
Probabilistic Programming

Frank Wood
fwood@robots.ox.ac.uk

AGI 2015

2

Inverse Graphics

3

T. Kulkarni, et al
"Picture: a probabilistic programming

language for scene perception." CVPR (2015).

V. Mansinghka,, T.. Kulkarni, Y. Perov, and J. Tenenbaum.
"Approximate Bayesian image interpretation using

generative probabilistic graphics programs." NIPS (2013).

Observed
Image

Inferred
(reconstruction)

Inferred model
re-rendered with

novel poses

Inferred model
re-rendered with

novel lighting

Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture
In this section, we will explain the essential architectural

components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S⇢ and tolerance variables X⇢,
and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.

We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:

P (S

pres

i = 1) = 0.5 P (S

x
i = x) =

⇢
1/w 0  x  w

0 otherwise

P (S

y
i = y) =

⇢
1/h 0  x  h

0 otherwise

P (S

glyph id

i = g) =

(
1/G 0  S

glyph id

i < G

0 otherwise

P (S

✓
i = g) =

⇢
1/2✓

max �✓

max  S

✓
i < ✓

max

0 otherwise

Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths X

i
j ⇠ � · Beta(1, 2), a global image blur on the rendered

image X

blur rendered

⇠ � · Beta(1, 2), a global image blur on the original test image X

blur test

⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within

4

Captcha Solving Mesh Fitting

Directed Design

4

EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Generating Design Suggestions under Tight Constraints with
Gradient-based Probabilistic Programming

Daniel Ritchie Sharon Lin Noah D. Goodman Pat Hanrahan

Stanford University

Figure 1: Physical realizations of stable structures generated by our system. To create these structures, we write programs that
generate random structures (e.g. a random tower or a randomly-perturbed arch), constrain the output of the program to be near
static equilibrium, and then sample from the constrained output space using Hamiltonian Monte Carlo.

Abstract

We present a system for generating suggestions from highly-constrained, continuous design spaces. We formulate
suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate
probability mass around sub-manifolds of the design space. These sampling problems are intractable using typical
random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient-based MCMC method.
We implement HMC in a high-performance probabilistic programming language, and we evaluate its ability to
efficiently generate suggestions for two different, highly-constrained example applications: vector art coloring
and designing stable stacking structures.

1. Introduction

Considering multiple possibilities is critical in design. Ex-
posure to different examples facilitates creativity—for in-
stance, prototyping multiple alternatives can lead to better-
quality final designs [KDK14, DGK⇤10]. Exploring the
whole space of creative options seems to help people avoid
fixation and overcome their unconscious biases [JS91].
Computation can assist with this exploration by generating

suggestions: given a model of the design space, computers
can synthesize examples that their users might never have
thought of independently.

In computer graphics, probabilistic inference has become
popular for computer-aided suggestion in domains as diverse
as color selection and furniture layout [LRFH13,YYW⇤12].
In this framework, the user provides a model of the de-
sign space by expressing her preferences as soft constraints,

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Ritchie, D., Lin, S., Goodman, N. D., & Hanrahan, P.
Generating Design Suggestions under Tight Constraints

with Gradient‐based Probabilistic Programming.
In Computer Graphics Forum, (2015)

Stable Static Structures

0 100 200 300 400 500 600 700 800 900 1000
Num Particles

-50

-40

-30

-20

Sc
or

e

MH
SMC
SOSMC

SOSMC! SMC! MH!

Score: -20.59!
Time: 0.93s!

Score: -38.73!
Time: 0.38s!

Score: -34.07!
Time: 1.1s!

N = 100

Target!

(a)

100 200 300 400 500 600 700 800 900 1000
Num Particles

-30

-25

-20

-15

-10

-5

Sc
or

e

MH
SMC
SOSMC

SOSMC! SMC! MH!

Score: -10.38!
Time: 8.32s!

Score: -17.95!
Time: 3.42s!

Score: -18.66!
Time: 7.52s!

Target!

N = 100

(b)

100 200 300 400 500 600 700 800 900 1000
Num Particles

-25

-20

-15

-10

-5

Sc
or

e

MH
SMC
SOSMC

SOSMC! SMC! MH!

Score: -10.87!
Time: 8.15s!

Score: -16.74!
Time: 8.47s!

Score: -15.91!
Time: 10.00s!

N = 100

Target!

(c)

Figure 9: A comparison of SOSMC, SMC, and MH in generating high-scoring outputs with limited computation time. (Left) Maximum score
achieved by each method, averaged over 10 runs, as computational budget increases. Line thickness is proportional to variance in high
scores over those runs. SMC and SOSMC use the same number of particles; MH runs for as long as SOSMC takes to run on average. (Right)
Representative samples generated by each method given a computational budget of 100 particles (or equivalent average running time, for
MH). SOSMC consistently outperforms both SMC and MH in reliably generating high-quality samples at small budgets.

For the tree example, SMC’s performance is close to SOSMC’s,
since the target shape has linear structure with branching only at
the end. However, order-sensitivity is still an issue, as SMC some-
times generates models that use a large branch where continuing the
trunk would be more natural (Figure 9c, right). MH also performs
well overall on this example, but there is a persistent gap between
its performance and that of SOSMC. MH’s proposals—which ran-
domly re-generate subtrees—can fail to discover the long structure
of the target shape, especially at low budgets (Figure 9c, right).

Finally, as discussed in Section 5, our SMC implementations suffer
significantly worse trace replay overhead than our MH implemen-
tation. We expect SOSMC to further outperform MH in the above
comparisons as this overhead is eliminated.

7 Discussion

This paper introduced SMC to the task of controlled procedural
modeling. We developed the SOSMC algorithm and the stochastic
future to handle the multiple possible sequentializations of a pro-
cedural modeling program. We demonstrated SOSMC’s ability to

generate high-quality results for a variety of programs and controls,
and we showed that it reliably generates better results under small
computational budgets than both depth-first SMC and MH.

7.1 Limitations

SOSMC will not always succeed for all possible programs and
score functions. SMC is known to be susceptible to ‘garden paths,’
or execution traces that look promising for much of their runtime
only to become undesirable later on [Levy et al. 2009]. In settings
where such paths exist, SOSMC could conceivably perform worse
than depth-first SMC, as it may randomly discover garden paths
that depth-first SMC cannot follow. For such problems, the ability
to revise past decisions is critical, so MCMC or hybrid SMC/M-
CMC approaches work better [Andrieu et al. 2010].

