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Abstract. Cyber-Physical Systems have many components including physical
ones with heavy demands on workflow management; a real-time problem. Fur-
thermore, the complexity of the system involves some degree of stochasticity, due
to interactions with the environment. We argue that the factored version of the
event-learning framework (ELF) being able to exploit robust controllers (RCs)
can meet the requirements. We discuss the factored ELF (fELF) as the interplay
between episodic and procedural memories, two key components of AGI. Our
illustration concerns a fELF with RCs and is a mockup of an explosive device re-
moval task. We argue that (i) the fELF limits the exponent of the state space and
provides solutions in polynomial time, (ii) RCs decrease the number of variables
and thus decrease the said exponent further, while the solution stays ε-optimal,
(iii) solutions can be checked/verified by the execution being linear in the number
of states visited, and (iv) communication can be restricted to instructions between
subcomponents of an AGI system.

1 Introduction

Cyber-physical systems (CPSs) are in the forefront of algorithmic, software, and hard-
ware developments. They are goal oriented. In the typical setting they are distributed,
have physical components, and can include e.g., sensory, computational and robotic
units. Given their complexity, testing may become the bottleneck, especially for safety-
and time-critical applications. In case of any unexpected event or anomaly in the be-
havior, fast workflow management may become a necessity and might involve changes
of the plan and thus communication of new subtasks, new roles, and new methods of
communication, among other things. We say that a simple instruction or a more com-
plex subtask make sense in a given context, if the responsible actors can execute them
given the information provided. Successful completion of an instruction or a subtask
verifies a portion of a larger plan. The larger the plan and the more complex the system,
the more serious anomalies may occur. In turn, stochastic formulation is required.

We shall put forth the factored event-learning framework (fELF), a special form of
reinforcement learning (RL), that has polynomial time learning characteristics and the
maximal number of concurrent and dependent factors limits the exponent of the state
space (Sect. 2). We illustrate fELF via a toy mockup explosive device (ED) removal task
(Sect. 3). Up to the number of variables, the solution is ‘hard to find’. In the discussion
section (Sect. 4) we will argue that this problem is ‘easy to verify’ by following the
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steps in time as prescribed by the solution. Such solutions are worth to communicate.
We conjecture that IQ tests are of similar nature. Conclusions will be drawn in Sect. 5.

2 Theoretical background

We propose the MDP framework for CPSs. We utilize the generalized MDP (gMDP)
formulation. Its ε-gMDP extension concerns ε-precise quantities and can exploit robust
controllers if they meet the ε-precise condition. We review the event-learning frame-
work (ELF) [8, 16] that breaks tasks into subtasks, can admit ε-precise robust controllers
and can hide some of the variables. An ELF extended with robust controllers is an ε-
gMDP. The factored formulation of MDP gives rise to polynomial time optimization.
Taken together, a factored generalized ELF with a robust controller is an ε-gMDP with
polynomial time optimization. Execution requires the communication of instructions to
the subcomponents making verification linear in time for deterministic systems.

2.1 Markov decision processes

A (finite) MDP [10] is defined by the tuple 〈X,A,R, P 〉. X and A denote the finite set
of states and actions, respectively. P : X×A×X → [0, 1] is the transition function, the
probability of arriving at state y after executing action a in state x.R : X×A×X → R
is the reward function: R(x, a, y) is the immediate reward for transition (x, a, y).

Decision making aims at finding the optimal behavior subject to some optimality
criterion, e.g., to infinite-horizon expected discounted total reward, when we want to
find a policy π : X × A → [0, 1] that maximizes the expected value of

∑∞
t=0 γ

trt,
where rt is the immediate reward in time step t and 0 ≤ γ < 1 is the discount factor.

A standard way to find an optimal policy is to estimate the optimal value function
V ∗ : X → R, which gives the value (the expected cumulated discounted reward with
the given starting state) of each state. From this, the optimal policy is the ‘greedy’ policy
with respect to the optimal value function, i.e., the following Bellman equation:

V ∗(x) = max
a

∑
y

P (x, a, y) (R(x, a, y) + γV ∗(y)) , for all x ∈ X. (1)

2.2 Generalized MDP (gMDP) and ε-gMDPs

Operations
∑
y P (x, a, y) . . . and maxa ... can be extended, e.g., with risk considera-

tions. Joint formalism for the different Bellman equiations has been constructed in [13]:
a generalized MDP is defined by the tuple 〈X,A,R,

