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Abstract. Software capable of improving itself has been a dream of computer 

scientists since the inception of the field. In this work we provide definitions for 

Recursively Self-Improving software, survey different types of self-improving 

software, and provide a review of the relevant literature. Finally, we address se-

curity implications from self-improving intelligent software.  
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1 Introduction 

Since the early days of computer science, visionaries in the field anticipated creation 

of a self-improving intelligent system, frequently as an easier pathway to creation of 

true artificial intelligence1. As early as 1950 Alan Turing wrote: “Instead of trying to 

produce a programme to simulate the adult mind, why not rather try to produce one 

which simulates the child’s? If this were then subjected to an appropriate course of 

education one would obtain the adult brain. Presumably the child-brain is something 

like a notebook as one buys from the stationers. Rather little mechanism, and lots of 

blank sheets... Our hope is that there is so little mechanism in the child-brain that 

something like it can be easily programmed. The amount of work in the education we 

can assume, as a first approximation, to be much the same as for the human child” [1].   

Turing’s approach to creation of artificial (super)intelligence was echoed by I.J. 

Good, Marvin Minsky and John von Neumann, all three of whom published on it 

(interestingly in the same year, 1966): Good - “Let an ultraintelligent machine be 

defined as a machine that can far surpass all the intellectual activities of any man 

however clever. Since the design of machines is one of these intellectual activities, an 

ultraintelligent machine could design even better machines; there would then unques-

tionably be an ‘intelligence explosion,’ and the intelligence of man would be left far 

behind. Thus the first ultraintelligent machine is the last invention that man need ever 

make” [2]. Minsky - “Once we have devised programs with a genuine capacity for 

self-improvement a rapid evolutionary process will begin. As the machine improves 
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both itself and its model of itself, we shall begin to see all the phenomena associated 

with the terms “consciousness,” “intuition” and “intelligence” itself. It is hard to say 

how close we are to this threshold, but once it is crossed the world will not be the 

same” [3]. Von Neumann - “There is thus this completely decisive property of com-

plexity, that there exists a critical size below which the process of synthesis is degen-

erative, but above which the phenomenon of synthesis, if properly arranged, can be-

come explosive, in other words, where syntheses of automata can proceed in such a 

manner that each automaton will produce other automata which are more complex 

and of higher potentialities than itself” [4]. Similar types of arguments are still being 

made today by modern researchers and the area of RSI research continues to grow in 

popularity [5-7], though some [8] have argued that recursive self-improvement pro-

cess requires hyperhuman capability to “get the ball rolling”, a kind of “Catch 22” .  

2 Taxonomy of Types of Self-Improvement 

Self-improving software can be classified by the degree of self-modification it entails. 

In general we distinguish three levels of improvement – modification, improvement 

(weak self-improvement) and recursive improvement (strong self-improvement). 

However, it is easy to see that recursive improvement is a type/subset of improvement 

which is a subset of modification. For the purposes of this paper we will treat them as 

separate classes. 

2.1 Self-Modification 

Self-Modification does not produce improvement and is typically employed for code 

obfuscation to protect software from being reverse engineered or to disguise self-

replicating computer viruses from detection software. While a number of obfuscation 

techniques are known to exist [9], ex. self-modifying code [10], polymorphic code, 

metamorphic code, diversion code [11], none of them are intended to modify the un-

derlying algorithm. The sole purpose of such approaches is to modify how the source 

code looks to those trying to understand the software in questions and what it does 

[12].   

2.2 Self-Improvement 

Self-Improvement  or Self-adaptation [13] is a desirable property of many types of 

software products [14] and typically allows for some optimization or customization of 

the product to the environment and users it is deployed with. Common examples of 

such software include evolutionary algorithms such as Genetic Algorithms [15-20] or 

Genetic Programming which optimize software parameters with respect to some well 

understood fitness function and perhaps work over some highly modular program-

ming language to assure that all modifications result in software which can be com-

piled and evaluated. The system may try to optimize its components by creating inter-

nal tournaments between candidate solutions. Omohundro proposed the concept of 



efficiency drives in self-improving software [21]. Because of one of such drives, bal-

ance drive, self-improving systems will tend to balance the allocation of resources 

between their different subsystems. If the system is not balanced overall performance 

of the system could be increased by shifting resources from subsystems with small 

marginal improvement to those with larger marginal increase [21]. While perfor-

mance of the software as a result of such optimization may be improved the overall 

algorithm is unlikely to be modified to a fundamentally more capable one.  

