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Abstract. This paper discusses several key issues in temporal and causal
inference in the context of AGI. The main conclusions are: (1) the repre-
sentation of temporal information should take multiple forms; (2) clas-
sical conditioning can be carried out as temporal inference; (3) causal
inference can be realized without a predefined causal relation.

A central function of intelligence is prediction, the ability for a system to
anticipate future situations according to past experience. It is often considered
as a form of temporal inference or causal inference. This paper focuses on several
key issues in this type of inference, by introducing the approach taken in NARS
(Non-Axiomatic Reasoning System), and comparing it with other approaches.

NARS is an AGI system designed according to the theory that intelligence
is the ability for a system to adapt to the environment while working with insuf-
ficient knowledge and resources. The system takes the form of a general-purpose
reasoning system, and carries out various cognitive functions (learning, planning,
decision making, etc.) in a unified process. The theory and its formal model are
described in [31, 32], as well as in other publications. Limited by the length of
the paper, in the following only a small part of the system is described.

1 Integrated Representation of Temporal Information

NARS uses a formal language Narsese to represent various types of knowledge:

Term. A term names a concept in the system. In its simplest form, an atomic
term is just a unique identifier, such as bird for the concept “bird”.

Compound Term. A compound term is composed from other terms by a con-
nector. For example, ([yellow]∩ bird) is a compound term for “yellow bird”.

Statement. A statement is a compound term representing the substitutability
of one term by another one. For example, “Tweety is a yellow bird” is rep-
resented by statement “{Tweety} → ([yellow] ∩ bird)”. A statement with a
truth-value measuring its evidential support is called a judgment.

Event. An event is a statement whose truth-value is specified for a duration. For
example, “Tweety is following Bob” is represented in Narsese as “({Tweety}×
{Bob})→ follow”, and the statement is true in the period when Tweety is
following Bob, but neither before nor after that period.
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Operation. An operation is an event that can be realized by the system it-
self. For example, “to follow Bob” is represented in Narsese as operation
“⇑follow({Bob})”, which the system can realize by directly executing it.

The formal definitions of the symbols used above are given in [32], and here
they only need to be intuitively understood. Also, for the current discussion, it
is enough to see the memory of NARS as a collection of interrelated concepts.

In this way, NARS uniformly represents all empirical knowledge as sentences
in a formal language, while still keeps the differences among types of knowledge.
This design is very different from the tradition of cognitive architectures, where
the common practice is to distinguish “semantic/declarative memory”, “episodic
memory”, and “procedural memory” from each other, and to handle them in
separate modules, each with its storage structure and processing mechanism
[17, 14, 6]. There have been other attempts to unify these memory modules, such
as in a graphical model [25], while NARS does it in a logical model that has some
similarity with logical programming [13], even though the memory of NARS can
also be roughly seen as a conceptual graph.

Since an event is just a statement whose truth-value is specified for a period,
the most straightforward representation of temporal information is to attach a
time interval to each event [1, 18], or even to every statement, since accurately
speaking, every conceptual relation hold in an interval, including “forever” as a
special case. NARS does not take this approach, because in different situations
the accuracy in specifying the beginning and ending of an event varies greatly, so
to use a single unit of time by which all events are measured is probably neither
necessary nor possible for an AGI. To be natural and flexible, in NARS an event
can be seen as both a point and an interval in time, depending on the desired
granularity. This treatment is consistent with the opinion that “The unit of
composition of our perception of time is a duration” [15]. Therefore, the temporal
information of an event is specified relatively with respect to another event, using
one of the two built-in temporal relations: sequential and parallel (also known as
before-after and at-the-same-time), which correspond to the precedes and overlap
predicates in the Russell-Kamp construction [15].

As a reasoning system, NARS runs by repeating a working cycle, and in
each cycle the system carries out a step of inference, as well as some simple
input/output activities. Just like a biological system uses certain rhythmic event
as a “biological clock”, NARS uses its working cycles as an internal clock, since
each working cycle roughly takes a short constant amount of time. Using this
internal clock, NARS can express the durations of certain events. For example,
it can represent something like “Event A is observed, then, after 5 cycles, event
B is observed”, where the “5 cycles” is an event measurable by the system.