⊕
,
⊗
〉, where X, A, R are defined

as above;
⊕

: (X ×A×X → R)→ (X ×A→ R) is an ‘expected value-type’ oper-
ator and

⊗
: (X × A→ R)→ (X → R) is a ‘maximization-type’ operator. We want

to find the value function V ∗, where

V ∗(x) =
⊗⊕

(R(x, a, y) + γV ∗(y)), for all x ∈ X.

or in short form V ∗ =
⊗⊕

(R+ γV ∗). The optimal value function can be interpreted
as the total reward received by an agent behaving optimally in a non-deterministic en-
vironment. The operator

⊕
describes the effect of the environment. The operator

⊗
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describes the action-selection of an optimal agent. When 0 ≤ γ < 1, and both
⊕

and⊗
are non-expansions, the optimal solution V ∗ of the equations exists and it is unique.
Generalized ε-MDP (ε-gMDP) assumes a prescribed ε > 0 and is defined by the

tuple 〈X,A,R, {
⊕

t}, {
⊗

t}〉, with
⊕

t : (X × A ×X → R) → (X × A → R) and⊗
t : (X × A → R) → (X → R), t = 1, 2, 3, . . ., if there exists a generalized MDP

〈X,A,R,
⊕
,
⊗
〉 such that lim supt→∞ ‖

⊗
t

⊕
t −
⊗⊕

‖ ≤ ε. ε-MDPs have been
first introduced in [7].

2.3 The event-learning framework (ELF)

Event learning turns the MDP into a hierarchical problem via the event-value function
E : X × X → R [16]. Pairs of states (x, y) and (x, yd) are called events and desired
events, respectively: for a given initial state x, yd denotes the desired next state. The
formalism remains the same, but any event can be seen as an MDP subtask: the ed =
(x, yd) state sequence can be a subtask to be optimized. E(x, yd) is the value of trying
to get from actual state x to next state yd. Note that state y reached could differ from
desired state yd.

2.4 Robust controller

Assume that a state space X and a velocity field vd : X → Ẋ are given. At time t, the
system is in state xt with velocity vt. We are looking for a control action that modifies
the actual velocity to vd(xt) with maximum probability:

ut(xt, v
d
t ) = Φ(xt, v

d
t ),

Φ(xt, v
d
t ) is called the inverse dynamics and it can be approximated. Under certain con-

ditions, one can bound the tracking error to the desired level (see [16] and the references
therein).

If time is discrete, like here, then prescribing the desired velocity vd is equivalent to
prescribing the desired successor state yd. The controller can be directly inserted into
an ELF by setting πAt (xt, y

d
t , a) = 1 if a = ut(xt, y

d
t ) and 0 otherwise (Fig. 1).

2.5 Event-learning with robust controller belongs to the ε-gMDP family

In the generalized ε-MDP, X denotes the set of states and the action corresponds
to selecting a new desired state; the set of actions A is also equal to X . Re-
ward function R is R(x, yd, y) and it gives the reward for arriving at y from
x, when the desired state was yd. Now, (

⊗
tE)(x) = maxyd E(x, yd), indepen-

dently of t, and (
⊕

tE)(x, yd) =
∑
y pt(y|x, yd)E(x, yd, y), where pt(y|x, yd) =∑

u π
A
t (x, y

d, u)P (x, u, y). Finally, we define the operators
⊕

and
⊗

as (
⊗
E)(x) =

maxyd E(x, yd) and (
⊕
E)(x, yd) =

∑
y

∑
u π

A(x, yd, u)P (x, u, y)E(x, yd, y). In
turn, if robust controllers are introduced into an ELF, then we still have an ε-gMDP
problem with errors that can be bounded.
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Fig. 1: MDP models. (a): MDP, (b): One step. Input: index of the action, output: expe-
rienced next state, (c): ELF, (d): One step. Input: desired output and the output can be
the ε-precise version of the desired output.

2.6 Factored Markov Decision Processes (fMDPs)

In CPS, naı̈ve tabular representation of the transition probabilities requires a state space
exponential in the number of variables. However, ongoing processes typically exclude
other ones and a much smaller number of variables may be sufficient at any given time
instant. Let X be the Cartesian product of m smaller state spaces (corresponding to
individual variables), i.e., X = X1 ×X2 × . . .×Xm. Each Xi has size |Xi| = ni and
the size of the state space is N = |X| =

∏m
i=1 ni.