SMC also needs random choices to be interleaved with evidence
(i.e. geometry generation) to work well. If too many random
choices are made up-front, the program ‘overcommits’ itself and
proceeds like simple forward sampling. Fortunately, most hierar-
chical, recursive procedural models can be written in interleaved

D. Ritchie, B. Mildenhall, N. D. Goodman, & P. Hanrahan.
“Controlling Procedural Modeling Programs with
Stochastically-Ordered Sequential Monte Carlo.”

 SIGGRAPH (2015)

Procedural Graphics

Probabilistic Program Induction

5

Yura Perov and Frank Wood.
"Learning Probabilistic Programs."

arXiv preprint arXiv:1407.2646 (2014).

Policy Learning in POMDPs

6

Figure 1: Learned policies for the Canadian traveler problem. Line widths indicate the frequency at
which the policy travels each edge, averaged over random combinations of open and closed edges.

5 Case Studies

We demonstrate the proposed policy learning method on three problem domains: (1) the Canadian
Traveller Problem, (2) a modified version of the RockSample POMDP, and (3) an optimal diagnosis
benchmark inspired by the classic children’s game Guess Who. Each of these domains can be formu-
lated as a POMDP. This means that there is some form of unobserved state in the problem instance,
and the agent must choose actions based on contextual information xt that can be described in terms
of an information state xt = (u0, o1, . . . , ut�1, ot). Even for discrete problems, the cardinality of
the set of possible information states xt grows exponentially with the horizon T .

The aim of these studies is to explore how probabilistic programs can be used to define policies
tailored to the structure of each domain. Fundamentally, some information must be discarded when
making a decision. Program policies encode our intuition about what information is most relevant
in a given context. As such, these studies are not intended to achieve results that are competitive
with current state-of-the-art specialized techniques for POMDPs (see Shani et al. [2013] for a recent
overview). Rather, we consider probabilistic programs as a concise algorithmic representation of
domain-specific probabilistic mappings from information states to actions, in order to describe the
search space over policies in terms of a moderate yet not unwieldly number of parameters.

5.1 Evaluation Setup

We use the same experimental setup in each of the three domains. A trial begins with a learning
phase, in which BBEM is used to learn the policy hyperparameters, followed by a number of testing
episodes in which the agent chooses actions according to a fixed learned policy. At each gradient
update step, we use 1000 samples to calculate a gradient estimate. Each testing phase consists of
1000 episodes. All shown results are based on test-phase simulations.

Stochastic gradient methods can be sensitive to the learning rate parameters. Results reported here
use a RMSProp style rescaling of the gradient [Hinton et al.], which normalizes the gradient by
a discounted rolling decaying average of its magnitude with decay factor 0.9. We use a step size
schedule ⇢k = ⇢0/(⌧ + k) as reported in [Hoffman et al., 2013], with ⌧ = 1,  = 0.5 in all experi-
ments. We use a relatively conservative base learning rate ⇢0 = 0.1 in all reported experiments. For
independent trials performed across a range 1, 2, 5, 10, . . . , 1000 of total gradient steps, consistent
convergence was observed in all runs using over 100 gradient steps.

5.2 Canadian Traveller Problem

In the Canadian Traveller Problem [Papadimitriou and Yannakakis, 1991], an undirected graph G =

(V,E) is given, along with the cost we of traversing every edge e 2 E, and the probability pe
that the edge is open. The agent must traverse the graph from the initial node s to the goal node
t at the lowest possible cost. The agent does not know the state of an edge until it reaches one of
the edge’s vertices. The problem is NP-hard [Fried et al., 2013], and heuristic online and offline
approaches [Eyerich et al., 2010] are used to solve problem instances.

Here we learn a policy based on the depth-first search (DFS) — the agent traverses the graph in the
depth-first order until the goal node is reached (only connected instances are considered). Depth-first

7

Jan-Willem van de Meent, David Tolpin, Brooks Paige, and Frank Wood.
"Black-Box Policy Search with Probabilistic Programs."

arXiv preprint arXiv:1507.04635 [under NIPS review] (2015).

Landscape

ML:
Algorithms &
Applications

STATS:
Inference &

Theory

PL:
Compilers,
Semantics,

Analysis

Probabilistic
Programming

Conceptualization

Parameters

Program

Output

CS

Parameters

Program

Observations

Probabilistic Programming Statistics

y

p(y|x)p(x)

p(x|

Inference

Operative Definition
“Probabilistic programs are usual functional or
imperative programs with two added constructs:

(1) the ability to draw values at random from
distributions, and

(2) the ability to condition values of variables in a
program via observations.”

Gordon et al, 2014

What are the goals of
probabilistic

programming?

Increase Programmer Productivity

(fn [x] (logb 1.04 (+ 1 x)))

Lines of Matlab/Java Code

Li
ne

s
of

 A
ng

lic
an

 C
od

e

HPYP, [Wood 2007]

DDPMO, [Neiswanger et al 2014]

PDIA, [Pfau 2010]

Collapsed LDA

DP Conjugate Mixture

log lin

p(
⋅|d

at
a)

http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=complexityreduction

Commodify Inference

Programming Language Representation / Abstraction Layer

Inference Engine(s)

Models / Simulators

CARON ET AL.

This lack of consistency is shared by other models based on the Pólya urn construction (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier (2011) provide a
detailed discussion on this issue and describe cases where one should or should not bother about it.

It is possible to define a slightly modified version of our model that is consistent under marginal-
isation, at the expense of an additional set of latent variables. This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to
satisfy (B). This can be easily achieved if for k 2 I(mt

t)

Uk,t ⇠
⇢

p (·|Uk,t�1) if k 2 I(mt
t�1)

H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time series
literature, many approaches are available to build such transition kernels based on copulas (Joe,
1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize the full
model by the following Bayesian network in Figure 1. It can also be summarized using a Chinese
restaurant metaphor (see Figure 2).

Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed graphi-
cal model, representing conditional independencies between variables. All assignment
variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
P

im
t
i,t�1 of alive allocation variables at time

t can be written as

At =

t�1
X

j=1

n
X

k=1

Xj,k

8

 c0 Hr

� �m

 c1 ⇡m

Hy ✓m

 r0

 s0

 r1

 s1

 y1

 r2

 s2

 y2

rT

 sT

 yT

 r3

 s3

 y31

Gaussian Mixture Model

¼

µc

y
i

k

k

i

N

K

K

α

Gπ

θc

y
i

k

k o

i

N

K

K

α

Gπ

θc

y
i

k

k o

i

N

1

1

Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM

ci |~⇡ ⇠ Discrete(~⇡)

~

yi |ci = k ;⇥ ⇠ Gaussian(·|✓k).

