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Introduction

Two types of AI research 
Constructive AI 
Analytical AI 

Why is human learning 
effective? 

The world is hierarchical 
Physics results in simple 
forms: unitary evolution in 
QM 
The world is evolutionary 

Goal: 
To argue that an 
evolutionary world makes 
transfer learning feasible. 
We show two unrealistic 
learning models that are 
likely not feasible. 
We show two evolutionary 
learning models that are 
likely feasible. 

Zeta distribution can help 
model transfer learning �2



Sandwich Theorem
A sandwich theorem showing that an arithmetization of 
programs can be used for approximating a priori program 
probabilities.
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Zeta Distribution of Programs

Arithmetization:  
interpret program bit strings as integers. 

Zipf dist: 
  
Zeta dist:                              Zeta fun:  

Approximation: 

�4

⇣(s) =
1X

n=1

1

ns

�(⇡) =

i|⇡|X

i=1

bi.2
|⇡|�i

P (Zs = k) =
1

ks.⇣(s)

P (Z(n)
s = oi) ,

1

isHn,s

P

M

(x) u
X

M(⇡)=x⇤

1

(�(⇡) + 1)1+✏

.⇣(1 + ✏)



Training Sequence as a 
Stochastic Process
We extend Solomonoff’s model to a stochastic process: 

  

Entropy rate: 
 

Cond entropy rate:  
Kolmogorov-Shannon theorem: 

 
 

Optimal program:  
 

Assume transfer learning oracle

�5

M = {µ1, µ2, µ3, . . . , µn}
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Expected Time

Conditional algorithmic entropy rate: 
  

Conditional stochastic process probabilities: 
  

Expected time: 
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Power-Law in Nature

Preferential attachment 
in evolutionary systems 
(Yule) 
It follows from the 
principle of maximum 
entropy where mean of 
logs of observations is 
fixed (Visser) 
Gene family sizes vs. 
frequencies follow power 
law (Huynen) 

Gene expression in 
various species follows 
Zipf's law (Furusawa)  
Log-normal distribution of 
evolution rate of 
orthologous genes.  
Power-law like 
distribution of paralogous 
family sizes and network 
node degree.  (Koonin)
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Random Typing Model

Monkeys typing m-bit random programs 
No mutual information 
Oracle achieves no time saving 
Compatible with: 

Levin’s conjecture that AI is impossible 

No-Free Lunch Theorem sort of arguments 

Incompatible with observation: 
Common sense knowledge in AI is useful
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Identical Zeta Random Variables

Process generated i.i.d. from zeta distribution 
  

Expected running time: 
  

First trillion programs, s= 1.001: 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Zipf Distribution of Sub-programs
Each program has m instructions: 

  

Each optimal program made up of instructions: 
Database of sub-programs:  
 
 
  
 

Total entropy:  
  

Expected time: 
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An Evolutionary Zeta Process
Random mutations of programs in training sequence: 

     
 
 
 
 
 
 
 
 
 

Small conditional entropy rate: 
 

Calculation of conditional entropy rate: 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H(Z1.1) = 13.8 H(Z1.05) = 24.5

H(Z1.01) = 106.1 H(Z1.001) = 1008.4



Questions?
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