A Computational Theory For Life-Long Learning of Semantics

Peter Sutor, Douglas Summers-Stay, Yiannis Aloimonos

> Peter Sutor University of Maryland - Dept. of CS $8 / 22 / 18$ AGI 2018

Life-Long Learning of Semantic Information

- Ongoing
- Definite starting point.
- Non-static dataset.
- Online.
- Incremental
- Learning simple concepts first, then more complicated ones.
- New concepts or even types of data can appear at any moment.
- New information absorbed dynamically.
- Semantics \rightarrow Similarity between concepts

- Interpretability?
- Modification?
- Semantic space of ALL things?

Semantic Vector Learning

- Learning good vector representations for concepts.
- Embedded in a continuous, real space.
- Distance related to similarity.
- High dimensionality \rightarrow more expressiveness
- Operations on vectors are meaningful.

Hyperdimensional Binary Computing [Kanerva]

- Consider 10,000 bit long binary vectors:
- Space contains $2^{10,000}$ unique vectors.
- Every point has the same distribution of distances to each other point.
- Average random Hamming Distance is 5,000/10,000 = 0.5.
- Binary distribution, mean distance 5,000 and STD 50.
- Resistant to random noise.
- Compatible with probability!
- Interesting operations:
- XOR: Is an involution ($\mathrm{c}=\mathrm{a} \oplus \mathrm{b} \rightarrow$ a recoverable given b , and vice versa)
- Permutation П: Repeated permutation generates random distances (close to 0.5)
- "Consensus Sum"
- Mapping with XOR and Permutation preserves distance:
$\begin{array}{ll}\circ & H(a \oplus x, a \oplus y)=|x \oplus y| \\ \circ & H(\Pi x, \Pi y)=|x \oplus y|\end{array}$
ARL

Representing Data Structures [Kanerva]

- Sets: For $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}\right\} \mapsto\left\{\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{\mathrm{m}}\right\}$, where \mathbf{z}_{i} are binary vectors:
- Represent as XOR of \mathbf{z}_{i}, or $\mathbf{z}=\mathbf{z}_{1} \oplus \mathbf{z}_{2} \oplus \ldots \oplus \mathbf{z}_{\mathrm{m}}$
- Union and intersection computable.
- Ordered Pairs: $\zeta_{r}=\left(\zeta_{s}, \zeta_{\mathrm{t}}\right)$ then the corresponding vectors are $\mathrm{r}=\Pi \mathrm{s} \oplus \mathrm{t}$
- Sequences: Recursive ordered pairs!

$$
\zeta_{z}=\zeta_{z_{1}} \zeta_{z_{2} \ldots}=\left(\zeta_{z_{1} \ldots} \ldots \zeta_{z_{m-1}}, \zeta_{z_{m}}\right)
$$

$$
\text { Encoding } \rightarrow \quad z=\Pi^{m-1} z_{1} \oplus \Pi^{m-2} z_{2} \oplus \ldots \oplus \Pi^{m-i} z_{i} \oplus \ldots \oplus \Pi z_{m-1} \oplus z_{m}
$$

- Records: Bind XOR, sum by consensus.
- Example: [Name, Gender, Age][Peter, Male, 26] = [Name: Peter, Gender: Male, Age: 26]
-

$$
\begin{aligned}
R_{v} & =\left[r_{1} r_{2} \ldots r_{m}\right]\left[v_{1} v_{2} \ldots v_{m}\right]^{T} \\
& =r_{1} \oplus v_{1}+r_{2} \oplus v_{2}+\ldots+r_{m} \oplus v_{m}=+_{c}\left(\left\{r_{i} \oplus v_{i}\right\}\right)
\end{aligned}
$$

ARL

Incrementally Learned Knowledge

- Represent all information as long binary vectors. Encode more complicated information by combining binary vectors.
- Basic building blocks assigned random starting vectors or geometrically sensible vectors.
- As permutation Π and $X O R \oplus$ preserve distance, transform existing representations to new encodings with these operations.
- A sequence of data can be encoded as shown before.
- Final point in binary space determined by a data record of all known information.
- Structure of this is like a "knowledge graph" of semantic relationships.
- Where do we learn the semantics?
- Each category of data exists in its own space with an identifier (anchor).
- Position in this space subject to change.
- Referencing this data externally requires first encoding by anchor.
- Can use existing models to enrich semantic information.

Incrementally Learned Knowledge (Linguistic Example)

Geometric Interpretation of Semantics

- "Things that co-occur should be closer to each other"
- Envision semantics as a spring-mass system.
- The more often data is seen, the more "mass" it has.
- The more often a relationship occurs, the closer the related components want to be.
- Connective Force:
- The pulling force generated through relationships between two semantic points.
- Much like springs attached to masses.
- Proximal Force:
- The pushing force resisting two semantic points from getting closer.
- Basically, reverse gravity.
- Want to reach a low energy state across whole system.