~⇡|↵ ⇠ Dirichlet(·| ↵
K

, . . . ,

↵

K

)

⇥ ⇠ G0

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 16 / 19

Latent Dirichlet Allocation

↵

w

d
iz

d
i �k �

d = 1 . . . D

i = 1 . . . N

d
.

✓d

k = 1 . . . K

Figure 1. Graphical model for LDA model

Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as

a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.

Here, we will denote by K the number of topics in the model. We use D to indicate the

number of documents, M to denote the number of words in the vocabulary, and N

d
. to

denote the number of words in document d. We will assume that the words have been

translated to the set of integers {1, . . . , M} through the use of a static dictionary. This is

for convenience only and the integer mapping will contain no semantic information. The

generative model for the D documents can be thought of as sequentially drawing a topic

mixture ✓d for each document independently from a DirK(↵

~

1) distribution, where DirK(

~

�)

is a Dirichlet distribution over the K-dimensional simplex with parameters [�1, �2, . . . , �K].

Each of K topics {�k}K
k=1 are drawn independently from DirM (�

~

1). Then, for each of the

i = 1 . . . N

d
. words in document d, an assignment variable z

d
i is drawn from Mult(✓

d
).

Conditional on the assignment variable z

d
i , word i in document d, denoted as w

d
i , is drawn

independently from Mult(�zd
i
). The graphical model for the process can be seen in Figure 1.

The model is parameterized by the vector valued parameters {✓d}D
d=1, and {�k}K

k=1, the

parameters {Z

d
i }d=1,...,D,i=1,...,Nd

.
, and the scalar positive parameters ↵ and �. The model

is formally written as:

✓d ⇠ DirK(↵

~

1)

�k ⇠ DirM (�

~

1)

z

d
i ⇠ Mult(✓d)

w

d
i ⇠ Mult(�zd

i
)

1

✓d ⇠ DirK (↵~1)

�k ⇠ DirM(�~1)

z

d
i ⇠ Discrete(✓d)

w

d
i ⇠ Discrete(�zdi

)

Wood (University of Oxford) Unsupervised Machine Learning January, 2014 15 / 19

Probabilistic-ML,Haskell,Scheme,…

Discrete RV’s
Only

2000

1990

2010

Systems
PL

HANSAI

IBAL

Figaro

ML STATS

WinBUGS

BUGS

JAGS

STAN
LibBi

Venture Anglican

Church

Probabilistic-C

infer.NET

webPPL

Blog

Factorie

AI

Prism

Prolog

KMP

Bounded
Recursion

Problog

Simula

• Higher order, pure functional

• Compiled (CPS -> Clojure -> JVM bytecode)
• Complete JVM language family interoperability

• First class distributions

• 15+ composable inference algorithms
• SMC
• CASCADE
• PMCMC (PIMH, PGIBBS, PGAS)
• (Adaptive) LMH
• …

Anglican

14

• http://www.robots.ox.ac.uk/~fwood/anglican/

Anglican
• Open source (GPLv3)

• core: https://bitbucket.org/probprog/anglican
• user: https://bitbucket.org/probprog/anglican-user
• tutorial: https://bitbucket.org/probprog/mlss2015

15

• http://www.robots.ox.ac.uk/~fwood/anglican/

Traditional Bayesian Statistics

16

(def posterior
 ((conditional gaussian-model
 :pgibbs
 :number-of-particles 1000) dataset))

(def posterior-samples
 (repeatedly 20000 #(sample posterior)))

µ|y1:2 ⇠ Normal(7.25, 0.9129)

(defquery gaussian-model [data]
 (let [mu (sample (normal 1 (sqrt 5)))
 sigma (sqrt 2)]
 (map (fn [x] (observe (normal mu sigma) x)) data)
 (predict :mu mu)))

µ ⇠ Normal(1,
p
5)

yi|µ ⇠ Normal(µ,
p
2)

(def dataset [9 8]) y1 = 9, y2 = 8

Mechanism Design

17

(defquery arrange-bumpers []
 (let [bumper-positions []

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)]

 (predict :balls balls)
 (predict :num-balls-in-box num-balls-in-box)
 (predict :bumper-positions bumper-positions)))

goal: ~20% of balls in box…

(defquery arrange-bumpers []
 (let [number-of-bumpers (sample (poisson 20))
 bumpydist (uniform-continuous 0 10)
 bumpxdist (uniform-continuous -5 14)
 bumper-positions (repeatedly
 number-of-bumpers
 #(vector (sample bumpxdist)
 (sample bumpydist)))

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)]

 (predict :balls balls)
 (predict :num-balls-in-box num-balls-in-box)
 (predict :bumper-positions bumper-positions)))

Procedural Design

18

(defquery arrange-bumpers []
 (let [number-of-bumpers (sample (poisson 20))
 bumpydist (uniform-continuous 0 10)
 bumpxdist (uniform-continuous -5 14)
 bumper-positions (repeatedly
 number-of-bumpers
 #(vector (sample bumpxdist)
 (sample bumpydist)))

 ;; code to simulate the world
 world (create-world bumper-positions)
 end-world (simulate-world world)
 balls (:balls end-world)

 ;; how many balls entered the box?
 num-balls-in-box (balls-in-box end-world)

 obs-dist (normal 2 0.1)]

 (observe obs-dist num-balls-in-box)

 (predict :balls balls)
 (predict :num-balls-in-box num-balls-in-box)
 (predict :bumper-positions bumper-positions)))

Inference Over Conditioned Execution Traces

19

Inference

p(y|h) =
Z

p(y|z,h)p(z|h)dz

p(z|y,h) = p(y|z,h)p(z|h)
p(y|h)

likehood
prior

evidence

posterior

z

h

y

Automatic Complexity Regularization

21

y

p(y|h)

h = H
complex

h = Hsimple

p(h|y) / p(y|h)p(h)

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. 2003.
I. Murray, Z. Ghahramani. "A note on the evidence and Bayesian Occam’s razor." 2005.

