event, or instead the revised
one in case that revision happened, if of form (SDR,Op SDR i), determines the
operation (Op SDR i, Action i) stored in the system. In that case, the event
gets projected to the current moment, leading to a certain truth value TP . Now
the system retrieves the next event b from belief event FIFO that has no associ-
ated operation and has the highest truth confidence of its truth value Tb when
projected to the current time and calculates TResult =Deduction(TP , Tb). If this
truth value’s expectation is above the system’s decision threshold parameter, the
corresponding procedure Actioni gets called, capturing context and intention,
and the truth of the procedure knowledge is considered by goal-derivation.

Procedure Learning: To make the system aware of the execution of an
action, for each of the k highest priority-concepts (that are selected in each cycle,
as described previously), the first belief event FIFO element gets ”copied”, This
copy receives a new SDR, being SDRSet(OldSDR, Op SDRi) (also allows for
compound operations), and is then added to the FIFO without revision, making
the system effectively re-interpret the event as being a precondition under which
the operation was executed, so that when a next event with SDR c interacts with
the concept for temporal inference, ((OldSDR,Op SDR i)⇒ c) will naturally be
formed with temporal induction, a piece of procedure knowledge, specfiying that
the execution of Opi leads to c under the condition of OldSDR.

Motor Babbling: To trigger executions at the beginning where no proce-
dure knowledge exists yet, the system invokes random motor operations from
time to time, a process called Motor Babbling. Without any initial operations,
the system couldn’t learn how it can affect the environment, so this serves as
an initial trigger for procedure learning. The same idea is used in [17]. Initial
reflexes are also a potentially helpful, similar ones like the grab reflex in humans
are possible too, but these are more domain-specific.
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6 Conclusion

A new autonomous sensorimotor agent architecture, Adaptive Neuro-Symbolic
Network Agent, is proposed. Differently than NARS from Pei Wang, which it is
derived from, it uses SDR’s for knowledge representation, and a inference control
mechanism inspired by spiking neural network derived from Tony Lofthouse’s
easily parallelizable ALANN model. Its key benefits, besides being more concise
than NARS, lie in the ability to process a large quantity of information effectively,
and to mine temporal-spatial patterns in its experience that allow it to predict
what will happen next, and make decisions accordingly, to realize its goals.
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