Probabilistic Programming

Frank Wood fwood@robots.ox.ac.uk

AGI 2015

Inverse Graphics

Captcha Solving

Mesh Fitting

V. Mansinghka,, T.. Kulkarni, Y. Perov, and J. Tenenbaum. "Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013). T. Kulkarni, et al "Picture: a probabilistic programming language for scene perception." CVPR (2015).

Directed Design

Stable Static Structures

Procedural Graphics

Ritchie, D., Lin, S., Goodman, N. D., & Hanrahan, P. Generating Design Suggestions under Tight Constraints with Gradient-based Probabilistic Programming. In Computer Graphics Forum, (2015) D. Ritchie, B. Mildenhall, N. D. Goodman, & P. Hanrahan. "Controlling Procedural Modeling Programs with Stochastically-Ordered Sequential Monte Carlo." SIGGRAPH (2015)

Probabilistic Program Induction

(lambda (stack-id) (safe-uc (* (if (< 0.0 (* (* (* -1.0 (begin (define G_1147 (safe-uc 1.0 1.0)) 0.0)) (* 0.0 (+ 0.0 (safe-uc (* (* (dec -2 .0) (safe-sqrt (begin (define G_1148 3.14159) (safe-log -1.0)))) 2.0) 0.0)))) 1.0)) (+ (safe-div (begin (define G_1149 (* (+ 3.14159 -1.0) 1.0)) 1.0) 0.0) (safe-log 1.0)) (safe-log -1.0)) (begin (define G_11 ...

Yura Perov and Frank Wood. "Learning Probabilistic Programs." arXiv preprint arXiv:1407.2646 (2014).

Policy Learning in POMDPs

Jan-Willem van de Meent, David Tolpin, Brooks Paige, and Frank Wood. "Black-Box Policy Search with Probabilistic Programs." arXiv preprint arXiv:1507.04635 [under NIPS review] (2015).

Landscape

Conceptualization

CS Probabilistic Programming Statistics

Operative Definition

"Probabilistic programs are usual functional or imperative programs with two added constructs:

(1) the ability to draw values at random from distributions, and

(2) the ability to condition values of variables in a program via observations."

Gordon et al, 2014

What are the goals of probabilistic programming?

Increase Programmer Productivity

http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=complexityreduction

Commodify Inference

Models / Simulators

Programming Language Representation / Abstraction Layer

Inference Engine(s)

Systems

- Higher order, pure functional
- Compiled (CPS -> Clojure -> JVM bytecode)
 - Complete JVM language family interoperability
- First class distributions
- 15+ composable inference algorithms
 - SMC
 - CASCADE
 - PMCMC (PIMH, PGIBBS, PGAS)
 - (Adaptive) LMH

```
• . .
```


- Open source (GPLv3)
 - core: <u>https://bitbucket.org/probprog/anglican</u>
 - user: <u>https://bitbucket.org/probprog/anglican-user</u>
 - tutorial: <u>https://bitbucket.org/probprog/mlss2015</u>

Traditional Bayesian Statistics

```
(defquery gaussian-model [data]
 (let [mu (sample (normal 1 (sqrt 5)))
        sigma (sqrt 2)]
    (map (fn [x] (observe (normal mu sigma) x)) data)
    (predict :mu mu)))
```

```
\mu \sim \text{Normal}(1, \sqrt{5})y_i | \mu \sim \text{Normal}(\mu, \sqrt{2})
```

```
(def dataset [9 8])
```

```
y_1 = 9, y_2 = 8
```

(def posterior
 ((conditional gaussian-model
 :pgibbs
 :number-of-particles 1000) dataset))

```
(def posterior-samples
  (repeatedly 20000 #(sample posterior)))
```

 $\mu | y_{1:2} \sim \text{Normal}(7.25, 0.9129)$

16

Mechanism Design

(defquery arrange-bumpers []
 (let [bumper-positions []

;; code to simulate the world world (create-world bumper-positions) end-world (simulate-world world) balls (:balls end-world)

;; how many balls entered the box? num-balls-in-box (balls-in-box end-world)]

(predict :balls balls)
(predict :num-balls-in-box num-balls-in-box)
(predict :bumper-positions bumper-positions)))

goal: ~20% of balls in box...