Bayesian Occam’s Razor

Probabilistic Programming Is Fully Generative

22

y
x

program source code program output

scene description image

world simulator output

policy reward

x

y
p(x|y) = p(y|x)p(x)

p(y)

x = z [h

automata sequence

How Does it Work?

The Gist
• Explore as many “traces” as possible, intelligently

• Each trace contains all random choices made
during the execution of a generative model

• Compute trace “goodness” (probability) as side-effect
• Combine weighted traces probabilistically coherently
• Report projection of posterior over traces

24

Trace Probability
• observe data points

• internal random choices

• simulate from

• by running the program
forward

• weight execution traces by
y1 y2

✓

x1 x2

x11 x12 x13 x21 x22

{ {
etc

p(y1:N ,x1:N) =
NY

n=1

g(yn|x1:n)f(xn|x1:n�1)

y1 y2

x1 x2 x3

y3

f(xn|x1:n�1)

g(yn|x1:n)

xn

yn

Traces

x1,1 = 3

x1,2 = 0

x1,2 = 1

x1,2 = 2

(let [x-1-1 3
 x-1-2 (sample (discrete (range x-1-1)))]
 (if (not= x-1-2 1)
 (let [x-2-1 (+ x-1-2 7)]
 (sample (poisson x-2-1)))))

x2,1 = 7

x2,1 = 9

x2,2 = 0

x2,2 = 1

. . .

Observe

x1,1 = 3

x1,2 = 0

x1,2 = 1

x1,2 = 2

(let [x-1-1 3
 x-1-2 (sample (discrete (range x-1-1)))]
 (if (not= x-1-2 1)
 (let [x-2-1 (+ x-1-2 7)]
 (sample (poisson x-2-1)))))
(observe (gaussian x-2-1 0.0001) 7))

x2,1 = 7

x2,1 = 9

x2,2 = 0

x2,2 = 1

. . .

n = 1 n = 2
Iteratively,  

- simulate  
- weight  
- resample

SMC

Observe

Pa
rti

cl
e

Run program forward
until next observeWeight of particle

Is observation likelihood

Proposal

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

1,

ˆ

Z

0
p(✓

0
)q(✓|✓0)

ˆ

Zp(✓)q(✓

0|✓)

!

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

SMC for Probabilistic Programming

Fischer, Kiselyov, and Shan “Purely functional lazy non-deterministic programming” ACM Sigplan 2009
W., van de Meent, and Mansinghka “A New Approach to Probabilistic Programming Inference” AISTATS 2014
Paige and W. “A Compilation Target for Probabilistic Programming Languages” ICML 2014

Sequence of environments

Parallel executions

Intuitively 

- run 
- wait  
- fork

SMC for Probabilistic Programming
Th

re
ad

s

observe delimiter

continuations

Issues
• Degeneracy
• Not iterable (naively)

31

PMCMC for Probabilistic Programming

• Sequential Monte Carlo is
now a building block for
other inference techniques

• Iterable SMC
- PIMH : “particle

independent Metropolis-
Hastings”

- PGIBBS : “iterated
conditional SMC”

-­‐ 	
 	

[Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference” AISTATS 2014]

n n n

…

n n n

…
n n n

…

s=

s=

s=

Andrieu, Doucet, Holenstein “Particle Markov chain Monte Carlo methods.“ JRSSB 2010

Better Inference Per Unit Energy

33

• Initialization (sample)

• Forward simulation (sample)

• Observation likelihood computation
• pointwise evaluation up to normalization

PMCMC (and SMC) Methods Only Require

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Ep(x1:n|y1:n)[h(x1:n)] ⇡
1

L

LX

`=1

h(x

`
1:n)w

`
n x

`
1:n ⇠ q(x1:n|y1:n), w

`
n =

p(x

`
1:n|y1:n)

q(x

`
1:n|y1:n)

=

p(x1:n�1|y1:n�1) ⇡
LX

`=1

w

`
n�1�x`

1:n�1
(x1:n�1)

p(x1:n|y1:n) = g(yn|x1:n)f(xn|x1:n�1)p(x1:n�1|y1:n�1)

q(x1:n|y1:n) = f(xn|x1:n�1)p(x1:n�1|y1:n�1)

p(x1:n|y1:n) ⇡
LX

`=1

g(yn|x`
1:n)w

`
n�1�x`

1:n
(x1:n), x

`
1:n = x

`
nx

a`
n�1

1:n�1 ⇠ f

p(y1:N |x1:N , ✓) = p(x0|✓)
NY

n=1

p(yn|xn, ✓)p(xn|xn�1, ✓)p(✓)

min

✓
1,

p(y1:N |✓0)p(✓0)q(✓|✓0)
p(y1:N |✓)p(✓)q(✓0|✓)

◆

min

✓
1,

Z

0
p(✓

0
)q(✓|✓0)

Zp(✓)q(✓

0|✓)

◆

ˆ

Z ⌘ p(y1:N |✓) ⇡
NY

n=1

"
1

N

LX

`=1

w

`
n

#

p(x1)

f(xn|x1:n�1)

g(yn|x1:n)

6

Stop Making New Probabilistic
Programming Languages

sort-of

Probabilistic C
• Standard C with two new directives: observe and
predict

• Is compiled to parallel machine code by standard
compilers

• Relies on standard operating system functionality:
processes, forking, mutexes, shared memory

• Compiled programs automatically do inference

• Emits posterior samples of predicted quantities

Paige, W.; ICML 2014

Simple example program
Posterior mean of a Gaussian, given i.i.d. draws

observe constrains
program execution

predict emits
sampled values

A Markov model

HMM: discrete transitions, gaussian emissions.

z0 ⇠ Discrete([1/K, . . . , 1/K]) zn|zn�1 ⇠ Discrete(Tzn�1) yn|zn ⇠ Normal(µzn ,�
2
)

Conditioning on observed data

HMM: discrete transitions, gaussian emissions.

z0 ⇠ Discrete([1/K, . . . , 1/K]) zn|zn�1 ⇠ Discrete(Tzn�1) yn|zn ⇠ Normal(µzn ,�
2
)

Changing the generative model is easy

HMM: discrete transitions, gaussian emissions.

Tk ⇠ Dirichlet(↵k)Suppose the transition matrix were unknown:

Implementation
• Inference: forward simulation (SMC, particle MCMC, particle

cascade, …)

• POSIX fork:
- operating-system level call to clone a running process:

branch on program execution state, explore many
downstream paths

- duplicates entire memory address space
- efficient: lazy copy-on-write behaviour
- parallel: each downstream path is explored by an

independent OS process  

The Next 700 Probabilistic
Programming Languages?

