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Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff ), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture
In this section, we will explain the essential architectural

components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S⇢ and tolerance variables X⇢,
and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.

We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:
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Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths X

i
j ⇠ � · Beta(1, 2), a global image blur on the rendered

image X

blur rendered

⇠ � · Beta(1, 2), a global image blur on the original test image X

blur test

⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within
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Generating Design Suggestions under Tight Constraints with
Gradient-based Probabilistic Programming

Daniel Ritchie Sharon Lin Noah D. Goodman Pat Hanrahan
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Figure 1: Physical realizations of stable structures generated by our system. To create these structures, we write programs that
generate random structures (e.g. a random tower or a randomly-perturbed arch), constrain the output of the program to be near
static equilibrium, and then sample from the constrained output space using Hamiltonian Monte Carlo.

Abstract

We present a system for generating suggestions from highly-constrained, continuous design spaces. We formulate
suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate
probability mass around sub-manifolds of the design space. These sampling problems are intractable using typical
random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient-based MCMC method.
We implement HMC in a high-performance probabilistic programming language, and we evaluate its ability to
efficiently generate suggestions for two different, highly-constrained example applications: vector art coloring
and designing stable stacking structures.

1. Introduction

Considering multiple possibilities is critical in design. Ex-
posure to different examples facilitates creativity—for in-
stance, prototyping multiple alternatives can lead to better-
quality final designs [KDK14, DGK⇤10]. Exploring the
whole space of creative options seems to help people avoid
fixation and overcome their unconscious biases [JS91].
Computation can assist with this exploration by generating

suggestions: given a model of the design space, computers
can synthesize examples that their users might never have
thought of independently.

In computer graphics, probabilistic inference has become
popular for computer-aided suggestion in domains as diverse
as color selection and furniture layout [LRFH13,YYW⇤12].
In this framework, the user provides a model of the de-
sign space by expressing her preferences as soft constraints,

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Ritchie, D., Lin, S., Goodman, N. D., & Hanrahan, P. 
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Figure 9: A comparison of SOSMC, SMC, and MH in generating high-scoring outputs with limited computation time. (Left) Maximum score
achieved by each method, averaged over 10 runs, as computational budget increases. Line thickness is proportional to variance in high
scores over those runs. SMC and SOSMC use the same number of particles; MH runs for as long as SOSMC takes to run on average. (Right)
Representative samples generated by each method given a computational budget of 100 particles (or equivalent average running time, for
MH). SOSMC consistently outperforms both SMC and MH in reliably generating high-quality samples at small budgets.

For the tree example, SMC’s performance is close to SOSMC’s,
since the target shape has linear structure with branching only at
the end. However, order-sensitivity is still an issue, as SMC some-
times generates models that use a large branch where continuing the
trunk would be more natural (Figure 9c, right). MH also performs
well overall on this example, but there is a persistent gap between
its performance and that of SOSMC. MH’s proposals—which ran-
domly re-generate subtrees—can fail to discover the long structure
of the target shape, especially at low budgets (Figure 9c, right).

Finally, as discussed in Section 5, our SMC implementations suffer
significantly worse trace replay overhead than our MH implemen-
tation. We expect SOSMC to further outperform MH in the above
comparisons as this overhead is eliminated.

7 Discussion

This paper introduced SMC to the task of controlled procedural
modeling. We developed the SOSMC algorithm and the stochastic
future to handle the multiple possible sequentializations of a pro-
cedural modeling program. We demonstrated SOSMC’s ability to

generate high-quality results for a variety of programs and controls,
and we showed that it reliably generates better results under small
computational budgets than both depth-first SMC and MH.

7.1 Limitations

SOSMC will not always succeed for all possible programs and
score functions. SMC is known to be susceptible to ‘garden paths,’
or execution traces that look promising for much of their runtime
only to become undesirable later on [Levy et al. 2009]. In settings
where such paths exist, SOSMC could conceivably perform worse
than depth-first SMC, as it may randomly discover garden paths
that depth-first SMC cannot follow. For such problems, the ability
to revise past decisions is critical, so MCMC or hybrid SMC/M-
CMC approaches work better [Andrieu et al. 2010].

SMC also needs random choices to be interleaved with evidence
(i.e. geometry generation) to work well. If too many random
choices are made up-front, the program ‘overcommits’ itself and
proceeds like simple forward sampling. Fortunately, most hierar-
chical, recursive procedural models can be written in interleaved

D. Ritchie, B. Mildenhall, N. D. Goodman, & P. Hanrahan.   
“Controlling Procedural Modeling Programs with 
Stochastically-Ordered Sequential Monte Carlo.” 
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Policy Learning in POMDPs
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Figure 1: Learned policies for the Canadian traveler problem. Line widths indicate the frequency at
which the policy travels each edge, averaged over random combinations of open and closed edges.

