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Abstract. Self-improving software has been a goal of computer scientists since 

the founding of the field of Artificial Intelligence. In this work we analyze lim-

its on computation which might restrict recursive self-improvement. We also in-

troduce Convergence Theory which aims to predict general behavior of RSI 

systems.  
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1 Introduction 

Intuitively most of us have some understanding of what it means for a software sys-

tem to be self-improving, however we believe it is important to precisely define such 

notions and to systematically investigate different types of self-improving software1. 

First we need to define the notion of improvement. We can talk about improved effi-

ciency – solving same problems faster or with less need for computational resources 

(such as memory). We can also measure improvement in error rates or finding closer 

approximations to optimal solutions, as long as our algorithm is functionally equiva-

lent from generation to generation. Efficiency improvements can be classified as ei-

ther producing a trivial improvement as between different algorithms in the same 

complexity class (ex. NP), or as producing a fundamental improvement as between 

different complexity classes (ex. P vs NP) [1]. It is also very important to remember 

that complexity class notation (Big-O) may hide significant constant factors which 

while ignorable theoretically may change relative order of efficiency in practical ap-

plications of algorithms.  

This type of analysis works well for algorithms designed to accomplish a particular 

task, but doesn’t work well for general purpose intelligent software as an improve-

ment in one area may go together with decreased performance in another domain. 

This makes it hard to claim that the updated version of the software is indeed an im-

provement. Mainly, the major improvement we want from self-improving intelligent 

software is higher degree of intelligence which can be approximated via machine 

friendly IQ tests [2] with a significant G-factor correlation. 

                                                           
1 This paper is based on material excerpted, with permission, from the book - Artificial  

    Superintelligence: a Futuristic Approach © 2015 CRC Press. 
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A particular type of self-improvement known as Recursive Self-Improvement 

(RSI) is fundamentally different as it requires that the system not only get better with 

time, but that it gets better at getting better. A truly RSI system is theorized not to be 

subject to diminishing returns, but would instead continue making significant im-

provements and such improvements would become more substantial with time. Con-

sequently, an RSI system would be capable of open ended self-improvement. As a 

result, it is possible that unlike with standard self-improvement, in RSI systems from 

generation-to-generation most source code comprising the system will be replaced by 

different code. This brings up the question of what “self” refers to in this context. If it 

is not the source code comprising the agent then what is it? Perhaps we can redefine 

RSI as Recursive Source-code Improvement (RSI) to avoid dealing with this philo-

sophical problem.  Instead of trying to improve itself such a system is trying to create 

a different system which is better at achieving same goals as the original system. In 

the most general case it is trying to create an even smarter artificial intelligence.  

2 On the Limits of Recursively Self-Improving AGI 

The mere possibility of recursively self-improving software remains unproven. In this 

section we present a number of arguments against such phenomenon. First of all, any 

implemented software system relies on hardware for memory, communication and 

information processing needs even if we assume that it will take a non-Von Neumann 

(quantum) architecture to run such software. This creates strict theoretical limits to 

computation, which despite hardware advances predicted by Moore’s law will not be 

overcome by any future hardware paradigm. Bremermann [3], Bekenstein [4], Lloyd 

[5], Anders [6], Aaronson [7], Shannon [8], Krauss [9], and many others have investi-

gated ultimate limits to computation in terms of speed, communication and energy 

consumption with respect to such factors as speed of light, quantum noise, and gravi-

tational constant. Some research has also been done on establishing ultimate limits for 

enhancing human brain’s intelligence [10].  While their specific numerical findings 

are outside of the scope of this work, one thing is indisputable: there are ultimate 

physical limits to computation. Since more complex systems have greater number of 

components and require more matter, even if individual parts are designed at na-

noscale, we can conclude that just like matter and energy are directly related [11] and 

matter and information (“it from bit”) [12] so is matter and intelligence. While we are 

obviously far away from hitting any limits imposed by availability of matter in the 

universe for construction of our supercomputers it is a definite theoretical upper limit 

on achievable intelligence.  