Binary Vector Analogue to Geometric Semantics

- Given a knowledge graph K of m vertexes, we want to minimize for X, where X is m by n :

$$
\arg \min _{X}\left(T\left(X^{(k)}+X\right)\right)
$$

- Function T is the total tension for K in a given vector state of each vertex:

$$
T(A)=\sum_{i=1}^{m} \sum_{j=1}^{n} \max \left(F_{\text {conn }}(A, i, j)+F_{\text {prox }}(A, i, j), 0\right)
$$

$$
F_{\text {prox }}(A, i, j)=\sum_{k=1, k \neq i}^{m} \frac{M_{i} M_{k}}{H\left(A_{i}, A_{k}\right)^{2}} C_{\text {prox }}\left(A_{i j}, A_{k j}\right)
$$

$$
F_{\text {conn }}(A, i, j)=\sum_{k=1, k \neq i}^{m} M_{i} W_{i k} C_{\text {conn }}\left(A_{i j}, A_{k j}\right)
$$

Binary Vector Analogue (Continued)

- The C functions for Connective and Proximal Force determine the "direction" of the force on a bit.

$$
C_{\text {prox }}(a, b)=\left\{\begin{array}{r}
1, \text { if } a=b \\
-1, \text { if } a \neq b
\end{array}\right\} \quad C_{\text {conn }}(a, b)=\left\{\begin{array}{r}
-1, \text { if } a=b \\
1, \text { if } a \neq b
\end{array}\right\}
$$

- By substitution, the total force experienced by a bit of a particular vector:

$$
\begin{aligned}
F & =\sum_{k} M_{i} W_{i k} C_{c o n n}\left(A_{i j}, A_{k j}\right)+\sum_{k} \frac{M_{i} M_{k}}{H_{N}\left(A_{i}, A_{k}\right)^{2}} C_{p r o x}\left(A_{i j}, A_{k j}\right) \\
& =\sum_{k=1, k \neq i}^{m} M_{i} C_{\text {conn }}\left(A_{i j}, A_{k j}\right)\left[W_{i k}-\frac{M_{k}}{H\left(A_{i}, A_{k}\right)^{2}}\right]
\end{aligned}
$$

Minimization Across Binary Vectors

- Overall formulation for total tension:

$$
T(A)=\sum_{i=1}^{m} \sum_{j=1}^{n} \max \left(\sum_{k} M_{i} C_{c o n n}\left(A_{i j}, A_{k j}\right)\left[W_{i k}-\frac{M_{k}}{H\left(A_{i}, A_{k}\right)^{2}}\right], 0\right)
$$

- Fast initial minimization of new vectors:
- Can compute pseudo-gradients on each bit for each vector by seeing how much energy changes by flipping it.
- Many Body Problem for Hamming Distance (consider only connected components)
- Change as many bits of the most high energy vector that satisfy a dynamically decaying threshold before computing the effect on total tension.
- Very similar process to simulated annealing.

Example Total Energy Minimization

Fig. 1. Example minimization per random row of a randomly connected 50 node graph's binary vectors via the greedy method. Without proximal force it reaches 0 .

The Life-Long Learning Process

- Either structural composition of knowledge, or enriched by semantics.
- We can use the geometric interpretation and minimization on statistical observations.
- Alternatively, can be directed through interaction with its environment.
- Self testing? Focus testing?
- Exploration?
- Use probability to measure likelihood of two unrelated vectors being near each other.
- Can ask people why this might be? Update knowledge to reflect that.
- Binary vectors as features:
- Can use whole space.
- Can use a particular semantic subspace.
- Self Organizing Maps to learn topology of a space of vectors? [Kohonen]
- Highest level of abstraction can be a sequence of an entire lifetime of observations.

Encoding Images

- Values of pixels:
- May be definite, may be unknown, maybe we don't care. One = 1 - Zero
Uknown 1 - Don't care, but orthogonal to one and zero.
- Encoding Location:
- Right = 1 - Left
- Up = 1 - Down, but both orthogonal to right and left.
- Every pixel can be encoded to know what is around them in the entire pattern.
- First permute repeatedly by one axis, then the other.
Can embed patterns into regular shapes.

Future Work

- Implementing a general framework for the life long learning system.
- Perfecting efficient and powerful structural representations of the knowledge graph for pixel and character based data through empirical testing.
- Integrating multiple data representations into a single system and studying the effect of these on performance.
- Particularly, does including classical learned models improve the results?
- Self-guided learning apart from supervision:
- Mini-tests to focus on improving inadequacies.
- Employ probability to hypothesize new, unsupervised relationships.

Thank you for your time! Any questions?

MOST PERTINENT REFERENCES:

1. Sutor P., Summers-Stay D., Aloimonos Y. (2018) A Computational Theory for Life-Long Learning of Semantics. In: Iklé M., Franz A., Rzepka R., Goertzel B. (eds) Artificial General Intelligence. AGI 2018. Lecture Notes in Computer Science, vol 10999. Springer, Cham
2. Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing in distributed representation with high-dimensional random vectors. Cognitive Computation, 1(2), 139-159.
3. Kohonen, T. The self-organizing map. Proceedings of the IEEE 78(9), 1464-1480 (Sep 1990). https://doi.org/10.1109/5.58325