5 Case Studies

We demonstrate the proposed policy learning method on three problem domains: (1) the Canadian
Traveller Problem, (2) a modified version of the RockSample POMDP, and (3) an optimal diagnosis
benchmark inspired by the classic children’s game Guess Who. Each of these domains can be formu-
lated as a POMDP. This means that there is some form of unobserved state in the problem instance,
and the agent must choose actions based on contextual information xt that can be described in terms
of an information state xt = (u0, o1, . . . , ut�1, ot). Even for discrete problems, the cardinality of
the set of possible information states xt grows exponentially with the horizon T .

The aim of these studies is to explore how probabilistic programs can be used to define policies
tailored to the structure of each domain. Fundamentally, some information must be discarded when
making a decision. Program policies encode our intuition about what information is most relevant
in a given context. As such, these studies are not intended to achieve results that are competitive
with current state-of-the-art specialized techniques for POMDPs (see Shani et al. [2013] for a recent
overview). Rather, we consider probabilistic programs as a concise algorithmic representation of
domain-specific probabilistic mappings from information states to actions, in order to describe the
search space over policies in terms of a moderate yet not unwieldly number of parameters.

5.1 Evaluation Setup

We use the same experimental setup in each of the three domains. A trial begins with a learning
phase, in which BBEM is used to learn the policy hyperparameters, followed by a number of testing
episodes in which the agent chooses actions according to a fixed learned policy. At each gradient
update step, we use 1000 samples to calculate a gradient estimate. Each testing phase consists of
1000 episodes. All shown results are based on test-phase simulations.

Stochastic gradient methods can be sensitive to the learning rate parameters. Results reported here
use a RMSProp style rescaling of the gradient [Hinton et al.], which normalizes the gradient by
a discounted rolling decaying average of its magnitude with decay factor 0.9. We use a step size
schedule ⇢k = ⇢0/(⌧ + k) as reported in [Hoffman et al., 2013], with ⌧ = 1,  = 0.5 in all experi-
ments. We use a relatively conservative base learning rate ⇢0 = 0.1 in all reported experiments. For
independent trials performed across a range 1, 2, 5, 10, . . . , 1000 of total gradient steps, consistent
convergence was observed in all runs using over 100 gradient steps.

5.2 Canadian Traveller Problem

In the Canadian Traveller Problem [Papadimitriou and Yannakakis, 1991], an undirected graph G =

(V,E) is given, along with the cost we of traversing every edge e 2 E, and the probability pe
that the edge is open. The agent must traverse the graph from the initial node s to the goal node
t at the lowest possible cost. The agent does not know the state of an edge until it reaches one of
the edge’s vertices. The problem is NP-hard [Fried et al., 2013], and heuristic online and offline
approaches [Eyerich et al., 2010] are used to solve problem instances.

Here we learn a policy based on the depth-first search (DFS) — the agent traverses the graph in the
depth-first order until the goal node is reached (only connected instances are considered). Depth-first

7
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Operative Definition
“Probabilistic programs are usual functional or 
imperative programs with two added constructs:  

(1) the ability to draw values at random from 
distributions, and  

(2) the ability to condition values of variables in a 
program via observations.”   

Gordon et al, 2014



What are the goals of 
probabilistic 

programming?



Increase Programmer Productivity

(fn [x] (logb 1.04 (+ 1 x)))
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Commodify Inference

Programming Language Representation / Abstraction Layer

Inference Engine(s)

Models / Simulators 

CARON ET AL.

This lack of consistency is shared by other models based on the Pólya urn construction (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier (2011) provide a
detailed discussion on this issue and describe cases where one should or should not bother about it.

It is possible to define a slightly modified version of our model that is consistent under marginal-
isation, at the expense of an additional set of latent variables. This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to
satisfy (B). This can be easily achieved if for k 2 I(mt

t)

Uk,t ⇠
⇢

p (·|Uk,t�1) if k 2 I(mt
t�1)

H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time series
literature, many approaches are available to build such transition kernels based on copulas (Joe,
1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize the full
model by the following Bayesian network in Figure 1. It can also be summarized using a Chinese
restaurant metaphor (see Figure 2).

Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed graphi-
cal model, representing conditional independencies between variables. All assignment
variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
P

im
t
i,t�1 of alive allocation variables at time

t can be written as
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t�1
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Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM
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Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as

a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.

Here, we will denote by K the number of topics in the model. We use D to indicate the

number of documents, M to denote the number of words in the vocabulary, and N

d
. to

denote the number of words in document d. We will assume that the words have been

translated to the set of integers {1, . . . , M} through the use of a static dictionary. This is

for convenience only and the integer mapping will contain no semantic information. The

generative model for the D documents can be thought of as sequentially drawing a topic
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• Higher order, pure functional 

• Compiled (CPS -> Clojure -> JVM bytecode) 
• Complete JVM language family interoperability 

• First class distributions 

• 15+ composable inference algorithms 
• SMC  
• CASCADE 
• PMCMC (PIMH, PGIBBS, PGAS) 
• (Adaptive) LMH 
• …

Anglican

14

• http://www.robots.ox.ac.uk/~fwood/anglican/



Anglican
• Open source (GPLv3) 

• core: https://bitbucket.org/probprog/anglican 
• user: https://bitbucket.org/probprog/anglican-user 
• tutorial: https://bitbucket.org/probprog/mlss2015

15
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Traditional Bayesian Statistics

16

(def posterior 
  ((conditional gaussian-model 
                :pgibbs 
                :number-of-particles 1000) dataset))

(def posterior-samples 
  (repeatedly 20000 #(sample posterior)))

µ|y1:2 ⇠ Normal(7.25, 0.9129)

(defquery gaussian-model [data]
  (let [mu (sample (normal 1 (sqrt 5)))
        sigma (sqrt 2)]
    (map (fn [x] (observe (normal mu sigma) x)) data)
    (predict :mu mu)))

µ ⇠ Normal(1,
p
5)

yi|µ ⇠ Normal(µ,
p
2)

(def dataset [9 8]) y1 = 9, y2 = 8



Mechanism Design
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(defquery arrange-bumpers []
    (let [bumper-positions []

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)]

      (predict :balls balls)
      (predict :num-balls-in-box num-balls-in-box)
      (predict :bumper-positions bumper-positions)))

goal: ~20% of balls in box… 



(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)]

      (predict :balls balls)
      (predict :num-balls-in-box num-balls-in-box)
      (predict :bumper-positions bumper-positions)))

Procedural Design

18



(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)
          
          obs-dist (normal 2 0.1)]

      (observe obs-dist num-balls-in-box)
      
      (predict :balls balls)
      (predict :num-balls-in-box num-balls-in-box)
      (predict :bumper-positions bumper-positions)))

Inference Over Conditioned Execution Traces

19



Inference

p(y|h) =
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Automatic Complexity Regularization
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y

p(y|h)

h = H
complex

h = Hsimple

p(h|y) / p(y|h)p(h)

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. 2003. 
I. Murray, Z. Ghahramani. "A note on the evidence and Bayesian Occam’s razor." 2005.

Bayesian Occam’s Razor



Probabilistic Programming Is Fully Generative
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y
x

program source code program output

scene description image

world simulator output

policy reward

x

y
p(x|y) = p(y|x)p(x)

p(y)

x = z [ h

automata sequence



How Does it Work?



The Gist
• Explore as many “traces” as possible, intelligently 

• Each trace contains all random choices made 
during the execution of a generative model 

• Compute trace “goodness” (probability) as side-effect 
• Combine weighted traces probabilistically coherently 
• Report projection of posterior over traces

24



Trace Probability
• observe data points  

• internal random choices  

• simulate from  

• by running the program 
forward 

• weight execution traces by
y1 y2

✓

x1 x2

x11 x12 x13 x21 x22

{ {
etc

p(y1:N ,x1:N ) =
NY

n=1

g(yn|x1:n)f(xn|x1:n�1)

y1 y2

x1 x2 x3

y3

f(xn|x1:n�1)

g(yn|x1:n)

xn

yn



Traces

x1,1 = 3

x1,2 = 0

x1,2 = 1

x1,2 = 2

(let [x-1-1 3
      x-1-2 (sample (discrete (range x-1-1)))] 
  (if (not= x-1-2 1) 
    (let [x-2-1 (+ x-1-2 7)]
      (sample (poisson x-2-1)))))

x2,1 = 7

x2,1 = 9

x2,2 = 0

x2,2 = 1

. . .