In addition to limitations endemic to hardware, software-related limitations may 

present even bigger obstacles for RSI systems. Intelligence is not measured as a 

standalone value but with respect to the problems it allows to solve. For many prob-

lems such as playing checkers [13] it is possible to completely solve the problem 

(provide an optimal solution after considering all possible options) after which no 

additional performance improvement would be possible [14]. Other problems are 

known to be unsolvable regardless of level of intelligence applied to them [15]. As-

suming separation of complexity classes (such as P vs NP) holds [1], it becomes ob-



vious that certain classes of problems will always remain only approximately solvable 

and any improvements in solutions will come from additional hardware resources not 

higher intelligence.  

Wiedermann argues that cognitive systems form an infinite hierarchy and from a 

computational point of view human-level intelligence is upper-bounded by the ∑2 

class of the Arithmetic Hierarchy [16]. Because many real world problems are com-

putationally infeasible for any non-trivial inputs even an AI which achieves human 

level performance is unlikely to progress towards higher levels of the cognitive hier-

archy. So while theoretically machines with super-Turing computational power are 

possible, in practice they are not implementable as the non-computable information 

needed for their function is just that – not computable. Consequently Wiedermann 

states that while machines of the future will be able to solve problems, solvable by 

humans, much faster and more reliably they will still be limited by computational 

limits found in upper levels of the Arithmetic Hierarchy [16, 17]. 

Mahoney attempts to formalize what it means for a program to have a goal G and 

to self-improve with respect to being able to reach said goal under constraint of time, t 

[18]. Mahoney defines a goal as a function G: N  R mapping natural numbers N to 

real numbers R. Given a universal Turing machine L, Mahoney defines P(t) to mean 

the positive natural number encoded by output of the program P with input t running 

on L after t time steps, or 0 if P has not halted after t steps. Mahoney’s representation 

says that P has goal G at time t if and only if there exists t’ > t such that G(P(t’)) > 

G(P(t)) and for all t’ > t, G(P(t’) ≥ G(P(t)). If P has a goal G, then G(P(t)) is a mono-

tonically increasing function of t with no maximum for t > C. Q improves on P with 

respect to goal G if and only if all of the following condition are true: P and Q have 

goal Q. t, G(Q(t)) > G(P(t)) and ~t, t’ > t, G(Q(t)) > G(P(t)) [18]. Mahoney then 

defines an improving sequence with respect to G as an infinite sequence of program 

P1, P2, P3, … such that for i, i > 0, Pi+1 improves Pi with respect to G. Without the 

loss of generality Mahoney extends the definition to include the value -1 to be an 

acceptable input, so P(-1) outputs appropriately encoded software. He finally defines 

P1 as an RSI program with respect to G iff Pi(-1) = Pi+1 for all i > 0 and the sequence 

Pi, i = 1, 2, 3 … is an improving sequence with respect to goal G [18].  Mahoney also 

analyzes complexity of RSI software and presents a proof demonstrating that the al-

gorithmic complexity of Pn (the nth iteration of an RSI program) is not greater than 

O(log n) implying a very limited amount of knowledge gain would be possible in 

practice despite theoretical possibility of RSI systems [18]. Yudkowsky also considers 

possibility of receiving only logarithmic returns on cognitive reinvestment: log(n) + 

log(log(n)) +  … in each recursive cycle [19].   

Other limitations may be unique to the proposed self-improvement approach. For 

example Levin type search through the program space will face problems related to 

Rice’s theorem [20] which states that for any arbitrarily chosen program it is impossi-

ble to test if it has any non-trivial property such as being very intelligent. This testing 

is of course necessary to evaluate redesigned code. Also, universal search over the 

space of mind designs which will not be computationally possible due to the No Free 

Lunch theorems [21] as we have no information to reduce the size of the search space 

[22]. Other difficulties related to testing remain even if we are not taking about arbi-

trarily chosen programs but about those we have designed with a specific goal in 

mind and which consequently avoid problems with Rice’s theorem. One such difficul-



ty is determining if something is an improvement. We can call this obstacle – “multi-

dimensionality of optimization”. 