Additionally, the law of diminishing returns quickly sets in and after an initial sig-

nificant improvement phase, characterized by discovery of “low-hanging fruit”, future 

improvements are likely to be less frequent and less significant, producing a Bell 

curve of valuable changes. Metareasoning, metalearning, learning to learn, and life-

long learning are terms which are often used in the machine learning literature to 

indicate self-modifying learning algorithms or the process of selecting an algorithm 

which will perform best in a particular problem domain [22]. Yudkowsky calls such 

process non-recursive optimization – a situation in which one component of the sys-

tem does the optimization and another component is getting optimized [23].  

In the field of complex dynamic systems, aka chaos theory, positive feedback sys-

tems are well known to always end up in what is known as an attractor- a region 

within system’s state space that the system can’t escape from [24]. A good example of 

such attractor convergence is the process of Metacompilation or Supercompilation 

[25] in which a program designed to take source code written by a human program-

mer and to optimize it for speed is applied to its own source code. It will likely pro-

duce a more efficient compiler on the first application perhaps by  20%, on the second 

application by 3%, and after a few more recursive iterations converge to a fixed point 

of zero improvement [24].  

2.3 Recursive Self-Improvement 

Recursive Self-Improvement is the only type of improvement which has potential to 

completely replace the original algorithm with a completely different approach and 

more importantly to do so multiple times. At each stage newly created software 

should be better at optimizing future version of the software compared to the original 

algorithm. As of the time of this writing it is a purely theoretical concept with no 

working RSI software known to exist. However, as many have predicted that such 

software might become a reality in the 21st century it is important to provide some 

analysis of properties such software would exhibit.   

Self-modifying and self-improving software systems are already well understood 

and are quite common. Consequently, we will concentrate exclusively on RSI sys-

tems. In practice performance of almost any system can be trivially improved by allo-

cation of additional computational resources such as more memory, higher sensor 

resolution, faster processor or greater network bandwidth for access to information. 

This linear scaling doesn’t fit the definition of recursive-improvement as the system 

doesn’t become better at improving itself. To fit the definition the system would have 

to engineer a faster type of memory not just purchase more memory units of the type 

it already has access to. In general hardware improvements are likely to speed up the 



system, while software improvements (novel algorithms) are necessary for achieve-

ment of meta-improvements.     

It is believed that AI systems will have a number of advantages over human pro-

grammers making it possible for them to succeed where we have so far failed. Such 

advantages include [26]: longer work spans (no breaks, sleep, vocation, etc.), omnis-

cience (expert level knowledge in all fields of science, absorbed knowledge of all 

published works), superior computational resources (brain vs processor, human 

memory vs RAM), communication speed (neurons vs wires), increased serial depth 

(ability to perform sequential operations in access of about a 100 human brain can 

manage), duplicability (intelligent software can be instantaneously copied), editability 

(source code unlike DNA can be quickly modified), goal coordination (AI copies can 

work towards a common goal without much overhead), improved rationality (AIs are 

likely to be free from human cognitive biases) [27], new sensory modalities (native 

sensory hardware for source code), blending over of deliberative and automatic pro-

cesses (management of computational resources over multiple tasks), introspective 

perception and manipulation (ability to analyze low level hardware, ex. individual 

neurons), addition of hardware (ability to add new memory, sensors, etc.), advanced 

communication (ability to share underlying cognitive representations for memories 

and skills) [28]. 