W., Jeffrey Mark Siskind and Brooks Paige
(in prep. 2015)

Probabilistic Scheme
Gaussian example, in probabilistic scheme

All we need for probabilistic scheme
• existing scheme compiler (i.e. STALIN)

• existing C compiler (i.e. GCC, clang)

Probabilistic C: sum-equals

C (GCC, CLANG) Scheme (STALIN)

Standard ML (MLTON) Haskell (GHC)

(define a (- (poisson-rng 100.0) 100))
(define b (- (poisson-rng 100.0) 100))
(observe (normal-lnp 7.0

(exact->inexact (+ a b)) .00001))
(predict-value "a" (exact->inexact a))
(predict-value "b" (exact->inexact b))

int main(int argc, char *argv[]) {
 long a = poisson_rng(100.0)-100;
 long b = poisson_rng(100.0)-100;
 observe(normal_lnp(7.0,

(double)(a+b), 0.00001));
 predict_value("a", (double)a);
 predict_value("b", (double)b);
}

val a = (poisson_rng 100.0)-100
val b = (poisson_rng 100.0)-100
val _ = observe (normal_lnp (7.0,

 (int64ToReal (a+b)), 0.00001))
val _ = predict_value ("a", (int64ToReal a))
val _ = predict_value ("b", (int64ToReal b))
val _ = return_from_main 0

model = do
 a <- (+(-100)) <$> poisson_rng 100.0
 b <- (+(-100)) <$> poisson_rng 100.0
 observe $ normal_lnp 7

(realToFrac (a+b)) 0.00001
 predict_value "a" (realToFrac a)
 predict_value "b" (realToFrac b)
 return ()

Bubble Up

Inference

Probabilistic Programming Language

Models

AI

Probabilistic Programming System

48

Obse
rve

d
Im

ag
e

Infer
red

(re
co

nstr
ucti

on)
Infer

red
 m

odel

re-
ren

dere
d w

ith

nove
l p

ose
s

Infer
red

 m
odel

re-
ren

dere
d w

ith

nove
l li

ghtin
g

Figu
re

3:
In

fer
en

ce
on

rep
res

en
tat

ive
fac

es
usin

g Pict
ure:

W
e

tes
ted

ou
r ap

pro
ac

h on
a he

ld-
ou

t d
ata

set
of

2D
im

ag
e pro

jec
tio

ns

of
las

er-
sca

nn
ed

fac
es

fro
m

[36
].

Our
sh

ort
pro

ba
bil

ist
ic

pro
gra

m

is
ap

pli
cab

le
to

no
n-f

ron
tal

fac
es

an
d pro

vid
es

rea
son

ab
le

pa
rse

s as

illu
str

ate
d ab

ov
e us

ing
on

ly
ge

ne
ral

-pu
rpo

se
inf

ere
nc

e mac
hin

ery
.

Fo
r qu

an
tita

tiv
e metr

ics
, re

fer
to

sec
tio

n 4.1
.

an
d inf

orm
ed

sam
ple

rs
[19

].
GPGP

aim
ed

to
ad

dre
ss

the

main
ch

all
en

ge
s of

ge
ne

rat
ive

vis
ion

by
rep

res
en

tin
g vis

ua
l

sce
ne

s as
sh

ort
pro

ba
bil

ist
ic

pro
gra

ms with
ran

do
m

va
ri-

ab
les

, a
nd

us
ing

a ge
ne

ric
M

CM
C

(si
ng

le-
sit

e M
etr

op
oli

s-

Hast
ing

s)
meth

od
for

inf
ere

nc
e.

How
ev

er,
du

e to
mod

eli
ng

lim
ita

tio
ns

of
ea

rli
er

pro
ba

bil
ist

ic
pro

gra
mming

lan
gu

ag
es,

an
d

the
ine

ffi
cie

nc
y

of
the

M
etr

op
oli

s-H
ast

ing
s sam

ple
r,

GPGP was
lim

ite
d to

work
ing

with
low

-di
men

sio
na

l s
ce

ne
s,

res
tri

cte
d sh

ap
es,

an
d low

lev
els

of
ap

pe
ara

nc
e va

ria
bil

ity
.

M
ore

ov
er,

it
did

no
t su

pp
ort

the
int

eg
rat

ion
of

bo
tto

m-up

dis
cri

mina
tiv

e mod
els

suc
h as

de
ep

ne
ura

l n
etw

ork
s [23

, 2
5]

for
da

ta-
dri

ve
n pro

po
sal

lea
rni

ng
. Our

cu
rre

nt
work

ex
ten

ds

the
GPGP

fra
mew

ork
in

all
of

the
se

dir
ec

tio
ns

, let
tin

g us

tac
kle

a ric
he

r set
of

rea
l-w

orl
d 3D

vis
ion

pro
ble

ms.

Pict
ur

e is
an

im
pe

rat
ive

pro
gra

mming
lan

gu
ag

e,
whe

re

ex
pre

ssi
on

s can
tak

e on
eit

he
r de

ter
mini

sti
c or

sto
ch

ast
ic

va
l-

ue
s.

We use
the

tra
nsf

orm
ati

on
al

co
mpil

ati
on

tec
hn

iqu
e [46

]

to
im

ple
men

t Pict
ur

e,
whic

h is
a ge

ne
ral

meth
od

of
tra

ns
-

for
ming

arb
itr

ary
pro

gra
mming

lan
gu

ag
es

int
o pro

ba
bil

ist
ic

pro
gra

mming
lan

gu
ag

es.
Com

pa
red

to
ea

rli
er

for
mula

tio
ns

of
GPGP,

Pict
ure

is
dy

na
mica

lly
co

mpil
ed

at
run

-ti
me (JI

T-

co
mpil

ati
on

) ins
tea

d of
int

erp
ret

ing
, m

ak
ing

pro
gra

m
ex

ecu
-

tio
n muc

h fas
ter

.

