Towards Flexible Task Environments for Comprehensive Evaluation of Artificial Intelligent Systems & Automatic Learners

Kristinn R. Thórisson
Associate Professor, School of Computer Science, Reykjavik University, Iceland
Co-Founder, Center for Analysis and Design of Intelligent Agents, Reykjavik U.
Founder & Managing Director, Icelandic Institute for Intelligent Machines, Reykjavik, Iceland

Jordi Bieger, Stephan Schiffel & Deon Garrett
Outline

• Back Story (motivation)
• Identified Issues (problem dissection)
• Derived Requirements (contribution I)
• Draft of a Solution (contribution II)
• Remaining Issues (conclusion)
Back Story

We had implemented a reinforcement learning algorithm with new ideas for handling continuous input & output

• RL X - *old version*
• RL X’ - *RL X + continuous data I/O mod*
Back Story

We asked the questions:

- Which is better, this particular implementation of reinforcement learner X, or our modified (supposedly enhanced) version of X’?

- Can X’ even replicate X?
Back Story

We had:

• Old performance data for X on task T1
• No verification of X’
• No current setup to run T1
• Scarce documentation for T1
Back Story

- Old performance data for X on task T1
- No verification of X’
- Improper documentation for T1
- T1 was a major effort to set up, but provided valuable data about X
- X’ had features not tested by T1
Back Story

The Conundrum: Should we …

• reconstruct T1 and re-run it for both X and X’?
• construct a new test T2 and run for only X’, then compare to old T1 data?
 • If we created a task T2, how would we compare it to T1?
• construct a new task T2 that subsumed T1, run for both X and X’?
 • How would we know that T2 properly subsumed T1?
Back Story

The answer: None of the above

• We did something else…
Unanswered Questions

- Lots of performance data already available for various learners, on various tasks
- Problem: tasks vary widely
- How do you compare performance of algo X on task A to performance of algo Y on task B?
Unanswered Questions

Pole Balancing Task

“Mountain Car” Task

“Diving for Gold” Task

G: +1

-1
Unanswered Questions

- Lots of tasks already proposed
- Problem: applicable to only a (small) set of targeted learners
- How do you expand a task to become more complex, or with some new features, in a predictable way?
Unaddressed Problems

- Tasks for simple learners (e.g. RL) generally not applicable to AGI-aspiring systems...

- ...and vice versa
Unaddressed Problems

• Turing Test

vs

• PacMan
Unaddressed Problems

• Turing Test

vs

• Lovelace Test
• Pong

• PacMan
Unaddressed Problems

- Turing Test
- Pong

vs

- Lovelace Test
- PacMan
Unaddressed Problems

- Turing Test
- Lovelace Test
- Pong
- PacMan
Unaddressed Problems

- Turing Test
- Pong
- Lovelace Test
- PacMan
Unaddressed Needs

- Lack of methods for evaluating:
 - Learning Capacity
 - speed, amount, generality
 - Lifelong Learning (and forgetting)
 - Transfer Learning
 - Cognitive Development
What is needed:

A framework for constructing transparent tasks
Why Evaluate AI Systems?

• Assess research progress
• Evaluate strengths/weaknesses
• Compare systems and approaches
Goals

• To develop a framework for constructing transparent task-environments, offering:
 • easy construction of abstract task-environments and variants
 • automated generation
 • easy analysis of features of interest
Goals

• What features should task-environments constructed in this framework have?
Desired Features of Framework

- Determinism: Complete (100% repeatability) to partial (or zero)
- Periodicity: support of temporal patterns
- Controllable Continuity: Discretization should be flexibly determinable
Desired Features of Framework

- Asynchronicity: events at arbitrary time-scales
- Dynamism: controllable from highly dynamic to completely static
- Observability: controllable to achieve certain characteristics of tasks with partially-observable variables
Desired Features of Framework

• **Controllability:** the amount of control a learner has on the task-environment should be tunable

• **Multiple Parallel Causal Chains:** for systems entertaining multiple simultaneous goals, MPCCs create distractors, noise, long event chains, etc.