Observe

x1,1 = 3

x1,2 = 0

x1,2 = 1

x1,2 = 2

(let [x-1-1 3
      x-1-2 (sample (discrete (range x-1-1)))] 
  (if (not= x-1-2 1) 
    (let [x-2-1 (+ x-1-2 7)]
      (sample (poisson x-2-1)))))
(observe (gaussian x-2-1 0.0001) 7))

x2,1 = 7

x2,1 = 9

x2,2 = 0

x2,2 = 1

. . .



n = 1 n = 2
Iteratively,  

- simulate  
- weight  
- resample

SMC

Observe

Pa
rti

cl
e 



Run program forward  
until next observeWeight of particle 

Is observation likelihood

Proposal

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1
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`=1
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`
1:n)w

`
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`
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`
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6

SMC for Probabilistic Programming

Fischer, Kiselyov, and Shan “Purely functional lazy non-deterministic programming” ACM Sigplan 2009 
W., van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014 
Paige and W. “A Compilation Target for Probabilistic Programming Languages” ICML 2014 

Sequence of environments

Parallel executions



Intuitively 

- run 
- wait  
- fork

SMC for Probabilistic Programming
Th

re
ad

s

observe delimiter

continuations



Issues
• Degeneracy 
• Not iterable (naively)
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PMCMC for Probabilistic Programming

• Sequential Monte Carlo is 
now a building block for 
other inference techniques 

• Iterable SMC 
- PIMH : “particle 

independent Metropolis-
Hastings” 

- PGIBBS : “iterated 
conditional SMC”

-­‐ 	
  	
  

[Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference” AISTATS 2014]

n n n 

…

n n n 

…
n n n 

…

s=

s=

s=

Andrieu, Doucet, Holenstein “Particle Markov chain Monte Carlo methods.“ JRSSB 2010



Better Inference Per Unit Energy
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• Initialization (sample) 

• Forward simulation (sample) 

• Observation likelihood computation  
• pointwise evaluation up to normalization

PMCMC (and SMC) Methods Only Require 
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Stop Making New Probabilistic 
Programming Languages 

sort-of



Probabilistic C
• Standard C with two new directives: observe and 
predict  

• Is compiled to parallel machine code by standard 
compilers 

• Relies on standard operating system functionality: 
processes, forking, mutexes, shared memory  

• Compiled programs automatically do inference 

• Emits posterior samples of predicted quantities

Paige, W.; ICML 2014



Simple example program
Posterior mean of a Gaussian, given i.i.d. draws 

observe constrains 
program execution 

predict emits 
sampled values 



A Markov model

HMM: discrete transitions, gaussian emissions.

z0 ⇠ Discrete([1/K, . . . , 1/K]) zn|zn�1 ⇠ Discrete(Tzn�1) yn|zn ⇠ Normal(µzn ,�
2
)



Conditioning on observed data

HMM: discrete transitions, gaussian emissions.

z0 ⇠ Discrete([1/K, . . . , 1/K]) zn|zn�1 ⇠ Discrete(Tzn�1) yn|zn ⇠ Normal(µzn ,�
2
)



Changing the generative model is easy

HMM: discrete transitions, gaussian emissions.

Tk ⇠ Dirichlet(↵k)Suppose the transition matrix were unknown:



Implementation
• Inference: forward simulation (SMC, particle MCMC, particle 

cascade, …) 

• POSIX fork:
- operating-system level call to clone a running process: 

branch on program execution state, explore many 
downstream paths 

- duplicates entire memory address space 
- efficient: lazy copy-on-write behaviour 
- parallel: each downstream path is explored by an 

independent OS process  



The Next 700 Probabilistic 
Programming Languages?

W., Jeffrey Mark Siskind and Brooks Paige 
(in prep. 2015) 



Probabilistic Scheme
Gaussian example, in probabilistic scheme 



All we need for probabilistic scheme
• existing scheme compiler (i.e. STALIN) 

• existing C compiler (i.e. GCC, clang)



Probabilistic C: sum-equals



C (GCC, CLANG) Scheme (STALIN)

Standard ML (MLTON) Haskell (GHC)

(define a (- (poisson-rng 100.0) 100))
(define b (- (poisson-rng 100.0) 100))
(observe (normal-lnp 7.0 

(exact->inexact (+ a b)) .00001))
(predict-value "a" (exact->inexact a))
(predict-value "b" (exact->inexact b))

int main(int argc, char *argv[]) {
  long a = poisson_rng(100.0)-100;
  long b = poisson_rng(100.0)-100;
  observe(normal_lnp(7.0, 

(double)(a+b), 0.00001));
  predict_value("a", (double)a);
  predict_value("b", (double)b);
}

val a = (poisson_rng 100.0)-100
val b = (poisson_rng 100.0)-100
val _ = observe (normal_lnp (7.0,