A
Pict

ure
pro

gra
m

f
de

fine
s a sto

ch
ast

ic
pro

ce
du

re
tha

t

ge
ne

rat
es

bo
th

a sce
ne

de
scr

ipt
ion

an
d all

oth
er

inf
orm

ati
on

ne
ed

ed
to

ren
de

r an
ap

pro
xim

ati
on

im
ag

e IR
for

co
mpa

ri-

so
n with

an
ob

ser
ve

d im
ag

e ID
. The

pro
gra

m
f

ind
uc

es
a

joi
nt

pro
ba

bil
ity

dis
tri

bu
tio

n on
the

pro
gra

m
tra

ce
⇢
=

{⇢ i}
,

the
set

of
all

ran
do

m
ch

oic
es

i ne
ed

ed
to

sp
ec

ify
the

sce
ne

hy
po

the
sis

S
an

d ren
de

r I
R

. Eac
h ran

do
m

ch
oic

e ⇢ i
ca

n

be
lon

g to
a fam

ilia
r pa

ram
etr

ic
or

no
n-p

ara
metr

ic
fam

ily
of

dis
tri

bu
tio

ns
, s

uc
h as

Mult
ino

mial
, M

vN
or

mal,
Disc

ret
eU

-

nif
or

m, P
ois

so
n,

or
Gau

ssi
an

Proc
ess

, b
ut

in
be

ing
us

ed
to

sp
ec

ify
the

tra
ce

of
a pro

ba
bil

ist
ic

gra
ph

ics
pro

gra
m, th

eir

eff
ect

s can
be

co
mbin

ed
muc

h more
ric

hly
tha

n is
typ

ica
l fo

r

ran
do

m
va

ria
ble

s in
tra

dit
ion

al
sta

tis
tic

al
mod

els
.

Con
sid

er
run

nin
g the

pro
gra

m
in

Figu
re

2 un
co

nd
itio

na
lly

(w
ith

ou
t ob

ser
ve

d da
ta)

: as
dif

fer
en

t ⇢
i’s

are
en

co
un

ter
ed

(fo
r e.g

. co
eff

), r
an

do
m

va
lue

s are
sam

ple
d w.r.t

the
ir un

de
r-

lyi
ng

pro
ba

bil
ity

dis
tri

bu
tio

n an
d ca

ch
ed

in
the

cu
rre

nt
sta

te

of
the

inf
ere

nc
e en

gin
e.

Prog
ram

ex
ecu

tio
n ou

tpu
ts an

im
ag

e

of
a fac

e with
ran

do
m

sh
ap

e,
tex

tur
e,

ca
mera

an
d lig

hti
ng

pa
ram

ete
rs.

Give
n im

ag
e da

ta
ID

, in
fer

en
ce

in
Pict

ure
pro

-

gra
ms am

ou
nts

to
ite

rat
ive

ly
sam

pli
ng

or
ev

olv
ing

pro
gra

m

tra
ce

⇢
to

a hig
h pro

ba
bil

ity
sta

te
whil

e res
pe

cti
ng

co
nst

rai
nts

im
po

sed
by

the
da

ta
(F

igu
re

3).
This

co
ns

tra
ine

d sim
ula

tio
n

ca
n be

ac
hie

ve
d by

us
ing

the
ob
se

rv
e

lan
gu

ag
e co

ns
tru

ct

(se
e co

de
in

Figu
re

2),
first

pro
po

sed
in

Ven
tur

e [32
] an

d

als
o us

ed
in

[35
, 4

7].

2.1
. A

rch
ite

ctu
re

In
thi

s sec
tio

n,
we will

ex
pla

in
the

ess
en

tia
l a

rch
ite

ctu
ral

co
mpo

ne
nts

hig
hli

gh
ted

in
Figu

re
1 (se

e Figu
re

4 for
a su

m-

mary
of

no
tat

ion
us

ed
).

Scen
e Lan

gu
ag

e:
The

sce
ne

lan
gu

ag
e is

us
ed

to
de

scr
ibe

2D
/3D

vis
ua

l sce
ne

s as
pro

ba
bil

ist
ic

co
de

. Visu
al

sce
ne

s

ca
n be

bu
ilt

ou
t of

sev
era

l gra
ph

ics
pri

mitiv
es

su
ch

as:
de

-

scr
ipt

ion
of

3D
ob

jec
ts

in
the

sce
ne

(e.
g.

mesh
, z-m

ap
,

vo
lum

etr
ic)

, on
e or

more
lig

hts
, tex

tur
es,

an
d the

ca
mera

inf
orm

ati
on

. It
is

im
po

rta
nt

to
no

te
tha

t sce
ne

s ex
pre

sse
d

as
pro

ba
bil

ist
ic

co
de

are
more

ge
ne

ral
tha

n pa
ram

etr
ic

pri
or

de
ns

ity
fun

cti
on

s as
is

typ
ica

l in
ge

ne
rat

ive
vis

ion
mod

els
.

The
pro

ba
bil

ist
ic

pro
gra

ms we de
mon

str
ate

in
thi

s pa
pe

r

em
be

d ide
as

fro
m

co
mpu

ter
-ai

de
d de

sig
n (C

AD) an
d no

n-

pa
ram

etr
ic

Bay
esi

an
sta

tis
tic

s[3
7]

to
ex

pre
ss

va
ria

bil
ity

in

3D
sh

ap
es.

Approx
im

ate
Ren

dere
r (A

R): Pict
ure

’s
AR

lay
er

tak
es

in

a sce
ne

rep
res

en
tat

ion
tra

ce
S

⇢ an
d tol

era
nc

e va
ria

ble
s X

⇢ ,

an
d us

es
ge

ne
ral

-pu
rpo

se
gra

ph
ics

sim
ula

tor
s (B

len
de

r[5
]

an
d Ope

nG
L) to

ren
de

r 3D
sce

ne
s.

