Zeta Distribution and Transfer Learning Problem Eray Özkural Founder, Celestial Intellect Cybernetics

Introduction

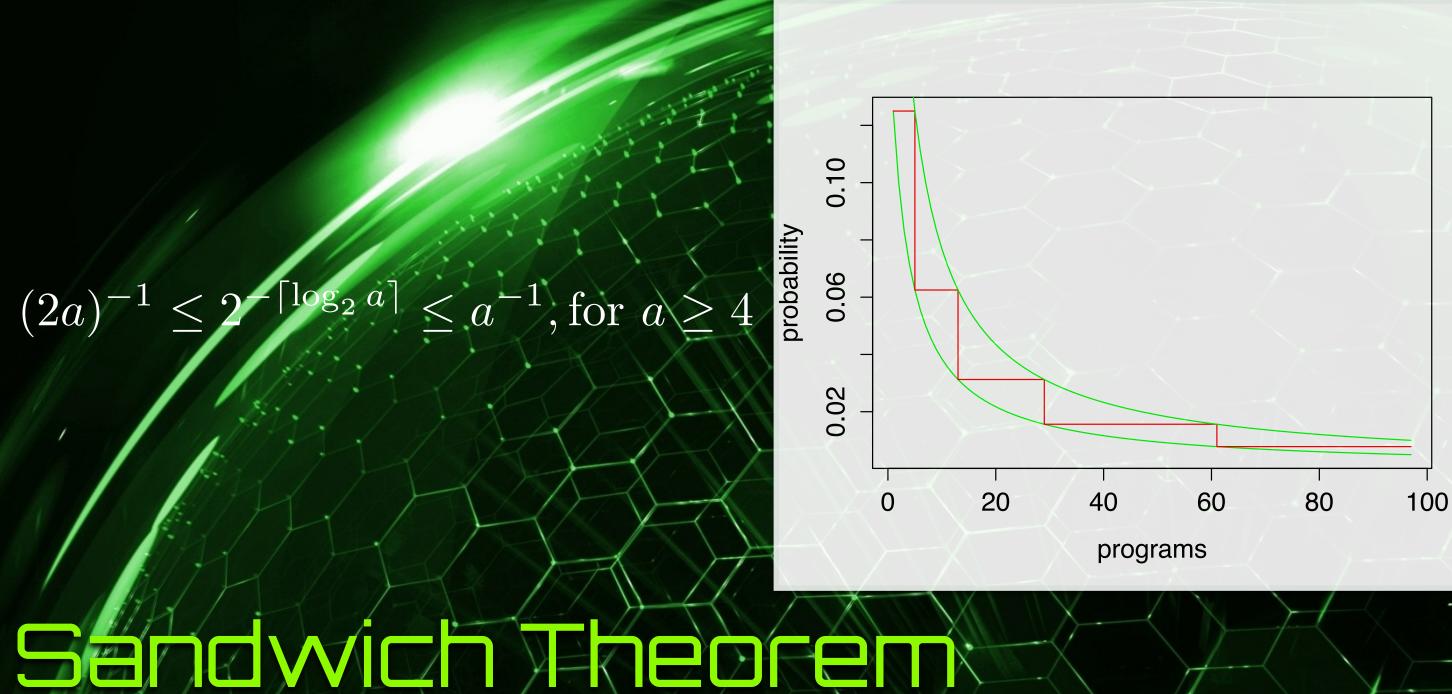
» Two types of Al research » Goal: » Constructive Al » To argue that an » Analytical Al » Why is human learning. effective? » The world is hierarchical Physics results in simple forms: unitary evolution in likely feasible. $\Box M$ » The world is evolutionary

evolutionary world makes transfer learning feasible.

We show two unrealistic learning/models that are likely not feasible.

» We show two evolutionary learning models that are

» Zeta distribution can help model transfer learning



» A sandwich theorem showing that an arithmetization of programs can be used for approximating a priori program probabilities.

Zeta Distribution of Programs

»Arithmetization: $\phi(\pi) = \sum b_i \cdot 2^{|\pi|-i|}$

»interpret program bit strings as integers.