In this case, the next-step value of a state variable depends only on a few other
variables, so the full transition probability can be obtained as the product of several
simpler factors. Formally, for any subset of variable indices Z ⊆ {1, 2, . . . ,m}, X[Z]
denotes ×

i∈Z
Xi and for any x ∈ X, x[Z] denotes the value of the variables with indices

in Z. Below, we shall use the shorthand x for the sake of simplicity. FMDPs were first
introduced in [3].

2.7 Polynomial time learning

An fMDP with a factored optimistic initialization model (fOIM) – defined below – has a
polynomial per-step computational complexity. FOIM gets ε-close to the value function
of factored value iteration (which could be suboptimal) in polynomial time [15]:

Theorem 1 (fOIM) Suppose that an agent is following factored value iteration in an
unknown fMDP, where all reward components fall into the interval [0, Rmax], there are
m state factors, and all probability- and reward-factors depend on at most mf factors.
Let E×(xt,ydt ) denote the value function of the approximate value iteration exploiting
function approximations. Let Nf = nmf and let ε > 0 and δ > 0. If we set

RE = c · mR
2
max

(1−γ)4ε

[
log

mNf |A|
(1−γ)εδ

]
,
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as the initial values of the MDP, then the number of time steps when the agent makes
non-near-optimal moves, i.e., when E fOIM(xt,y

d
t ) < E×(xt,y

d
t )− ε , is bounded by

O
(
R2

maxm
4Nf |A|

ε4(1−γ)4 log3 1
δ log

2 mNf |A|
ε

)
with probability at least 1− δ.

3 Illustrative experiment and the CPS connection

For the sake of a fELF illustration we show an experiment with a WheelPhone (WP)
and with a Lego NXT, both equipped with Android phones, image processing, QR
code reading (not detailed here), and work sharing on a mockup explosive device (ED)
removal task. This illustration gives us the opportunity to explain the concept of events,
event hierarchy, desired states, episodes, robust controllers and procedures, cost and
risk sensitive decision making, meta-level communication and finally, the problem of
verification.

The illustration is by no means at the level of true cyber-physical systems, although
it is a high-risk analogue of a smart factory shop-floor task [11] and has the relevant
issues, such as work sharing, path planning, and execution time. The goal of the robots
is to find explosive devices and transport them to a given safe location. The terrain
contains several obstacles, which may be pushed aside to give way to the ED-carrying
robot – but this takes time. Robots used the fELF method for decision making.

The two robots have different capabilities, their control precisions also differ and
they share the work. One robot has chances to remove the ED, the other can clear
the terrain. We used different number of obstacles and starting points and estimated
the distributions of the execution times of the subtasks and their success rates. Each
subtask is a desired event given by the actual state and the desired state of the event
may become the experienced state later. Desired states include: ‘ED found’, ‘obsta-
cles found’, ‘path planned’, ‘first obstacle probably cleared’, ‘ED collected’, ‘terrain
cleared’, ‘track is left’, ‘ED removed’, among a few others. Some tasks are concurrent.
The low-complexity RL task in [14] is similar and thus direct policy optimization is
also possible, in case if the Markov property is questionable. FMDP description is like
in [6]: transitions are limited to the possible ones.

Explosion time has a distribution. The fELF makes decisions at discrete time steps
according to the time elapsed, the subtasks executed, the ongoing subtasks, and the
time-discretized distributions.

3.1 Results

According to the results (Fig. 3), there are three typical groups in the time variable:
execution time is shorter than 2 min, it is longer than 2 min 20 sec and it is between
these two values. We used these values for the discretization of the execution time.

The size of the state space in the fMDP depends on the number of factored variables
at decision points. This number can be decreased if controllers are precise. For example,
the NXT robot is sufficiently precise and direction uncertainties are neglected. NXT can
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Fig. 2: Experimental arrangement with subtasks. Some of them, including subfigure (d),
can be concurrent.

Fig. 3: Examples for estimating distributions. Green S: success. Red F: failure. For start
positions, see Fig. 2(a). Failures in order: obstacle 1 is not cleared away, NXT-WP
crashed, obstacles 3 and 4 are not cleared away.

clear away obstacles with certain probabilities, but it remains uncertain if it succeeded
to move an obstacle out of the way of the WP robot or not. The motion of the WP
robot is straight, but its direction is somewhat imprecise. We left it like this and that
made uncertain the success of each obstacle clear-away subtask. Uncertainties measured
experimentally and the computed direction uncertainties are used in decision making.
The number of obstacles is randomly chosen from 2, 3 and 4 and are placed quasi-
randomly over the terrain.