The
ren

de
rin

g tol
era

nc
e

X
⇢ de

fine
s a str

uc
tur

ed
no

ise
pro

ces
s ov

er
the

ren
de

rin
g an

d

is
us

efu
l fo

r the
fol

low
ing

pu
rpo

ses
: (a)

to
mak

e au
tom

ati
c

inf
ere

nc
e more

tra
cta

ble
or

rob
us

t, a
na

log
ou

s to
sim

ula
ted

an
ne

ali
ng

(e.
g.

glo
ba

l o
r loc

al
blu

r va
ria

ble
s in

GPGP [31
]),

an
d (b)

to
so

ak
up

mod
el

mism
atc

h be
tw

ee
n the

tru
e sce

ne

ren
de

rin
g ID

an
d the

hy
po

the
siz

ed
ren

de
rin

g IR
. Ins

pir
ed

by

the
dif

fer
en

tia
ble

ren
de

rer
[29

], P
ict

ure
als

o sup
po

rts
ex

pre
ss-

ing
AR’s

en
tir

e gra
ph

ics
pip

eli
ne

as
Pict

ure
co

de
, e

na
bli

ng

the
lan

gu
ag

e to
ex

pre
ss

en
d-t

o-e
nd

dif
fer

en
tia

ble
ge

ne
rat

ive

mod
els

.
Rep

res
en

tat
ion

Lay
er

(R
L): To

av
oid

the
ne

ed
for

ph
oto

-

rea
lis

tic
ren

de
rin

g of
co

mple
x sce

ne
s,

whic
h ca

n be
slo

w

an
d

mod
eli

ng
-in

ten
siv

e,
or

for
pix

el-
wise

co
mpa

ris
on

of

hy
po

the
siz

ed
sce

ne
s an

d ob
ser

ve
d im

ag
es,

whic
h ca

n so
me-

tim
es

yie
ld

po
ste

rio
rs

tha
t a

re
int

rac
tab

le
for

sam
pli

ng
-ba

sed

inf
ere

nc
e,

the
RL su

pp
ort

s co
mpa

ris
on

of
ge

ne
rat

ed
an

d ob
-

ser
ve

d im
ag

es
in

ter
ms of

a hie
rar

ch
y of

ab
str

ac
t fea

tur
es.

Figu
re

2:
Fo

ur
inp

ut
im

ag
es

fro
m

ou
r CAPTCHA

co
rpu

s,
alo

ng
with

the
fina

l res
ult

s an
d co

nv
er-

ge
nc

e tra
jec

tor
y of

typ
ica

l inf
ere

nc
e run

s.
The

first
row

is
a hig

hly
clu

tte
red

sy
nth

eti
c CAPTCHA

ex
hib

itin
g ex

tre
me let

ter
ov

erl
ap

. The
sec

on
d row

is
a CAPTCHA

fro
m

Turb
oT

ax
, the

thi
rd

row

is
a CAPTCHA

fro
m

AOL, an
d the

fou
rth

row
sh

ow
s an

ex
am

ple
whe

re
ou

r sy
ste

m
mak

es
err

ors

on
so

me run
s.

Our
pro

ba
bil

ist
ic

gra
ph

ics
pro

gra
m

did
no

t ori
gin

all
y su

pp
ort

rot
ati

on
, whic

h was

ne
ed

ed
for

the
AOL CAPTCHAs;

ad
din

g it r
eq

uir
ed

on
ly

1 ad
dit

ion
al

lin
e of

pro
ba

bil
ist

ic
co

de
. See

the
main

tex
t fo

r qu
an

tita
tiv

e de
tai

ls,
an

d su
pp

lem
en

tal
mate

ria
l fo

r the
ful

l c
orp

us
.

3

G

e

n

e

r

a

t

i

v

e

P

r

o

b

a

b

i

l

i

s

t

i

c

G

r

a

p

h

i

c

s

i

n

2

D

f

o

r

R

e

a

d

i

n

g

D

e

g

r

a

d

e

d

T

e

x

t

.

We de
ve

lop
ed

a pro
ba

bil
ist

ic
gra

ph
ics

pro
gra

m
for

rea
din

g sh
ort

sn
ipp

ets
of

de
gra

de
d tex

t c
on

sis
tin

g

of
arb

itr
ary

dig
its

an
d let

ter
s.

See
Figu

re
2 for

rep
res

en
tat

ive
inp

uts
an

d ou
tpu

ts.
In

thi
s pro

gra
m,

the
lat

en
t s

ce
ne
S

=

{S
i}

co
nta

ins
a ba

nk
of

va
ria

ble
s for

ea
ch

gly
ph

, in
clu

din
g whe

the
r a po

ten
tia

l

let
ter

is
pre

sen
t or

ab
sen

t fro
m

the
sce

ne
, w

ha
t its

sp
ati

al
co

ord
ina

tes
an

d siz
e are

, w
ha

t its
ide

nti
ty

is,
an

d ho
w

it i
s rot

ate
d:

P

(

S

p

r

e

s

i

=

1

)

=

0

.

5

P

(

S

x
i
=

x

)

=

⇢ 1

/

w

0


x


w

0

o

t

h

e

r

w

i

s

e

P

(

S

y
i
=

y

)

=

⇢ 1

/

h

0


x


h

0

o

t

h

e

r

w

i

s

e

P

(

S

g

l

y

p

h

i

d

i

=

g

)

=

(
1

/

G

0


S

g

l

y

p

h

i

d

i

<

G

0

o

t

h

e

r

w

i

s

e

P

(

S

✓
i
=

g

)

=

⇢ 1

/

2

✓

m

a

x

�✓
m

a

x


S

✓
i
<

✓

m

a

x

0

o

t

h

e

r

w

i

s

e

Our
ren

de
rer

ras
ter

ize
s ea

ch
let

ter
ind

ep
en

de
ntl

y,
ap

pli
es

a sp
ati

al
blu

r to
ea

ch
im

ag
e,

co
mpo

sit
es

the
let

ter
s,

an
d

the
n blu

rs
the

res
ult

.
We als

o
ap

pli
ed

glo
ba

l blu
r to

the
ori

gin
al

tra
ini

ng
im

ag
e

be
for

e ap
ply

ing
the

sto
ch

ast
ic

lik
eli

ho
od

mod
el

on
the

blu
rre

d ori
gin

al
an

d ren
de

red
im

ag
es.