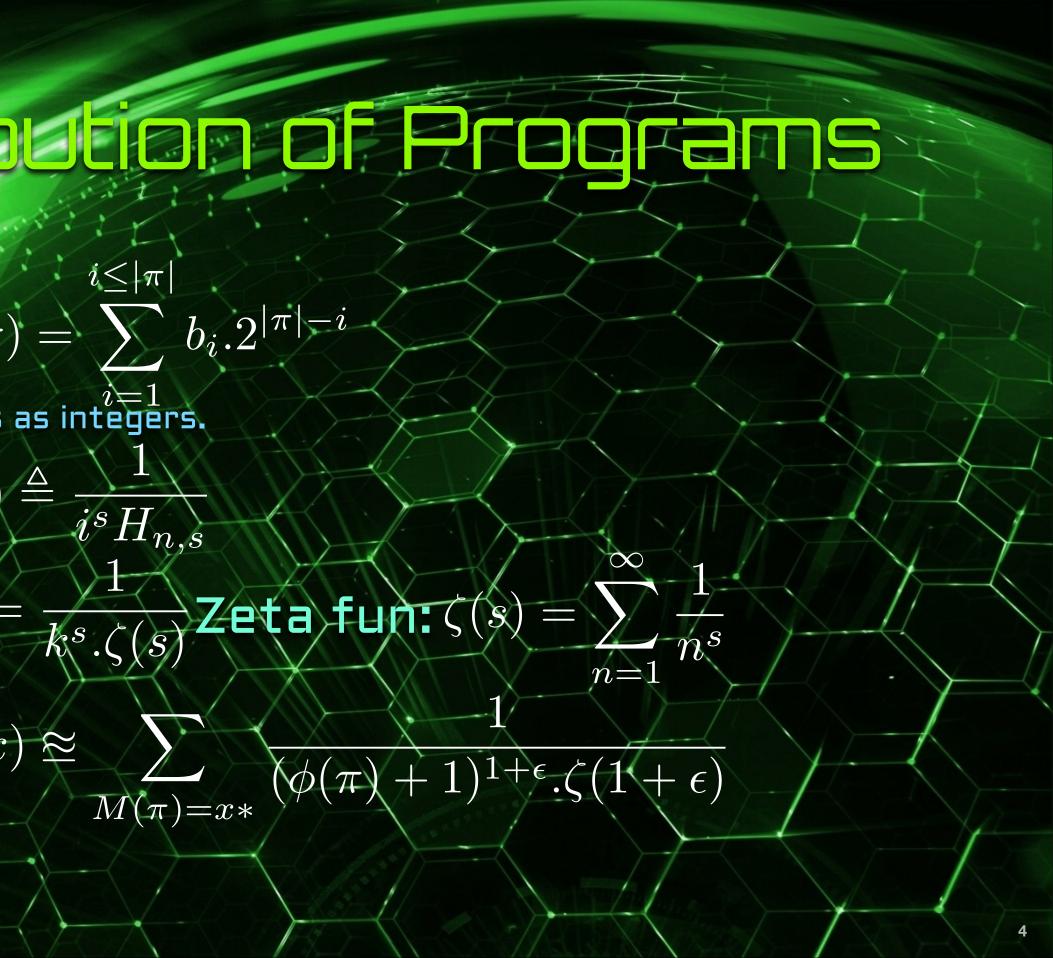
»Zipf dist: $P(Z_s^{(n)} = o_i) \triangleq$ $i^sH_{n,s}$

»Zeta dist: $P(Z_s = k)$ =

»Approximation: $P_M(x) \cong$

 $M(\pi) = x *$

 $i \leq |\pi|$



Training Sequence as a Stochastic Process

»We extend Solomonoff's model to a stochastic process:
» $\mathcal{M} = \{\mu_1, \mu_2, \mu_3, \dots, \mu_n\}$ »Entropy rate: $H(\mathcal{M}) = \lim_{n \to \infty} \frac{H(\mu_1, \mu_2, \mu_3, \dots, \mu_n)}{n}$

»Cond entropy rate: $H'(\mathcal{M}) = \lim_{n \to \infty} \frac{n}{H(\mu_n | \mu_1, \mu_2, \mu_3, \dots, \mu_{n-1})}$ »Kolmogorov-Shannon theorem:

 $\lim_{n \to \infty} \frac{K_M(X_1, X_2, X_3, \dots, X_n)}{n} = H(X) + O(1)$ **> Optimal program:** $\pi_i^* = \arg\min(\{|\pi_j| \mid \forall x, y \in \{0, 1\}^* : M(\pi_j, x, y) = P(\mu_i = x|y)\})$