Procedural Design

(defquery arrange-bumpers []

> ;; code to simulate the world world (create-world bumper-positions) end-world (simulate-world world) balls (:balls end-world)

;; how many balls entered the box? num-balls-in-box (balls-in-box end-world)]

(predict :balls balls)
(predict :num-balls-in-box num-balls-in-box)
(predict :bumper-positions bumper-positions)))

Inference Over Conditioned Execution Traces

```
;; code to simulate the world
world (create-world bumper-positions)
end-world (simulate-world world)
balls (:balls end-world)
```

```
;; how many balls entered the box?
num-balls-in-box (balls-in-box end-world)
```

```
obs-dist (normal 2 0.1)]
```

```
(observe obs-dist num-balls-in-box)
```

```
(predict :balls balls)
(predict :num-balls-in-box num-balls-in-box)
(predict :bumper-positions bumper-positions)))
```


Inference

Automatic Complexity Regularization

 $p(\mathbf{h}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{h})p(\mathbf{h})$

Bayesian Occam's Razor

Probabilistic Programming Is Fully Generative

X	у
program source code	program output
scene description	image
policy	reward
world	simulator output
automata	sequence

How Does it Work?

The Gist

- Explore as many "traces" as possible, intelligently
 - Each trace contains all random choices made during the execution of a generative model
- Compute trace "goodness" (probability) as side-effect
- Combine weighted traces probabilistically coherently
- Report projection of posterior over traces

Trace Probability

- **observe** data points y_n
- internal random choices \mathbf{x}_n
- simulate from

 $f(\mathbf{x}_n | \mathbf{x}_{1:n-1})$

- by running the program forward
- weight execution traces by

 $g(y_n|\mathbf{x}_{1:n})$

SMC for Probabilistic Programming

 $p(\mathbf{x}_{1:n}|y_{1:n}) \propto g(y_n|\mathbf{x}_{1:n})f(\mathbf{x}_n|\mathbf{x}_{1:n-1})p(\mathbf{x}_{1:n-1}|y_{1:n-1})$

$$q(\mathbf{x}_{1:n}|y_{1:n}) = f(\mathbf{x}_n|\mathbf{x}_{1:n-1})p(\mathbf{x}_{1:n-1}|y_{1:n-1})$$
Proposal

$$p(\mathbf{x}_{1:n}|y_{1:n}) \approx \sum_{\ell=1}^{L} g(y_n|\mathbf{x}_{1:n}^{\ell}) \delta_{\mathbf{x}_{1:n}^{\ell}}(\mathbf{x}_{1:n}), \qquad \mathbf{x}_{1:n}^{\ell} = \mathbf{x}_n^{\ell} \mathbf{x}_{1:n-1}^{a_{n-1}^{\ell}} \sim f$$

$$Weight \text{ of particle}$$
Is observation likelihood
$$Run \text{ program forward}$$
until next observe

Fischer, Kiselyov, and Shan "Purely functional lazy non-deterministic programming" ACM Sigplan 2009 **W., van de Meent, and Mansinghka** "A New Approach to Probabilistic Programming Inference" AISTATS 2014 **Paige and W.** "A Compilation Target for Probabilistic Programming Languages" ICML 2014

SMC for Probabilistic Programming

Threads

Issues

- Degeneracy
- Not iterable (naively)

PMCMC for Probabilistic Programming

[Wood, van de Meent, Mansinghka "A new approach to probabilistic programming inference" AISTATS 2014]

- Sequential Monte Carlo is now a building block for other inference techniques
- Iterable SMC
 - PIMH : "particle independent Metropolis-Hastings"
 - PGIBBS : "iterated conditional SMC"

Better Inference Per Unit Energy

33

PMCMC (and SMC) Methods Only Require

• Initialization (sample)

 $p(\mathbf{x}_1)$

• Forward simulation (sample)

 $f(\mathbf{x}_n | \mathbf{x}_{1:n-1})$

- Observation likelihood computation
 - pointwise evaluation up to normalization

 $g(y_n|\mathbf{x}_{1:n})$

Stop Making New Probabilistic Programming Languages

Probabilistic C

- Standard C with two new directives: observe and predict
- Is compiled to parallel machine code by standard compilers
- Relies on standard operating system functionality: processes, forking, mutexes, shared memory
- Compiled programs automatically do **inference**
- Emits posterior samples of predicted quantities