3.2 Outlook to general Cyber-Physical Systems

Components of a real CPS task are similar to a large extent. Tools, computers, robots
— that take part in the task hierarchy — all have capabilities that can be character-
ized by the complexity of the subtasks they can execute, the belonging success rates,
and execution time distribution, for example. Subtasks may be sequential or concurrent
according to causal relationships and urgency. Spatio-temporal dependencies of the pro-
cesses in a complex CPS constrain possible state–desired state pairs of fMDP events.
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Depending on the type of the ask, e.g., if it is a smart factory, or an emergency situa-
tion [9], stochastic environmental disturbances may occur with different probabilities
and they may require frequent real-time workflow management. Decision making about
the changes of the workflow may not take considerable time even for complex systems
and the lowering of the number of variables is highly desired due to the exponential
dependence of the state space on those. This is a crucial problem and robust controllers
can help in saving time, since such controllers support module construction that may
span longer time intervals. For example, the controller of the NXT is more precise than
that of the WP and the number of states that may occur and the required frequency of
decision making is smaller for the NXT robot than for the WP one. Note that control
precision could be increased for the WP robot using its high quality camera. The image
processing, however, may increase energy consumption, the need for recharging, and
thus the execution time. Plans and workflow management depend on the actual ED and
the related risk and cost considerations.

4 Discussion: the problem of verification

In the ED removal problem we used higher order concepts (factors) for decision mak-
ing. Such concepts include ‘explosive’, ‘device’, ‘time’, and alike, instead of raw visual,
acoustic, and motor information. Furthermore, we could neglect some of these factors
in the description of the situation if those factors were not relevant at that time of de-
cision making. Such simplifications suit factored RL. The problem of forming higher
order concepts — that fits the task to be solved and decreases the state space of decision
making — falls outside of our considerations.

Problem solving is combinatorial in terms of the selection of the relevant factors,
the order of actions to be executed, and the selection of the agent that should execute
the action. If a decision is made then it should be communicated to the partners and they
must make sense of the messages by verifying that the attempt towards the execution of
the sub-task is feasible. This procedure of making sense is typical: intelligence proves
the solution by means of verification. In general, intelligent verification is a pro-active
mental step that exploits an approximate an sufficiently detailed model of the world.
Evolution also verifies, but in a different way: evolution finds solutions by their success
rates and without any mental model. We take a closer look to the issue of verification
below. We note that model based verification is not part of our illustration, but the
mockup itself or its computer model can serve as tools for such verification.

4.1 Verification in the context of intelligence

There are at least three types of knowledge transfer:

Supervised training concerns the agreement about concepts (or categories) and can
serve meta-level communication after the training phase.

Observations are important pieces for decision making. However, the world is typ-
ically partially observed and distributed observation by many agents can help in
solving the problems in due course, e.g., in the case of danger. This knowledge
transfer happens at the meta level.
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Solutions to problems include concept forming, procedures, tricks, quizzes, mathe-
matical proofs that exploit the formed concepts, among other things. Many of these
procedures (problems) are hard to find (solve), but the verification of the solution
can be easy.

Out of the ten broad abilities underpinning the g factor of intelligence [4], only fluid
intelligence is connected to the third item, i.e., to concept forming, solving problems,
and reasoning abilities. The other nine features of intelligence include reading and writ-
ing abilities, quantitative reasoning abilities, speed of decision making and alike. They
are of high importance, but we believe that — from point of view of AGI and cyber-
physical systems — they are either solved or can be solved by available technologies
since efficient algorithms can reach superhuman performance if sufficiently large train-
ing samples are made available to them [12].

Fluid intelligence seems to differ: it shows up in two steps. One step is concept for-
mation and the other one is solving the problem by means of those new concepts. These
two processes are interlinked. The solution can be checked by means of verification
using the formed concepts. One may say that if concept formation and problem solving
are the core problems of general intelligence then model based verification is the tool
for the appreciation of the solution.