»Assume transfer learning oracle

Expected Time

»Conditional algorithmic entropy rate: » $K'(\mathcal{M}_{k}) \triangleq K(\mu_{k}|\mu_{1},\mu_{2},\mu_{3},\ldots,\mu_{k-1})$ »Conditional stochastic process probabilities: $P'(\mathcal{M}_{\langle k}) \triangleq P(\mu_k | \mu_1, \mu_2, \mu_3, \dots, \mu_{k-1})$ »Expected time: $\mathbb{E}'[t(\mathcal{M}_{< k})] \triangleq \mathbb{E}_{\mathcal{M}}[t(\mu_k)|\mu_1, \dots, \mu_{k-1}] \leq \mathbb{E}_{\mathcal$ $\forall \mu_k \in \{0,1\} *$

$2t(\pi_k^*)2^{K'(\mathcal{M}_{< k})}P'(\mathcal{M}_{< k})$

Pover-Lawin Nature

- » Preferential attachment in evolutionary systems (Yule)
- » It follows from the principle of maximum entropy where mean of logs of observations is fixed (Visser)
- » Gene family sizes vs. frequencies follow power law (Huynen)

- » Gene expression in Zipf's law (Furusawa)
- evolution rate of orthologøus genes. Power-law like

various species follows » Log-normal distribution of distribution of paralogous family sizes and network node degree. (Koonin)

Random Juping Model

»Monkeys typing m-bit random programs »No mutual information »Oracle achieves no time saving »Compatible with: »Levin's conjecture that AI is impossible »No-Free Lunch Theorem sort of arguments »Incompatible with observation: »Common sense knowledge in Al is useful

Identical Zeta Random Variables

»Process generated i.i.d. from zeta distribution $H'(\mathcal{M}) = H(\mu_1) = H(Z_s)$ »Expected running time: $\mathbb{E}'[t(\mathcal{M}_{\langle k})] \leq \frac{2t_{max}}{\zeta(s)} \sum_{k=1}^{\infty} 2^{\lceil \log_2 k \rceil} k^{-s}$ $4t_{max}$ k^s $\zeta(s)$ »First trillion programs, s= 1.001: 10^{12} $(4k/k^{1.001}\zeta(1.001) \cong 3.89 \times 10^9 t_{max})$ t_{max} k =

Zipf Distribution of Sub-programs

»Each program has m instructions:

» $A = \{a_1, a_2, a_3, \dots, a_{2^k}\}$

»Each optimal program made up of instructions:

»Database of sub-programs:

 $\pi_{i}^{*} = \pi_{i,1}^{*} \pi_{i,2}^{*} \pi_{i,3}^{*} \dots \pi_{i,m}^{*}$

 $P^* = \pi^*_{i,j}$ »Total entropy:

» $H(\mu_1, \mu_2, \dots, \mu_n) \approx \log_2 k + k \cdot 2^k + \log_2 n + \log_2 m + H(Z_s^{(2^k)})$

»Expected time: $H'(\mathcal{M}) \approx \lim_{n \to \infty} \frac{1}{n} \left(k \cdot 2^k + \frac{s}{H_{2^k,s}} \sum_{l=1}^{2} \frac{\ln(l)}{l^s} + \ln(H_{2^k,s}) \right)$

 $+\log_2 k + \log_2 n + \log_2 m$

 2^{κ}

An Evolutionary Zeta Process

»Random mutations of programs in training sequence:

 $\pi_1^* = \wedge$ $\begin{cases} M(Z_s, \pi_{i-1}^*), & \text{if } Z_s \text{ is a valid transformation} \\ \pi_{i-1}^*, & \text{otherwise} \end{cases} \end{cases}$ π_i^* »Small conditional entropy rate:

 $\lim_{n \to \infty} H'(\mathcal{M}) = H(Z_s) = \log(\zeta(s)) = \frac{s\zeta'(s)}{\zeta(s)}$ $n \rightarrow \infty$ »Calculation of conditional entropy rate: $H(Z_{1.05}) = 24.5$ $H(Z_{1.1}) = 13.8$ $H(Z_{1.001}) = 1008.4$ $H(Z_{1.01}) = 106.1$

examachine@gmail.com