Paige, W.; ICML 2014

Simple example program Posterior mean of a Gaussian, given i.i.d. draws

observe constrains program execution

predict emits sampled values

mean, 8.013323
mean, 8.013323
mean, 6.132654
mean, 7.229289
mean, 7.027069
mean, 7.194609
mean, 7.194609
mean, 5.218672
mean, 6.184513

```
#include "probabilistic.h"
```

```
int main(int argc, char **argv) {
```

```
double var = 2;
double mu = normal_rng(1, 5);
```

observe(normal_lnp(9, mu, var));
observe(normal_lnp(8, mu, var));

predict("mu,%f\n", mu);

```
return 0;
```

A Markov model

```
z_0 \sim \text{Discrete}([1/K, \dots, 1/K]) \quad z_n | z_{n-1} \sim \text{Discrete}(T_{z_{n-1}})
```

\bigcirc	0	n hmm.c
1		<pre>#include "probabilistic.h"</pre>
2		#define K 3
3		#define N 17
4		
5		/* Markov transition matrix */
6		<pre>static double T[K][K] = { { 0.1, 0.5, 0.4 },</pre>
7		$\{0.2, 0.2, 0.6\},\$
8		$\{ 0.15, 0.15, 0.7 \} \};$
9		
10		<pre>/* Prior distribution on initial state */</pre>
11		<pre>static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 };</pre>
12		
13		/* Generative program for a Markov model */
14		<pre>int main(int argc, char **argv) {</pre>
15		
16		<pre>int states[N];</pre>
17		for (int n=0; n <n; n++)="" td="" {<=""></n;>
18		<pre>states[n] = (n==0) ? discrete_rng(initial_state, K)</pre>
19		: discrete_rng(T[states[n-1]], K);
20		<pre>predict("state[%d],%d\n", n, states[n]);</pre>
21	-	}
22		
23		return 0;
24	-	}
25		

Conditioning on observed data

 $z_0 \sim \text{Discrete}([1/K, \dots, 1/K]) \quad z_n | z_{n-1} \sim \text{Discrete}(T_{z_{n-1}}) \quad y_n | z_n \sim \text{Normal}(\mu_{z_n}, \sigma^2)$

```
\bigcirc \bigcirc
                                                                        hmm.c
br
            #include "probabilistic.h"
      1
      2
            #define K 3
       3
            #define N 17
       4
      5
            /* Markov transition matrix */
      6
            static double T[K][K] = { { 0.1, 0.5, 0.4 },
      7
                                        \{0.2, 0.2, 0.6\},\
      8
                                        \{0.15, 0.15, 0.7\}
      9
      10
            /* Prior distribution on initial state */
     11
            static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 };
     12
     13
            /* Generative program for a Markov model */
            int main(int argc, char **argv) {
     14
      15
                 int states[N];
      16
        17
                for (int n=0; n<N; n++) {</pre>
                     states[n] = (n==0) ? discrete_rng(initial_state, K)
     18
                                          : discrete rng(T[states[n-1]], K);
      19
                     predict("state[%d],%d\n", n, states[n]);
      20
                 }
      21
         ыł
      22
      23
                 return 0;
      24
            }
         14
      25
     Line 13 Col 1
                    ANSI C
                            Unicode (UTF-8)
                                             ↓ Unix (LF) ↓ ↓ Last saved: 6/22/14, 2:06:04 658 / 85 / 25
```

Changing the generative model is easy

Suppose the transition matrix were unknown: $T_k \sim \text{Dirichlet}(\alpha_k)$

	0	nmm.c
3		#define N 17
4		
5		/* Markov transition matrix */
6		<pre>static double T[K][K] = { { 0.1, 0.5, 0.4 },</pre>
7		$\{0.2, 0.2, 0.6\},\$
8		$\{0.15, 0.15, 0.7\};$
9		
10		/* Observed data */
11		static double data[N] = { NAN, .9, .8, .7, 0,025,
12		-5, -2,1, 0, 0.13, 0.45,
13		6, 0.2, 0.3, -1, -1 };
14		
15		/* Prior distribution on initial state */
16		<pre>static double initial_state[K] = { 1.0/3, 1.0/3, 1.0/3 };</pre>
17		
18		/* Per-state mean of Gaussian emission distribution */
19		<pre>static double state_mean[K] = { -1, 1, 0 };</pre>
20		
21	_	/* Generative program for a HMM */
22		int main(int argc, char **argv) {
23		int states[N].
24	_	int states[N];
25		TOP (INT N=0; N <n; (<br="" n++)="">r = (n = -0) 2 discusses $r = (initial state K)$</n;>
20		<pre>states[n] = (n==0) ? discrete_rng(initial_state, K)</pre>
21		: discrete_rng([[states[n-1]], K);