The

sto
ch

ast
ic

lik
eli

ho
od

mod
el

is
a mult

iva
ria

te
Gau

ssi
an

who
se

mea
n is

the
blu

rry
ren

de
rin

g;
for

mall
y,

I

D
⇠
N

(

I

R
;

�

)

. The
co

ntr
ol

va
ria

ble
s X

=

{X
j
} for

the
ren

de
rer

an
d lik

eli
ho

od
co

ns
ist

of
pe

r-

let
ter

Gau
ssi

an
sp

ati
al

blu
r ba

nd
widt

hs
X

i
j
⇠
�

· B
e

t

a

(

1

,

2

)

, a glo
ba

l im
ag

e blu
r on

the
ren

de
red

im
ag

e X
b

l

u

r

r

e

n

d

e

r

e

d

⇠
�

· B
e

t

a

(

1

,

2

)

, a
glo

ba
l im

ag
e blu

r on
the

ori
gin

al
tes

t im
ag

e X
b

l

u

r

t

e

s

t

⇠

�

· B
e

t

a

(

1

,

2

)

, an
d the

sta
nd

ard
de

via
tio

n of
the

Gau
ssi

an
lik

eli
ho

od
�

⇠
G

a

m

m

a

(

1

,

1

)

(w
ith
�

,

�

an
d �

set
to

fav
or

sm
all

ba
nd

widt
hs

).
To

mak
e ha

rd
cla

ssi
fica

tio
n de

cis
ion

s,
we us

e the
sam

ple

with
low

est
pix

el
rec

on
str

uc
tio

n
err

or
fro

m
a set

of
5

ap
pro

xim
ate

po
ste

rio
r sam

ple
s.

We als
o

ex
pe

rim
en

ted
with

en
ab

lin
g

en
um

era
tiv

e (gr
idd

y)
Gibb

s sam
pli

ng
for

un
ifo

rm
dis

cre
te

va
ria

ble
s

with
10

%
pro

ba
bil

ity
. The

pro
ba

bil
ist

ic
co

de
for

thi
s mod

el
is

sh
ow

n in
Figu

re
4.

To
ass

ess
the

ac
cu

rac
y of

ou
r ap

pro
ac

h on
ad

ve
rsa

ria
lly

ob
scu

red
tex

t, w
e de

ve
lop

ed
a co

rpu
s co

n-

sis
tin

g of
ov

er
40

im
ag

es
fro

m
wide

ly
us

ed
web

sit
es

su
ch

as
Turb

oT
ax

, E-T
rad

e,
an

d AOL, plu
s

ad
dit

ion
al

ch
all

en
gin

g sy
nth

eti
c CAPTCHAs with

hig
h de

gre
es

of
let

ter
ov

erl
ap

an
d su

pe
rim

po
sed

dis
tra

cto
rs.

Eac
h so

urc
e of

tex
t vio

lat
es

the
un

de
rly

ing
ass

um
pti

on
s of

ou
r pro

ba
bil

ist
ic

gra
ph

ics

pro
gra

m
in

dif
fer

en
t way

s.
Turb

oT
ax

CAPTCHAs inc
orp

ora
te

oc
clu

sio
ns

tha
t bre

ak
str

ok
es

with
in

4

Figure 1: Learned policies for the Canadian traveler problem. Line widths indicate the frequency at
which the policy travels each edge, averaged over random combinations of open and closed edges.

5 Case Studies

We demonstrate the proposed policy learning method on three problem domains: (1) the Canadian
Traveller Problem, (2) a modified version of the RockSample POMDP, and (3) an optimal diagnosis
benchmark inspired by the classic children’s game Guess Who. Each of these domains can be formu-
lated as a POMDP. This means that there is some form of unobserved state in the problem instance,
and the agent must choose actions based on contextual information xt that can be described in terms
of an information state xt = (u0, o1, . . . , ut�1, ot). Even for discrete problems, the cardinality of
the set of possible information states xt grows exponentially with the horizon T .

The aim of these studies is to explore how probabilistic programs can be used to define policies
tailored to the structure of each domain. Fundamentally, some information must be discarded when
making a decision. Program policies encode our intuition about what information is most relevant
in a given context. As such, these studies are not intended to achieve results that are competitive
with current state-of-the-art specialized techniques for POMDPs (see Shani et al. [2013] for a recent
overview). Rather, we consider probabilistic programs as a concise algorithmic representation of
domain-specific probabilistic mappings from information states to actions, in order to describe the
search space over policies in terms of a moderate yet not unwieldly number of parameters.

5.1 Evaluation Setup

We use the same experimental setup in each of the three domains. A trial begins with a learning
phase, in which BBEM is used to learn the policy hyperparameters, followed by a number of testing
episodes in which the agent chooses actions according to a fixed learned policy. At each gradient
update step, we use 1000 samples to calculate a gradient estimate. Each testing phase consists of
1000 episodes. All shown results are based on test-phase simulations.

Stochastic gradient methods can be sensitive to the learning rate parameters. Results reported here
use a RMSProp style rescaling of the gradient [Hinton et al.], which normalizes the gradient by
a discounted rolling decaying average of its magnitude with decay factor 0.9. We use a step size
schedule ⇢k = ⇢0/(⌧ + k) as reported in [Hoffman et al., 2013], with ⌧ = 1,  = 0.5 in all experi-
ments. We use a relatively conservative base learning rate ⇢0 = 0.1 in all reported experiments. For
independent trials performed across a range 1, 2, 5, 10, . . . , 1000 of total gradient steps, consistent
convergence was observed in all runs using over 100 gradient steps.

5.2 Canadian Traveller Problem

In the Canadian Traveller Problem [Papadimitriou and Yannakakis, 1991], an undirected graph G =

(V,E) is given, along with the cost we of traversing every edge e 2 E, and the probability pe
that the edge is open. The agent must traverse the graph from the initial node s to the goal node
t at the lowest possible cost. The agent does not know the state of an edge until it reaches one of
the edge’s vertices. The problem is NP-hard [Fried et al., 2013], and heuristic online and offline
approaches [Eyerich et al., 2010] are used to solve problem instances.

Here we learn a policy based on the depth-first search (DFS) — the agent traverses the graph in the
depth-first order until the goal node is reached (only connected instances are considered). Depth-first

7

Perc
ep

tio
n Modeling

Action Selection

AI

It’s All About Inference
• Parallelism

“Asynchronous Anytime Sequential Monte Carlo” [Paige, W., Doucet, Teh NIPS 2014]

• Backwards passing
“Particle Gibbs with Ancestor Sampling for Probabilistic Programs” [van de Meent, Yang, Mansinghka, W.
AISTATS 2015]

• Search
“Maximum a Posteriori Estimation by Search in Probabilistic Models” [Tolpin, W., SOCS, 2015]

• Adaptation
“Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs” [Tolpin, van de Meent, Paige,
W ; ECML, 2015]

• Novel proposals
“Neural Adaptive Inference for Probabilistic Programming” [Paige, W.; in submission]

Thank You
• Questions?

• Funding: DARPA, Amazon, Microsoft

van de Meent
Paige

Perov

Le

Tolpin

Yang

Teh

Doucet

Siskind