Beside current events, the system can make judgments about past and fu-
ture events, too. In NARS every sentence has a time-stamp indicating when
the judgment is created (either from input or from inference); if the sentence is
about an event, there is also a time-stamp about the estimated occurrence time.
All the time-stamps are in terms of the system’s internal clock, and each takes
an integer as value, which can be either positive or negative. This treatment
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has some similarity with “step-logic” [5], though in NARS a time-stamp is not
explicitly expressed as part of a statement. Unlike some cognitive architectures
[17, 7], NARS does not attempt to simulate the response time of the human
brain. The system uses its (subjective) working cycle as the unit of time, not
the (objective) time provided by the clock of the host computer, so as to achieve
platform-independence in testing. For example, if a certain inference process
takes 10 steps in one computer, so does it in a different computer, even when
the two systems have different running speeds.

The internal clock and built-in temporal relations are preferred for their
simplicity and flexibility, but they are not used to represent all types of temporal
information. NARS can use an external clock by specifying an event as occurring
at the same moment as a time indicated by the clock. Since such a clock is an
optional tool, the system can use different clocks in different situations for various
demands of accuracy and granularity in time measurement.

In summary, in NARS temporal information is represented at three levels:

Term. A term (either atomic or compound) can represent a temporal concept
(such as “New Year’s Day”) or relation (such as “after a while”). Such a term
is handled just like the other terms, though its meaning contains acquired
temporal information.

Statement. A temporal statement can be formed using a built-in temporal
relation combined with certain logical connectors. For example, if A, B, and
C are events, then the Narsese statement “(A,B) /⇒ C” represents “If A is
followed by B, then C will occur after them”.

Sentence. A temporal sentence uses a time-stamp to indicate the estimated
occurrence time of the event, with respect to the internal clock of the system.

Since the internal clock is “private” to the system, when a temporal sentence
needs to be expressed in Narsese for communication purpose, its time-stamp is
converted into a “tense”, which has three possible values: “past”, “present”, and
“future”, with respect to the “current moment” when the message is created.
Symmetrically, when an input judgment has a tense attached, it is converted
into a time-stamp, according to the current time.

It is important to see that an AGI system like NARS should not directly carry
out inference on tense, because since the system works in real time, the “current
moment” changes constantly [5, 12]. On this aspect, NARS is fundamentally
different from many traditional temporal logic systems [22, 29], which treat the
tense of a statement as one of its intrinsic properties, as if the reasoning system
itself is outside the flow of time.

In summary, many different techniques have been proposed in AI to represent
temporal information, each of which is effective under different assumptions [2].
NARS uses three approaches, and integrates them to satisfy the need of AGI.

2 Classical Conditioning as Temporal Inference

NARS uses experience-grounded semantics [30]. Accordingly, the truth-value of a
statement measures its evidential support with two real numbers in [0, 1]: the fre-
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quency value is the proportion of positive evidence among all currently available
evidence, and the confidence value is the proportion of the currently available
evidence among all evidence accumulated after the coming of new evidence by
a unit amount. Their relation with probability is explained in [31].

Based on this semantics, each inference rule in NARS has a truth-value func-
tion calculating the truth-value of the conclusion according to the evidence pro-
vided by the premises. Without going into the details of the inference rules
(covered in [32] and other publications on NARS), for the current discussion it
is sufficient to know that as far as the confidence of the conclusion is concerned,
there are three types of inference rules:

Strong Inference. For example, from premises “{Tweety} → bird 〈1.00, 0.90〉”
(“Tweety is a bird”) and “($x → bird) ⇒ ($x → [yellow]) 〈1.00, 0.90〉”
(“Birds are yellow”, where $x can be substituted by another term), the
deduction rule derives the conclusion “{Tweety} → [yellow] 〈1.00, 0.81〉”
(“Tweety is yellow”). Such a rule is “strong” because the confidence of its
conclusion can approach 1. If the truth-values are dropped and all the state-
ments are taken to be “true”, the rule is still valid in its binary form.

Weak Inference. For example, from premises “{Tweety} → bird 〈1.00, 0.90〉”
and “{Tweety} → [yellow] 〈1.00, 0.90〉”, the induction rule derives “($x →
bird)⇒ ($x→ [yellow]) 〈1.00, 0.45〉”; similarly, from “($x→ bird)⇒ ($x→
[yellow]) 〈1.00, 0.90〉” and “{Tweety} → [yellow] 〈1.00, 0.90〉”, the abduction
rule derives “{Tweety} → bird 〈1.00, 0.45〉”. Such a rule is “weak” because
the confidence of its conclusion cannot be higher than 0.5. If the truth-values
are dropped and all the statements are taken to be “true”, the rule becomes
invalid in its binary form.