Implementation

- Inference: forward simulation (SMC, particle MCMC, particle cascade, ...)
- POSIX fork:
 - operating-system level call to clone a running process: branch on program execution state, explore many downstream paths
 - duplicates entire memory address space
 - efficient: lazy copy-on-write behaviour
 - parallel: each downstream path is explored by an independent OS process

The Next 700 Probabilistic Programming Languages?

W., Jeffrey Mark Siskind and Brooks Paige (in prep. 2015)

Probabilistic Scheme

Gaussian example, in probabilistic scheme

```
;;; Define a (random) mean, mu
(define mu (normal 1 (sqrt 5)))
(define sigma (sqrt 2))
```

;;; Define a likelihood funciton
(define (likelihood x) (normal-lnp x mu sigma))

;;; Condition on the data
(define data (list 8 9))
(map observe-lnp (map likelihood data))

```
;;; Emit samples of the mean
(predict-float "mean" mu)
```

All we need for probabilistic scheme

- existing scheme compiler (i.e. STALIN)
- existing C compiler (i.e. GCC, clang)

```
;;; ERPs
(define poisson-rng
  (foreign-procedure (double) long "poisson_rng" "probabilistic"))
```

```
(define normal-lnp
 (foreign-procedure (double double double) double "normal_lnp" "probabilistic"))
;;; plus more -rng and -lnp
```

```
;;; directives
(define observe (foreign-procedure (double) void "observe" "probabilistic"))
```

```
(define predict-value
 (foreign-procedure (char* double) void "predict_value" "probabilistic"))
```

```
;;; necessary boilerplate
(vector-ref argv 0)
```

Probabilistic C: sum-equals

#include <probabilistic.h>

```
int main(int argc, char *argv[]) {
    long a = poisson_rng(100.0)-100;
    long b = poisson_rng(100.0)-100;
    observe(normal_lnp(7.0, (double)(a+b), 0.00001));
    predict_value("a", (double)a);
    predict_value("b", (double)b);
}
```

C (GCC, CLANG)

```
Standard ML (MLTON)
```

Scheme (STALIN)

```
(define a (- (poisson-rng 100.0) 100))
(define b (- (poisson-rng 100.0) 100))
(observe (normal-lnp 7.0
    (exact->inexact (+ a b)) .00001))
(predict-value "a" (exact->inexact a))
(predict-value "b" (exact->inexact b))
```

```
Haskell (GHC)
```

```
model = do
a <- (+(-100)) <$> poisson_rng 100.0
b <- (+(-100)) <$> poisson_rng 100.0
observe $ normal_lnp 7
            (realToFrac (a+b)) 0.00001
predict_value "a" (realToFrac a)
predict_value "b" (realToFrac b)
return ()
```

Bubble Up

Models

Probabilistic Programming Language

Probabilistic Programming System

Inference

Action Selection

It's All About Inference

• Parallelism

"Asynchronous Anytime Sequential Monte Carlo" [Paige, W., Doucet, Teh NIPS 2014]

• Backwards passing

"Particle Gibbs with Ancestor Sampling for Probabilistic Programs" [van de Meent, Yang, Mansinghka, W. AISTATS 2015]

• Search

"Maximum a Posteriori Estimation by Search in Probabilistic Models" [Tolpin, W., SOCS, 2015]

Adaptation

"Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs" [Tolpin, van de Meent, Paige, W ; ECML, 2015]

Novel proposals

"Neural Adaptive Inference for Probabilistic Programming" [Paige, W.; in submission]

Thank You

• Questions?

van de Meent

Paige

Perov

Le

Tolpin

• Funding: DARPA, Amazon, Microsoft

Yang

Teh

Doucet

Siskind