 (int64ToReal (a+b)), 0.00001))
val _ = predict_value ("a", (int64ToReal a))
val _ = predict_value ("b", (int64ToReal b))
val _ = return_from_main 0

model = do
  a <- (+(-100)) <$> poisson_rng 100.0
  b <- (+(-100)) <$> poisson_rng 100.0
  observe $ normal_lnp 7 

(realToFrac (a+b)) 0.00001
  predict_value "a" (realToFrac a)
  predict_value "b" (realToFrac b)
  return ()



Bubble Up

Inference

Probabilistic Programming Language

Models

AI

Probabilistic Programming System
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Figure 1: Learned policies for the Canadian traveler problem. Line widths indicate the frequency at
which the policy travels each edge, averaged over random combinations of open and closed edges.

5 Case Studies

We demonstrate the proposed policy learning method on three problem domains: (1) the Canadian
Traveller Problem, (2) a modified version of the RockSample POMDP, and (3) an optimal diagnosis
benchmark inspired by the classic children’s game Guess Who. Each of these domains can be formu-
lated as a POMDP. This means that there is some form of unobserved state in the problem instance,
and the agent must choose actions based on contextual information xt that can be described in terms
of an information state xt = (u0, o1, . . . , ut�1, ot). Even for discrete problems, the cardinality of
the set of possible information states xt grows exponentially with the horizon T .

The aim of these studies is to explore how probabilistic programs can be used to define policies
tailored to the structure of each domain. Fundamentally, some information must be discarded when
making a decision. Program policies encode our intuition about what information is most relevant
in a given context. As such, these studies are not intended to achieve results that are competitive
with current state-of-the-art specialized techniques for POMDPs (see Shani et al. [2013] for a recent
overview). Rather, we consider probabilistic programs as a concise algorithmic representation of
domain-specific probabilistic mappings from information states to actions, in order to describe the
search space over policies in terms of a moderate yet not unwieldly number of parameters.

5.1 Evaluation Setup

We use the same experimental setup in each of the three domains. A trial begins with a learning
phase, in which BBEM is used to learn the policy hyperparameters, followed by a number of testing
episodes in which the agent chooses actions according to a fixed learned policy. At each gradient
update step, we use 1000 samples to calculate a gradient estimate. Each testing phase consists of
1000 episodes. All shown results are based on test-phase simulations.

Stochastic gradient methods can be sensitive to the learning rate parameters. Results reported here
use a RMSProp style rescaling of the gradient [Hinton et al.], which normalizes the gradient by
a discounted rolling decaying average of its magnitude with decay factor 0.9. We use a step size
schedule ⇢k = ⇢0/(⌧ + k) as reported in [Hoffman et al., 2013], with ⌧ = 1,  = 0.5 in all experi-
ments. We use a relatively conservative base learning rate ⇢0 = 0.1 in all reported experiments. For
independent trials performed across a range 1, 2, 5, 10, . . . , 1000 of total gradient steps, consistent
convergence was observed in all runs using over 100 gradient steps.

5.2 Canadian Traveller Problem

In the Canadian Traveller Problem [Papadimitriou and Yannakakis, 1991], an undirected graph G =

(V,E) is given, along with the cost we of traversing every edge e 2 E, and the probability pe
that the edge is open. The agent must traverse the graph from the initial node s to the goal node
t at the lowest possible cost. The agent does not know the state of an edge until it reaches one of
the edge’s vertices. The problem is NP-hard [Fried et al., 2013], and heuristic online and offline
approaches [Eyerich et al., 2010] are used to solve problem instances.

Here we learn a policy based on the depth-first search (DFS) — the agent traverses the graph in the
depth-first order until the goal node is reached (only connected instances are considered). Depth-first
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It’s All About Inference
• Parallelism  

“Asynchronous Anytime Sequential Monte Carlo” [Paige, W., Doucet, Teh NIPS 2014] 

• Backwards passing  
“Particle Gibbs with Ancestor Sampling for Probabilistic Programs” [van de Meent, Yang, Mansinghka, W. 
AISTATS 2015] 

• Search  
“Maximum a Posteriori Estimation by Search in Probabilistic Models” [Tolpin, W., SOCS, 2015] 

• Adaptation  
“Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs” [Tolpin, van de Meent, Paige, 
W ; ECML, 2015] 

• Novel proposals 
“Neural Adaptive Inference for Probabilistic Programming” [Paige, W.; in submission]
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