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Life-Long Learning of Semantic Information
● Ongoing

○ Definite starting point.
○ Non-static dataset.
○ Online.

● Incremental
○ Learning simple concepts first, then more 

complicated ones.
○ New concepts or even types of data can appear at 

any moment.
○ New information absorbed dynamically.

● Semantics → Similarity between concepts
○ Interpretability?
○ Modification?
○ Semantic space of ALL things?



Semantic Vector Learning

● Learning good vector representations for concepts.
● Embedded in a continuous, real space.
● Distance related to similarity.
● High dimensionality → more expressiveness
● Operations on vectors are meaningful.



Hyperdimensional Binary Computing [Kanerva]
● Consider 10,000 bit long binary vectors:

○ Space contains 210,000 unique vectors.
○ Every point has the same distribution of distances to each other point.
○ Average random Hamming Distance is 5,000/10,000 = 0.5.
○ Binary distribution, mean distance 5,000 and STD 50.
○ Resistant to random noise.
○ Compatible with probability!

● Interesting operations:
○ XOR: Is an involution (c = a ⊕ b → a recoverable given b, and vice versa)
○ Permutation Π: Repeated permutation generates random distances (close to 0.5)
○ “Consensus Sum”

● Mapping with XOR and Permutation preserves distance:
○ H(a ⊕ x, a ⊕ y) = | x ⊕ y |
○ H(Πx, Πy) = | x ⊕ y |



Representing Data Structures [Kanerva] 
● Sets: For {ᶘ1, ᶘ2, …, ᶘm} ↦ {᫤1, ᫤2, …, ᫤m}, where ᫤i are binary vectors:

○ Represent as XOR of ᫤i, or ᫤ = ᫤1 ⊕ ᫤2 ⊕ … ⊕ ᫤m
○ Union and intersection computable.

● Ordered Pairs: ᶘr = (ᶘs, ᶘt) then the corresponding vectors are r = Πs ⊕ t
● Sequences: Recursive ordered pairs!

    Encoding → 

● Records: Bind XOR, sum by consensus.
○ Example: [Name, Gender, Age][Peter, Male, 26] = [Name: Peter, Gender: Male, Age: 26]
○



Incrementally Learned Knowledge
● Represent all information as long binary vectors. Encode more complicated 

information by combining binary vectors.
○ Basic building blocks assigned random starting vectors or geometrically sensible vectors.
○ As permutation Π and XOR ⊕ preserve distance, transform existing representations to new 

encodings with these operations.
○ A sequence of data can be encoded as shown before.
○ Final point in binary space determined by a data record of all known information.
○ Structure of this is like a “knowledge graph” of semantic relationships.

● Where do we learn the semantics?
○ Each category of data exists in its own space with an identifier (anchor).
○ Position in this space subject to change.
○ Referencing this data externally requires first encoding by anchor.
○ Can use existing models to enrich semantic information.



 Incrementally Learned Knowledge (Linguistic Example)



Geometric Interpretation of Semantics
● “Things that co-occur should be closer to each other”

○ Envision semantics as a spring-mass system.
○ The more often data is seen, the more “mass” it has.
○ The more often a relationship occurs, the closer the related components want to be.

● Connective Force: 
○ The pulling force generated through relationships between two semantic points.
○ Much like springs attached to masses.

● Proximal Force: 
○ The pushing force resisting two semantic points from getting closer.
○ Basically, reverse gravity.

● Want to reach a low energy state across whole system.



Binary Vector Analogue to Geometric Semantics
● Given a knowledge graph K of m vertexes,                                                    

we want to minimize for X, where X is m by n:
● Function T is the total tension for K in a given vector state of each vertex:

    Proximal Force                                                 Connective Force



Binary Vector Analogue (Continued)
● The C functions for Connective and Proximal Force determine the “direction” 

of the force on a bit.

● By substitution, the total force experienced by a bit of a particular vector:



Minimization Across Binary Vectors
● Overall formulation for total tension:

● Fast initial minimization of new vectors:
○ Can compute pseudo-gradients on each bit for each vector by seeing how much energy 

changes by flipping it.
○ Many Body Problem for Hamming Distance (consider only connected components)
○ Change as many bits of the most high energy vector that satisfy a dynamically decaying 

threshold before computing the effect on total tension.
○ Very similar process to simulated annealing.



Example Total Energy Minimization



The Life-Long Learning Process
● Either structural composition of knowledge, or enriched by semantics.

○ We can use the geometric interpretation and minimization on statistical observations.
○ Alternatively, can be directed through interaction with its environment.
○ Self testing? Focus testing?
○ Exploration?

■ Use probability to measure likelihood of two unrelated vectors being near each other.
■ Can ask people why this might be? Update knowledge to reflect that.

● Binary vectors as features:
○ Can use whole space.
○ Can use a particular semantic subspace.
○ Self Organizing Maps to learn topology of a space of vectors? [Kohonen]
○ Highest level of abstraction can be a sequence of an entire lifetime of observations.



Encoding Images
● Values of pixels:

○ May be definite, may be 
unknown, maybe we don’t care.

○ One = 1 - Zero
○ Uknown 1 - Don’t care, but 

orthogonal to one and zero.

● Encoding Location:
○ Right = 1 - Left
○ Up = 1 - Down, but both 

orthogonal to right and left.
○ Every pixel can be encoded to 

know what is around them in the 
entire pattern.

○ First permute repeatedly by one 
axis, then the other.

○ Can embed patterns into regular 
shapes.



Future Work
● Implementing a general framework for the life long learning system.
● Perfecting efficient and powerful structural representations of the knowledge 

graph for pixel and character based data through empirical testing.
● Integrating multiple data representations into a single system and studying the 

effect of these on performance.
○ Particularly, does including classical learned models improve the results?

● Self-guided learning apart from supervision:
○ Mini-tests to focus on improving inadequacies.
○ Employ probability to hypothesize new, unsupervised relationships.



Thank you for your time! Any questions?
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