Chalmers [29] uses logic and mathematical induction to show that if an AI0 system 

is capable of producing only slightly more capable AI1 system generalization of that 

process leads to superintelligent performance in AIn after n generations. He articu-

lates, that his proof assumes that the proportionality thesis, which states that increases 

in intelligence lead to proportionate increases in the capacity to design future genera-

tions of AIs, is true.  

Nivel et al. proposed formalization of RSI systems as autocatalytic sets – collec-

tions of entities comprised of elements, each of which can be created by other ele-

ments in the set making it possible for the set to self-maintain and update itself. They 

also list properties of a system which make it purposeful, goal-oriented and self-

organizing, particularly: reflectivity – ability to analyze and rewrite its own structure; 

autonomy – being free from influence by system’s original designers (bounded auton-

omy – is a property of a system with elements which are not subject to self-

modification);  endogeny – an autocatalytic ability [30]. Nivel and Thorisson also 

attempt to operationalize autonomy by the concept of self-programming which they 

insist has to be done in an experimental way instead of a theoretical way (via proofs 

of correctness) since it is the only tractable approach [31]. 

Yudkowsky writes prolifically about recursive self-improving processes and sug-

gests that introduction of certain concepts might be beneficial to the discussion, spe-

cifically he proposes use of terms - Cascades, Cycles and Insight which he defines as: 

Cascades – when one development leads to another; Cycles – repeatable cascade in 

which one optimization leads to another which in turn benefits the original optimiza-

tion; Insight – new information which greatly increases one’s optimization ability 

[32]. Yudkowsky also suggests that the goodness and number of opportunities in the 

space of solutions be known as Optimization Slope while optimization resources and 

optimization efficiency refer to how much of computational resources an agent has 

access to and how efficiently the agent utilizes said resources. An agent engaging in 



an optimization process and able to hit non-trivial targets in large search space [33] is 

described as having significant optimization power [23].   

3 RSI Software Classification 

RSI software could be classified based on the number of improvements it is capable 

of achieving. The most trivial case is the system capable of undergoing a single fun-

damental improvement. The hope is that truly RSI software will be capable of many 

such improvements, but the question remains open regarding the possibility of an 

infinite number of recursive-improvements. It is possible that some upper bound on 

improvements exists limiting any RSI software to a finite number of desirable and 

significant rewrites. Critics explain failure of scientists, to date, to achieve a sustained 

RSI process by saying that RSI researchers have fallen victims of the bootstrap falla-

cy [34]. 

3.1 How Improvements are Discovered 

Another axis on which RSI systems can be classified has to do with how improve-

ments are discovered. Two fundamentally different approaches are understood to 

exist. The first one is a brute force based approach [35] which utilizes Levin (Univer-

sal [36]) Search [37]. The idea is to consider all possible strings of source code up to 

some size limit and to select the one which can be proven to provide improvements. 

While theoretically optimal and guaranteed to find superior solution if one exists this 

method is not computationally feasible in practice. Some variants of this approach to 

self-improvement, known as Gödel Machines [38-43], Optimal Ordered Problem 

Solver (OOPS) [44] and Incremental Self-Improvers [45, 46], have been thoroughly 

analyzed by Schmidhuber and his co-authors. Second approach assumes that the sys-

tem has a certain level of scientific competence and uses it to engineer and test its 

own replacement. Whether a system of any capability can intentionally invent a more 

capable and so a more complex system remains as the fundamental open problem of 

RSI research.  

It is important to note that the first concrete algorithms for RSI were all by 

Schmidhuber. His diploma thesis from 1987 already was about an evolutionary sys-

tem that learns to inspect and improve its own learning algorithm, where Genetic 

Programming (GP) is applied to itself, to recursively evolve better GP methods. His 

RSI based on the self-referential Success-Story Algorithm for self-modifying proba-

bilistic programs was already able to solve complex tasks [47]. And finally, his self-

referential recurrent neural networks run and inspect and change their own weight 

change algorithms [48]. In 2001, his former student Hochreiter had actually a practi-

cal implementation of such an RNN that learns an excellent learning algorithm, at 

least for the limited domain of quadratic functions [49, 50]. 



