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Life-Long Learning of Semantic Information

e Ongoing
o Definite starting point.
o Non-static dataset.
o Online.

e Incremental
o Learning simple concepts first, then more
complicated ones.
o New concepts or even types of data can appear at
any moment.
o New information absorbed dynamically.

e Semantics — Similarity between concepts

o Interpretability?
o Maodification?
o Semantic space of ALL things?




Semantic Vector Learning

Learning good vector representations for concepts.
Embedded in a continuous, real space.

Distance related to similarity.

High dimensionality — more expressiveness
Operations on vectors are meaningful.




Hyperdimensional Binary Computing [Kanerva]

e Consider 10,000 bit long binary vectors:

Space contains 2'%%9 ynique vectors.

Every point has the same distribution of distances to each other point.

Average random Hamming Distance is 5,000/10,000 = 0.5.

Binary distribution, mean distance 5,000 and STD 50.

Resistant to random noise.

Compatible with probability!

e Interesting operations:
o XOR: Is an involution (c = a ® b — a recoverable given b, and vice versa)
o Permutation ': Repeated permutation generates random distances (close to 0.5)
o “Consensus Sum’

e Mapping with XOR and Permutation preserves distance:
o H(@ex,aey)=[xey|
o H(Mx, MNy)=|xey|
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Representing Data Structures [Kanerva]

e Sets:For{,C, ....¢ }~{z,, z, ..., z_}, where z are binary vectors:
o Representas XOR of z, or z = z1 ©Z,%...92
o Union and intersection computable.
e Ordered Pairs: { = ({, {) then the corresponding vectors are r = [s © t

e Sequences: Recursive ordered pairs! ” o
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e Records: Bind XOR, sum by consensus.

o Example: [Name, Gender, Age][Peter, Male, 26] = [Name: Peter, Gender: Male, Age: 26]
T
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Incrementally Learned Knowledge

e Represent all information as long binary vectors. Encode more complicated

information by combining binary vectors.
o Basic building blocks assigned random starting vectors or geometrically sensible vectors.
o As permutation 'l and XOR @ preserve distance, transform existing representations to new
encodings with these operations.
o A sequence of data can be encoded as shown before.
o Final point in binary space determined by a data record of all known information.
o  Structure of this is like a “knowledge graph” of semantic relationships.

e Where do we learn the semantics?

Each category of data exists in its own space with an identifier (anchor).
Position in this space subject to change.

Referencing this data externally requires first encoding by anchor.

Can use existing models to enrich semantic information.
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Incrementally Learned Knowledge (Linguistic Example)

Morphemes
* abab = aba + bab =
[1(aba & ba) & bab

unconditional = . )
uncondition + char: "unrelated”,

aba = ab + ba = conditonal morph: un+relate+ed
R = +({C & unrelated,

char: "al"
1
R = CHal M @ un+relate+ed})

[(ab & b) & ba

conditional =
condition + al

INPUT: "ababa"




Geometric Interpretation of Semantics

e “Things that co-occur should be closer to each other”

o Envision semantics as a spring-mass system.

o The more often data is seen, the more “mass” it has.

o The more often a relationship occurs, the closer the related components want to be.
e Connective Force:

o The pulling force generated through relationships between two semantic points.

o  Much like springs attached to masses.
e Proximal Force:

o The pushing force resisting two semantic points from getting closer.

o Basically, reverse gravity.

e \Want to reach a low energy state across whole system.




Binary Vector Analogue to Geometric Semantics

e Given a knowledge graph K of m vertexes, arg min(T(X("’) + X7
we want to minimize for X, where X is m by n: X
e Function T is the total tension for K in a given vector state of each vertex:

m n

T(A) =Y > max(Feonn(4,1,5) + Fyroz(A,1,5),0)
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Binary Vector Analogue (Continued)

e The C functions for Connective and Proximal Force determine the “direction”
of the force on a bit.

l,ifa=2" | -1l,ifa=0b

e By substitution, the total force experienced by a bit of a particular vector:

M, M,
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Minimization Across Binary Vectors

Overall formulation for total tension:

m n
M,

=22 max | 3 MiCoonn(Ais> A4s) | Wok = sy

e=1 9=1

Fast initial minimization of new vectors:

O

Can compute pseudo-gradients on each bit for each vector by seeing how much energy
changes by flipping it.

Many Body Problem for Hamming Distance (consider only connected components)
Change as many bits of the most high energy vector that satisfy a dynamically decaying
threshold before computing the effect on total tension.
Very similar process to simulated annealing.




Example Total Energy Minimization

—— No Proximal Force
With Proximal Force

Fig. 1. Example minimization per random row of a randomly connected 50 node
graph’s binary vectors via the greedy method. Without proximal force it reaches 0.




The Life-Long Learning Process

e Either structural composition of knowledge, or enriched by semantics.
o We can use the geometric interpretation and minimization on statistical observations.
o Alternatively, can be directed through interaction with its environment.
o Self testing? Focus testing?
o Exploration?
m Use probability to measure likelihood of two unrelated vectors being near each other.
m Can ask people why this might be? Update knowledge to reflect that.
e Binary vectors as features:
o Can use whole space.
o Can use a particular semantic subspace.
o Self Organizing Maps to learn topology of a space of vectors? [Kohonen]
o Highest level of abstraction can be a sequence of an entire lifetime of observations.
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Encoding Images

(@]

e Values of pixels:

May be definite, may be
unknown, maybe we don’t care.
One =1 - Zero

Uknown 1 - Don'’t care, but
orthogonal to one and zero.

| 6] [ ) e Encoding Location:

N - X is to the nght of Y... = '%\1_“ Xis above Y... ‘ ©

— S — - @)

Space of pixel information

Right = 1 - Left

Up = 1 - Down, but both
orthogonal to right and left.
Every pixel can be encoded to
know what is around them in the
entire pattern.

First permute repeatedly by one
axis, then the other.

Can embed patterns into regular
shapes.




Future Work

e Implementing a general framework for the life long learning system.

e Perfecting efficient and powerful structural representations of the knowledge
graph for pixel and character based data through empirical testing.

e Integrating multiple data representations into a single system and studying the

effect of these on performance.
o Particularly, does including classical learned models improve the results?
e Self-guided learning apart from supervision:

o Mini-tests to focus on improving inadequacies.
o Employ probability to hypothesize new, unsupervised relationships.




Thank you for your time! Any questions?
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