Evidence pooling. If two premises have the same statement but are supported
by distinct evidence, such as “bird → [yellow] 〈1.00, 0.50〉” and “bird →
[yellow] 〈0.00, 0.80〉”, the revision rule derives “bird→ [yellow] 〈0.20, 0.83〉”.
This is the only rule whose conclusion has a higher confidence value than
both premises, since here the premises are based on the distinct evidential
bases, while the conclusion is based on the pooled evidence.

There are many other inference rules in the system for other combinations of
premises with respect to various term connectors, and they will not be addressed
in this paper. In the following we only briefly describe how temporal inference
is carried out. Here the basic idea is to process temporal information and logical
information in parallel. Among other functions, this type of inference can carry
out a process that is similar to classical (Pavlovian) conditioning, by associating
a conditioned stimulus (CS) with an unconditioned stimulus (US). However what
is special in NARS is that temporal inference will also happen between neutral
stimuli. In the rare case that they get attention and also turn out to be important,
they will find relations which a classical conditioning model would have missed.

To show how it works, assume initially the system gets to know that an
occurrence of event C is followed by an occurrence of event U . As mentioned
previously, events are represented as statements with temporal information. In
this case, the occurrence time of C will be recognized by the system as before that
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of U . As soon as the temporal succession between the two events is noticed by
the system, a temporal version of the induction rule will be invoked to generalize
the observation into a temporal implication “C /⇒ U”. The truth-value of this
conclusion depends on the quality of the observations, as well as the restriction
applied by the induction rule, so that the confidence value of the conclusion will
be less than 0.5 – since it is only based on a single observation, the conclusion
is considered a “hypothesis” that differs from a “fact” in confidence.

If at a later time C occurs again, then from it and the previous hypothesis
the system derives U by deduction, with a time-stamp suggesting that it will
occur soon. Since the hypothesis has a low confidence, the prediction on U is
also tentative, though it may still be significant enough to raise the system’s
anticipation of the event, so as to make it more recognizable even when the input
signal is relatively weak or noisy. An anticipation-driven observation is “active”,
rather than “passive” (where the system simply accepts all incoming signals
without any bias), and the difference is not only in sensitivity. When expressed
as Narsese sentences, the inputs provided by a sensor normally correspond to
affirmative judgments, without any negative ones – we can directly see or hear
what is out there, but cannot directly see or hear what is not there. “Negative
observations” are actually unrealized anticipations and can only be produced by
active observations.

In the current example, if the anticipated U does not appear at the estimated
time, this unrealized anticipation and the preceding C will be taken as negative
evidence by the induction rule to generate a negative judgment “C /⇒ U” that
has a low (near 0) frequency value. Then the revision rule can pool this one
with the previous (affirmative) one to get a new evaluation for the temporal
statement “C /⇒ U”. In this way, the successes and failures of anticipation will
gradually lead the system to a relatively stable belief on whether, or how often,
U is followed by C. The conclusion is similar to a statistical one, though it is
revised incrementally, with no underlying probabilistic distribution assumed.

If the system has an unconditioned response (UR) to the US, this “instinct”
corresponds to a temporal implication “U /⇒ ⇑R” that represents a sufficient
precondition U for the operation ⇑R to be executed, and it will have an affir-
mative truth-value, such as 〈1.00, 0.99〉 (confidence cannot reach 1, even for an
instinct). From this instinct and the belief on “C /⇒ U”, the deduction rule
generates “C /⇒ ⇑R”, which gives the operation an acquired sufficient precon-
dition, though with a lower confidence than the instinct at the beginning. Now
⇑R becomes a conditioned response (CR) to the CS.