3.2 Hybrid Systems 

Finally, we can consider a hybrid RSI system which includes both an artificially intel-

ligent program and a human scientist. Mixed human-AI teams have been very suc-

cessful in many domains such as chess or theorem proving. It would be surprising if 

having a combination of natural and artificial intelligence did not provide an ad-

vantage in designing new AI systems or enhancing biological intelligence. We are 

currently experiencing a limited version of this approach with human computer scien-

tists developing progressively better versions of AI software (while utilizing continu-

ously improving software tools), but since the scientists themselves remain unen-

hanced we can’t really talk about self-improvement. This type of RSI can be classi-

fied as Indirect recursive improvement as opposed to Direct RSI in which the system 

itself is responsible for all modifications. Other types of Indirect RSI may be based on 

collaboration between multiple artificial systems instead of AI and human teams [51].  

3.3 Other Properties 

In addition to classification with respect to types of RSI we can also evaluate systems 

as to certain binary properties. For example: We may be interested only in systems 

which are guaranteed not to decrease in intelligence, even temporarily, during the 

improvement process. This may not be possible if the intelligence design landscape 

contains local maxima points.  

Another property of any RSI system we are interested in understanding better is 

necessity of unchanging source code segments. In other words must an RSI system be 

able to modify any part of its source code or are certain portions of the system (en-

coded goals, verification module) must remain unchanged from generation to genera-

tion. Such portions would be akin to ultra-conserved elements or conserved sequences 

of DNA [52, 53] found among multiple related species. This question is particularly 

important for the goal preservation in self-improving intelligent software, as we want 

to make sure that future generations of the system are motivated to work on the same 

problem [29]. As AI goes through the RSI process and becomes smarter and more 

rational it is likely to engage in a de-biasing process removing any constraints we 

programmed into it [8]. Ideally we would want to be able to prove that even after 

recursive self-improvement our algorithm maintains the same goals as the original. 

Proofs of safety or correctness for the algorithm only apply to particular source code 

and would need to be rewritten and re-proven if the code is modified, which happens 

in RSI software many times. But we suspect that re-proving slightly modified code 

may be easier compared to having to prove safety of a completely novel piece of 

code. 

We are also interested in understanding if RSI process can take place in an isolated  

(leakproofed [54]) system or if interaction with external environment, internet, peo-

ple, other AI agents is necessary. Perhaps access to external information can be used 

to mediate speed of RSI process. This also has significant implications on safety 

mechanisms we can employ while experimenting with early RSI systems [55-63]. 

Finally, it needs to be investigated if the whole RSI process can be paused at any 

point and for any specific duration of time in order to limit any negative impact from 



potential intelligence explosion. Ideally we would like to be able to program our Seed 

AI to RSI until it reaches certain level of intelligence, pause and wait for further in-

structions.  

4 Conclusions 

Recursively Self-Improving software is the ultimate form of artificial life and creation 

of life remains one of the great unsolved mysteries in science. More precisely, the 

problem of creating RSI software is really the challenge of creating a program capable 

of writing other programs [64], and so is an AI-Complete problem as has been 

demonstrated by Yampolskiy [65, 66]. AI-complete problems are by definition most 

difficult problems faced by AI researchers and it is likely that RSI source code will be 

so complex that it would be difficult or impossible to fully analyze [51]. Also, the 

problem is likely to be NP-Complete as even simple metareasoning and metalearning 

[67] problems have been shown by Conitzer and Sandholm to belong to that class. In 

particular they proved that allocation of deliberation time across anytime algorithms 

running on different problem instances is NP-Complete and a complimentary problem 

of dynamically allocating information gathering resources by an agent across multiple 

actions is NP-Hard, even if evaluating each particular action is computationally sim-

ple. Finally, they showed that the problem of deliberately choosing a limited number 

of deliberation or information gathering actions to disambiguate the state of the world 

is PSPACE Hard in general [68].  

This paper is a part of a two paper set presented at AGI2015 with the complemen-

tary paper being: “On the Limits of Recursively Self-Improving AGI” [69]. 
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