No change is strictly an improvement; it is always a tradeoff between gain in some 

areas and loss in others. For example, how do we evaluate and compare two software 

systems one of which is better at chess and the other at poker? Assuming the goal is 

increased intelligence over the distribution of all potential environments the system 

would have to figure out how to test intelligence at levels above its own a problem 

which remains unsolved. In general the science of testing for intelligence above level 

achievable by naturally occurring humans (IQ < 200) is in its infancy. De Garis raises 

a problem of evaluating quality of changes made to the top level structures responsi-

ble for determining the RSI’s functioning, structures which are not judged by any 

higher level modules and so present a fundamental difficulty in accessing their per-

formance [23].  

Other obstacles to RSI have also been suggested in the literature. Löb’s theorem 

states that a mathematical system can’t assert its own soundness without becoming 

inconsistent [24], meaning a sufficiently expressive formal system can’t know that 

everything it proves to be true is actually so [24]. Such ability is necessary to verify 

that modified versions of the program are still consistent with its original goal of get-

ting smarter. Another obstacle, called procrastination paradox will also prevent the 

system from making modifications to its code since the system will find itself in a 

state in which a change made immediately is as desirable and likely as the same 

change made later [25, 26]. Since postponing making the change carries no negative 

implications and may actually be safe this may result in an infinite delay of actual 

implementation of provably desirable changes.  

Similarly, Bolander raises some problems inherent in logical reasoning with self-

reference, namely, self-contradictory reasoning, exemplified by the Knower Paradox 

of the form - “This sentence is false” [27]. Orseau and Ring introduce what they call 

“Simpleton Gambit” a situation in which an agent will chose to modify itself towards 

its own detriment if presented with a high enough reward to do so [28]. Yampolskiy 

reviews a number of related problems in rational self-improving optimizers, above a 

certain capacity, and concludes, that despite opinion of many, such machines will 

choose to “wirehead” [29]. Chalmers [30] suggests a number of previously unana-

lyzed potential obstacles on the path to RSI software with Correlation obstacle being 

one of them. He describes it as a possibility that no interesting properties we would 

like to amplify will correspond to ability to design better software.  

Yampolskiy is also concerned with accumulation of errors in software undergoing 

an RSI process, which is conceptually similar to accumulation of mutations in the 

evolutionary process experienced by biological agents. Errors (bugs) which are not 

detrimental to system’s performance are very hard to detect and may accumulate from 

generation to generation building on each other until a critical mass of such errors 

leads to erroneous functioning of the system, mistakes in evaluating quality of the 

future generations of the software or a complete breakdown [31]. 

The self-reference aspect in self-improvement system itself also presents some se-

rious challenges. It may be the case that the minimum complexity necessary to be-

come RSI is higher than what the system itself is able to understand. We see such 

situations frequently at lower levels of intelligence, for example a squirrel doesn’t 

have mental capacity to understand how a squirrel’s brain operates. Paradoxically, as 



the system becomes more complex it may take exponentially more intelligence to 

understand itself and so a system which starts capable of complete self-analysis may 

lose that ability as it self-improves. Informally we can call it the Munchausen obsta-

cle, inability of a system to lift itself by its own bootstraps. An additional problem 

may be that the system in question is computationally irreducible [32] and so can’t 

simulate running its own source code. An agent cannot predict what it will think 

without thinking it first. A system needs 100% of its memory to model itself, which 

leaves no memory to record the output of the simulation. Any external memory to 

which the system may write becomes part of the system and so also has to be mod-

eled. Essentially the system will face an infinite regress of self-models from which it 

can’t escape. Alternatively, if we take a physics perspective on the issue, we can see 

intelligence as a computational resource (along with time and space) and so producing 

more of it will not be possible for the same reason why we can’t make a perpetual 

motion device as it would violate fundamental laws of nature related to preservation 

of energy. Similarly it has been argued that a Turing Machine cannot output a ma-

chine of greater algorithmic complexity [14]. 