Similarly, if the system already has a strong belief on “C /⇒ U”, and it notices
an occurrence of U , then by temporal abduction the system will guess that C
has occurred previously, though the system may fail to notice it in the input
stream, or it may be not directly observable. Similar to inductive conclusions,
such an abductive conclusion is not very confident until it is strengthen by other
evidence. As proposed by C. S. Peirce [20], a major function of abduction is to
provide explanations for observations.
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Most of the existing models of classical conditioning are built in the frame-
work of dynamic system [24, 28, 8, 3], while in NARS it is modeled as an inference
process. Though Bayesian models [27] also treat conditioning as reasoning, there
the process only evaluates the probability of given statements, while NARS, fol-
lowing a logic, can generate new statements. Beside recognizing the preconditions
and consequences of single operations, temporal inference also allows the system
to do the same for compound operations consisting of multiple steps, which is
usually called “planning”, “scheduling”, or “skill learning” [15]. Typically, the
consequence of a preceding operation enables or triggers a following operation,
and such a compound operation as a whole will gradually be used as an individual
operation by the system. Such a process recursively forms an action hierarchy,
which allows efficient reaction and planning with different granularity. Unlike in
reinforcement learning or many other planning systems, NARS does not plan its
actions in all situations in terms of the same set of basic operations.

3 Causal Inference without a Casual Relation

Based on the current situation to predict the future (or to describe the past) is
often considered as “causal inference”. Though “causality” has many different
interpretations [33], a common opinion is to think the events in the universe
as interconnected via “causal relations”, so that every event is “caused” by a
certain proceeding event. When the causal relations of an event become fully
known, its occurrence and consequences can be predicted with certainty.

This opinion is usually formalized in AI and cognitive science using mathe-
matical logic [9, 26], probability theory [4, 19, 23], or a combination of the two
[11, 10]. Such a model assumes the existence of a deterministic or probabilistic
causal relation, on which the system carries out logical or statistical inference
to predict the future, or to describe the past, according to the present. In this
approach, every event has a unique “true cause”, which can be found, or at least
approximated, using causal inference.3

NARS does not treat causal inference in this way. As mentioned previously,
the basic assumption behind NARS is that an intelligent system never has full
knowledge about the environment and itself, and all the available knowledge are
revisable. For a given event, the system cannot know all of its preconditions so
as to predict its occurrence with certainty. Similarly, the system cannot accu-
rately anticipate all effects an event triggers. According to this opinion, even
the probabilistic models assume too much – to meaningfully talk about “the
probability” of an event, the presumption is that all the relevant events are in
a space on which a probability function is defined. For an AGI system working
in realistic situations, such a function can neither be obtained nor maintained,
since the system does not know all future events, nor can it always guarantee
the consistency among its degrees of belief when they are revised in real-time.

3 A new approach [23] additionally tries to get rid of certain undesired results (Berk-
son’s Paradox) of Bayesian conditioning by using “relational blocking”, but the prob-
lem of assuming “true cause” remains.
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In an AGI system, the above restrictions do not rule out the feasibility of
predicting the future and describing the past. As shown by the previous example,
NARS can learn the regularity in its experience, and use it to predict the future.
Here the relevant knowledge is represented as temporal implication judgments
like “C /⇒ U 〈f, c〉”, which is a summary of the relevant past experience, not an
accurate or approximate description of an objective “law of nature”.

The existence of objective causation is a long-lasting belief accepted by many
scientists and philosophers, but it has been challenged in the recent century both
in science (especially in physics) and in philosophy. From the point of view of
cognitive science, it can be argued that all the beliefs of a system are restricted
by the cognitive capability (nature) and past experience (nurture) of the system,
and there is no ground to assume that such a belief will converge to an objective
truth. Even so, an adaptive system can form beliefs about causation. According to
Piaget [21], such beliefs originate from the observations about the consequences
of one’s own operations. For example, if event E is repeatedly observed after
the execution of operation R, NARS will form a belief “⇑R/⇒ E 〈0.98, 0.99〉”,
which can be interpreted as “E is caused by R”. This will be the case even when
this achievement of the operation actually depends on a condition C, which is
usually (say 98% of the time) satisfied – the belief is stable and useful enough
for C to be ignored. However, when C is not usually satisfied, a belief like
“⇑R/⇒ E 〈0.49, 0.99〉” will not be as useful to the system, so in this case a more
reliable (though also more complicated) belief “(C,⇑R) /⇒ E 〈0.99, 0.95〉” will
be favored by the system as the knowledge about how to get E. Please note that
even in such a case it is hard to say what is the “true cause” for E to happen,
since accurately speaking there may be other events involved, though for the
system’s current purpose, they do not need to be taken into consideration.