4.2 ‘Verification’ is the goal of intelligent communication

There are four categories according to the complexity of solving problems and the com-
plexity of the verification of the solution since both can be ‘hard’, or ‘easy’. Tasks can
be hard or easy if they scale exponentially or polynomially with the number of variables,
respectively. Out of the four cases, problems belonging to the hard to solve, but easy
to verify category are particularly worth to communicate. Such solutions can provide
large savings in time and efforts for teammates.

4.3 Interplay between procedural and episodic memories

Our example has both procedural and episodic components. Any event is an episode
and it can be saved in episodic memory for data mining, anomaly detection, model
construction, and for learning to predict and control the event. The method of dealing
with an ongoing event is the procedure. It is made of actions and sub-events. The ‘ED
removal story’ is an ‘ED removal event’ brought off by the ‘ED removal procedure’.
This event may be concurrent with other events and it is probably embedded into a larger
one. The event, as described here is independent from the other ongoing concurrent
events, which in principle, could disturb it. However, such disturbance is also an event
and it is limited in space and time. New concepts, new sensors and additional control
tools can be introduced to overcome disturbances of the events provided that the details
of the event are knowable, time is available and if the related costs and savings justify
the effort.

From the point of view of a larger system, ‘ED removal’ could be one of its capabil-
ities. Capabilities, i.e., the number of different events that can be invoked by the agent,
correspond to desired states in a fELF and they make the variables of decision making.
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The number of events that can be invoked in a given state enters exponent of state space.
The size of the state space can be decreased by learning and optimizing new capabilities
made of smaller ones. The number of variables can be decreased by introducing robust
controllers. For example, the measurement of the weight of the load can be neglected
by adding a robust controller to increase the range of the capability, see. e.g. the exam-
ple presented in [16]. Communication towards the decision making unit can be limited
to the experienced state after execution of a sub-task and to an instruction towards the
unit that has the capability to execute the next step. Such instruction contains the de-
sired state and possibly (some of) the steps towards the desired state, i.e., (part of) the
‘solution’ .

In turn, a fELF with robust controllers efficiently decreases both the number of
variables and the data to be communicated. From the point of view of verification,
deterministic solutions are easy to verify if a model of the environment is available.
For stochastic problems, stochasticity indicates limited knowledge about a knowable
universe and may call for further exploration and learning. If more knowledge cannot
be acquired in due course or if the collection of such information is costly, then solutions
and verifications may require high costs since risks can be overestimated. Model based
experimental methods of risk estimation are in the focus of ongoing research [1].

5 Conclusions

We have used an illustrative CPS mockup experiment in the factored event learning
framework (fELF). The problem involved recognition, planning, decision making, work
sharing, and risk estimation. We included distributions of execution times and success
rates either via computational estimations or by measuring those experimentally.

We have argued that a fELF with a robust controller decreases combinatorial explo-
sion. From the point of view of deterministic CPS problems, verification is polynomial
in the number of states [2]. If we can afford non-tight bounds and additional resources,
then experimental verification can be fast, if a model of the environment is available
[1].

It has been noted that the problem of verification is alleviated by subtask construc-
tion provided that the subtasks can be executed with high fidelity. Robust controllers
suit such demands and can save task execution even in the case of environmental dis-
turbances. Any subtask can be viewed as a fELF problem and as such, it can be the
subject of optimization. In the same vein, optimized fELF solutions can be embedded
into larger tasks. In turn, fELF makes a partially ordered hierarchical RL in a natural
fashion.

We note that time critical cyber-physical systems require easy to verify solutions.
Such solutions are of high importance for interacting intelligences, since they offer com-
binatorial gains for teammates. Furthermore, communication can be limited to meta-
level instructions about the states to be reached and meta-level information about the
states that have been reached upon the execution of the instructions. CPS verification
assumes approximately non-interacting sub-events that can run concurrently or may
follow each other.
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We conclude that CPS tasks concern fluid intelligence and — for large distributed
systems — model based real-time verification is required and the time of verification
is critical. Finding and learning potentially concurrent, but barely interacting, i.e., inde-
pendently and robustly executable sub-tasks derived from the task space itself offer both
exponential gains in the state space and flexibility in multi-tasking. Evolution demon-
strates the feasibility of such constructs [5] and engineered solutions may follow similar
routes. However, from the point of view of artificial general intelligence this is an un-
solved problem. This problem is closely related to task oriented episodic and procedural
memories and it deserves further investigations.
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