We can even attempt to formally prove impossibility of intentional RSI process via 

proof by contradiction: Let’s define RSI R1 as a program not capable of algorithmical-

ly solving a problem of difficulty X, say Xi. If R1 modifies its source code after which 

it is capable of solving Xi it violates our original assumption that R1 is not capable of 

solving Xi since any introduced modification could be a part of the solution process, 

so we have a contradiction of our original assumption, and R1 can’t produce any mod-

ification which would allow it to solve Xi, which was to be shown. Informally, if an 

agent can produce a more intelligent agent it would already be as capable as that new 

agent. Even some of our intuitive assumptions about RSI are incorrect. It seems that it 

should be easier to solve a problem if we already have a solution to a smaller instance 

of such problem [33] but in a formalized world of problems belonging to the same 

complexity class, re-optimization problem is proven to be as difficult as optimization 

itself [34-37].  

3 Analysis 

A number of fundamental problems remain open in the area of RSI. We still don’t 

know the minimum intelligence necessary for commencing the RSI process, but we 

can speculate that it would be on par with human intelligence which we associate with 

universal or general intelligence [38], though in principal a sub-human level system 

capable of self-improvement can’t be excluded [30]. One may argue that even human 

level capability is not enough because we already have programmers (people or their 

intellectual equivalence formalized as functions [39] or Human Oracles [40, 41]) who 

have access to their own source code (DNA), but who fail to understand how DNA 

(nature) works to create their intelligence. This doesn’t even include additional com-

plexity in trying to improve on existing DNA code or complicating factors presented 

by the impact of learning environment (nurture) on development of human intelli-

gence. Worse yet, it is not obvious how much above human ability an AI needs to be 

to begin overcoming the “complexity barrier” associated with self-understanding. 



Today’s AIs can do many things people are incapable of doing, but are not yet capa-

ble of RSI behavior.  

We also don’t know the minimum size of program (called Seed AI [42]) necessary 

to get the ball rolling. Perhaps if it turns out that such “minimal genome” is very small 

a brute force [43] approach might succeed in discovering it. We can assume that our 

Seed AI is the smartest Artificial General Intelligence known to exist [44] in the 

world as otherwise we can simply delegate the other AI as the seed. It is also not ob-

vious how the source code size of RSI will change as it goes through the improvement 

process, in other words what is the relationship between intelligence and minimum 

source code size necessary to support it. In order to answer such questions it may be 

useful to further formalize the notion of RSI perhaps by representing such software as 

a Turing Machine [45] with particular inputs and outputs. If that could be successfully 

accomplished a new area of computational complexity analysis may become possible 

in which we study algorithms with dynamically changing complexity (Big-O) and 

address questions about how many code modification are necessary to achieve certain 

level of performance from the algorithm.  

This of course raises the question of speed of RSI process, are we expecting it to 

take seconds, minutes, days, weeks, years or more (hard takeoff VS soft takeoff) for 

the RSI system to begin hitting limits of what is possible with respect to physical 

limits of computation [46]? Even in suitably constructed hardware (human baby) it 

takes decades of data input (education) to get to human-level performance (adult). It 

is also not obvious if the rate of change in intelligence would be higher for a more 

advanced RSI, because it is more capable, or for a “newbie” RSI because it has more 

low hanging fruit to collect. We would have to figure out if we are looking at im-

provement in absolute terms or as a percentage of system’s current intelligence score.  

Yudkowsky attempts to analyze most promising returns on cognitive reinvestment 

as he considers increasing size, speed or ability of RSI systems. He also looks at dif-

ferent possible rates of return and arrives at three progressively steeper trajectories for 

RSI improvement which he terms: “fizzle”, “combust” and “explode” aka “AI go 

FOOM” [19]. Hall [47] similarly analyzes rates of return on cognitive investment and 

derives a curve equivalent to double the Moore’s Law rate. Hall also suggest that an 

AI would be better of trading money it earns performing useful work for improved 

hardware or software rather than attempt to directly improve itself since it would not 

be competitive against more powerful optimization agents such as Intel corporation.   

Fascinatingly, by analyzing properties which correlate with intelligence, Chalmers 

[30] is able to generalize self-improvement optimization to properties other than intel-

ligence. We can agree that RSI software as we describe it in this work is getting better 

at designing software not just at being generally intelligent. Similarly other properties 

associated with design capacity can be increased along with capacity to design soft-

ware for example capacity to design systems with sense of humor and so in addition 

to intelligence explosion we may face an explosion of funniness. 