This discussion is also related to the Frame Problem [16], where the issue
is: for a given operation of the system, how to represent all of its preconditions
and consequences. The solutions proposed for this problem usually deal with it
in idealized or simplified situations, while the response to it in NARS is to give
up the attempt of getting all the information. An AGI system should depend on
operations with incomplete descriptions of preconditions and consequences, and
make decisions according to the available knowledge and resources [34].

NARS uses temporal inference to carry out prediction and explanation, which
are often considered as “causal inference”, though within the system there is no
built-in “causal relation”. The system has temporal versions of implication and
equivalence relations built into its grammar and inference rules, so a “causal
relation” can be represented in the system as their variant with domain-specific
and context-dependent additional requirements. This treatment is arguably sim-
ilar to the everyday usage of “causation”. In many fields, questions of the form
of “What is the real cause of X?”, with various X, have been under debate for
decades, even centuries. The notion of cause is interpreted very differently in
different situations – it can be deterministic or probabilistic; it may correspond
to a sufficient condition or a sufficient-and-necessary condition; it may or may
not be an intentional action; and so on. However, behind all of these versions,
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the invariant components include a logical factor (from the given “causes”, the
“effects” can be derived) and a temporal factor (the “causes” happen no later
than the “effects”). NARS covers these two aspects in temporal inference, while
leaves the additional and variable aspects of causation to learning.

In this model, a causal relation and a covariant (or correlative) relation can
still be distinguished, as usually desired [4]. However here their difference is quan-
titative, not qualitative. If the judgment on “C /⇒ U” gets its truth-value solely
by induction from a small amount of evidence, the confidence of the conclusion
will be relatively low, and we tend to consider such a relation “covariant”, but
if the conclusion can also be established by a chain of deduction, such as from
“C /⇒M” and “M /⇒ U” where M is another event, then the relation between
C and U may be considered as “casual”, because it has an explanation leading to
a high confidence. As far as prediction is concerned, what matters is the truth-
value of the conclusion, not how they are derived. For instance, in Pavlovian
conditioning the actual relation between CS and US is often coincidental, not
causal, though animals in such experiments cannot tell the difference.

For a given event E, NARS can be asked to find its “cause” and “effect”.
The simplest form is to ask the system to instantiate the query variable ?x when
answering questions “?x /⇒ E” and “E /⇒?x”, respectively. When there are
multiple candidate answers, a choice rule will be invoked to compare their truth-
value, simplicity, relevance, etc., to pick the best answer. Additional requirements
can be provided for the term or the statement that can be accepted as an answer.
In general, NARS does not assume that such a question has a unique correct or
final answer, but always reports the best answer it can find using the available
knowledge and resources. Therefore, though the design of NARS does not include
an innate causal relation, the system has the potential to predict, or even to
control, the occurrence of an event. This is arguably what we should expect
from an AGI.

4 Conclusions

Temporal inference plays a crucial role in AGI. An intelligent system needs the
ability to learn the preconditions and consequences of each operation, to organize
them into feasible plans or skills to reach complicated goals, and to find stable
patterns among the events in its experience. This ability enables the system to
predict the future, and to prepare sequences of operations to achieve its goals.
Classical conditioning can be seen as a concrete case of this ability.

The approach of temporal inference in NARS allows temporal information to
be expressed in several forms for different purposes. Some temporal notions are
innate, while others are acquired, and they can be at different levels of granularity
and accuracy. NARS integrates temporal inference with other inference, and
utilizes a uniform memory for declarative, episodic, and procedural knowledge.

NARS carries out many cognitive functions, like prediction, that are usually
associated with “causal inference”. However there is no fixed notion of a “causal
relation” within the system. NARS is based on the assumption that an accurate
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description of the universe with objective causal relations among the events may
not be available to, or manageable by, the system, which makes NARS applicable
to situations where many other models cannot be applied. Instead of trying to
find or to approximate certain objective causal relations, what an intelligent
system should do is to behave according to the regularity and invariance that it
has summarized from its experience, and the generation, revision, and evaluation
of such knowledge is a lifelong task.

All the aspects of NARS described in this paper have been implemented
in the most recent version of the system. Currently the system, which is open
source, is under testing and tuning. As an AGI system, NARS is not designed
for any specific application, but as a testbed for a new theory about intelli-
gence. Though the current implementation already shows many interesting and
human-like properties, there are still many issues to be explored. This paper only
addresses the aspects of NARS that are directly related to temporal inference.
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