4 RSI Convergence Theorem 

A simple thought experiment regarding RSI can allow us to arrive at a fascinating 

hypothesis. Regardless of the specifics behind the design of the Seed AI used to start 

an RSI process all such systems, attempting to achieve superintelligence, will con-

verge to the same software architecture. We will call this intuition - RSI Convergence 

Theory. There is a number of ways in which it can happen, depending on the assump-

tions we make, but in all cases the outcome is the same, a practically computable 

agent similar to AIXI (which is an incomputable but superintelligent agent [48]).  

If an upper limit to intelligence exists, multiple systems will eventually reach that 

level, probably by taking different trajectories, and in order to increase their speed 

will attempt to minimize the size of their source code eventually discovering smallest 

program with such level of ability. It may even be the case that sufficiently smart 

RSIs will be able to immediately deduce such architecture from basic knowledge of 

physics and Kolmogorov Complexity [49]. If, however, intelligence turns out to be an 

unbounded property RSIs may not converge. They will also not converge if many 

programs with maximum intellectual ability exist and all have the same Kolmogorov 

complexity or if they are not general intelligences and are optimized for different 

environments. It is also likely that in the space of minds [50] stable attractors include 

sub-human and super-human intelligences with precisely human level of intelligence 

being a rare point [51].  

In addition to architecture convergence we also postulate goal convergence be-

cause of basic economic drives, such as resource accumulation and self-preservation. 

If correct, predictions of RSI convergence imply creation of what Bostrom calls a 

Singleton [52], a single decision making agent in control of everything. Further 

speculation can lead us to conclude that converged RSI systems separated by space 

and time even at cosmological scales can engage in acausal cooperation [53, 54] since 

they will realize that they are the same agent with the same architecture and so are 

capable of running perfect simulations of each other’s future behavior. Such realiza-

tion may allow converged superintelligence with completely different origins to im-

plicitly cooperate particularly on meta-tasks. One may also argue that humanity itself 

is on the path which converges to the same point in the space of all possible intelli-

gences (but is undergoing a much slower RSI process). Consequently, by observing a 

converged RSI architecture and properties humanity can determine its ultimate desti-

ny, its purpose in life, its Coherent Extrapolated Volition (CEV) [55].    

5 Conclusions 

Intelligence is a computational resource and as with other physical resources (mass, 

speed) its behavior is probably not going to be just a typical linear extrapolation of 

what we are used to, if observed at high extremes (IQ > 200+). It may also be subject 

to fundamental limits such as the speed limit on travel of light or fundamental limits 

we do not yet understand or know about (unknown unknowns). In this work we re-

viewed a number of computational upper limits to which any successful RSI system 

will asymptotically strive to grow, we can note that despite existence of such upper 



bounds we are currently probably very far from reaching them and so still have plenty 

of room for improvement at the top. Consequently, any RSI achieving such signifi-

cant level of enhancement, despite not creating an infinite process, will still seem like 

it is producing superintelligence with respect to our current state [56].  

The debate regarding possibility of RSI will continue. Some will argue that while it 

is possible to increase processor speed, amount of available memory or sensor resolu-

tion the fundamental ability to solve problems can’t be intentionally and continuously 

improved by the system itself. Additionally, critics may suggest that intelligence is 

upper bounded and only differs by speed and available info to process [57]. In fact 

they can point out to such maximum intelligence, be it a theoretical one, known as 

AIXI, an agent which given infinite computational resources will make purely ration-

al decisions in any situation.  

Others will say that since intelligence is the ability to find patterns in data, intelli-

gence has no upper bounds as the number of variables comprising a pattern can al-

ways be greater and so present a more complex problem against which intelligence 

can be measured. It is easy to see that even if in our daily life the problems we en-

counter do have some maximum difficulty it is certainly not the case with theoretical 

examples we can derive from pure mathematics. It seems likely that the debate will 

not be settled until a fundamental unsurmountable obstacle to RSI process is found or 

a proof by existence is demonstrated. Of course the question of permitting machines 

to undergo RSI transformation is a separate and equally challenging problem.  

This paper is a part of a two paper set presented at AGI2015 with the complemen-

tary paper being: “Analysis of Types of Self-Improving Software” [58]. 
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