• **Number of Agents:** support of multiple (intelligent) agents with causal effects
Proposed Solution: Early Draft

• Describe the task-environment by a set of time-dependent variables and their relations

• Causal chains constructed via numerous serially related variables

• Nature of relations determines nature of tasks in predicable ways, e.g. increased control complexity through temporal latencies
Proposed Solution: Early Draft

- Example task shown as a diagram
Proposed Solution: Early Draft

1. Initialization:
2. \(gx = 3 \) // goal x
3. \(gy = 3 \) // goal y
4. \(ax = 4 \) // agent x
5. \(ay = 10 \) // agent y
6. Dynamics:
7. \(dx(t) = 0 \) // step x
8. \(dy(t) = 0 \) // step y
9. \(ax(t) = ax(t-dt) + dx(t) \)
10. \(ay(t) = ay(t-dt) + dy(t) \)
11. \(at(t) = ax(t) == gx(t) && ay(t) == gy(t) \)
12. \(\text{reward}(t) = 10 \text{ if } at(t) \text{ else } -1 \)
13. Terminals:
14. \(\text{reward}(t) > 0 \)
15. Rewards:
16. \(\text{reward}(t) \)
17. Observations:
18. \(ax(t), ay(t), gx(t), gy(t) \)
19. Controls:
20. \(dx(t) = [-1, 0, 1] \)
21. \(dy(t) = [-1, 0, 1] \)

- Same task shown in program form
Proposed Solution: Early Draft

1. **Initialization:**
2. \(gx = 3 \) // goal x
3. \(gy = 3 \) // goal y
4. \(ax = 4 \) // agent x
5. \(ay = 10 \) // agent y
6. **Dynamics:**
7. \(dx(t) = 0 \) // step x
8. \(dy(t) = 0 \) // step y
9. \(ax(t) = ax(t-dt) + dx(t) \)
10. \(ay(t) = ay(t-dt) + dy(t) \)
11. \(at(t) = ax(t) == gx(t) && ay(t) == gy(t) \)
12. \(reward(t) = 10 \) if \(at(t) \) else \(-1\)
13. **Terminals:**
14. \(reward(t) > 0 \)
15. **Rewards:**
16. \(reward(t) \)
17. **Observations:**
18. \(ax(t), ay(t), gx(t), gy(t) \)
19. **Controls:**
20. \(dx(t) = [-1, 0, 1] \)
21. \(dy(t) = [-1, 0, 1] \)

- This is a simple task that is discrete, fully observable, and static
Proposed Solution: Early Draft

1. Initialization:
2. \(gx = 3 \) // goal x
3. \(gy = 3 \) // goal y
4. \(ax = 4 \) // agent x
5. \(ay = 10 \) // agent y
6. Dynamics:
7. \(dx(t) = 0 \) // step x
8. \(dy(t) = 0 \) // step y
9. \(ax(t) = ax(t-dt) + dx(t) \)
10. \(ay(t) = ay(t-dt) + dy(t) \)
11. \(at(t) = ax(t) == gx(t) && ay(t) == gy(t) \)
12. \(reward(t) = 10 \) if \(at(t) \) else \(-1\)
7. \(dx(t) = dt \ast \cos(\text{angle}(t)) \)
8. \(dy(t) = dt \ast \sin(\text{angle}(t)) \)
11. \(reward(t) = 10 \) if \((ax(t)-gx(t))^2 + (ay(t)-gy(t))^2 < 1 \) else \(-1\)
17. Observations:
18. \(ax(t), ay(t) \)
19. Controls:
20. \(dx(t) = [-1, \)
21. \(dy(t) = [-1, \)

- To make it more continuous we can e.g. add a float representing angle
Proposed Solution: Early Draft

1. Initialization:
2. \(gx = 3 \) \hspace{1em} // \hspace{1em} \text{goal x} \\
3. \(gy = 3 \) \hspace{1em} // \hspace{1em} \text{goal y} \\
4. \(ax = 4 \) \hspace{1em} // \hspace{1em} \text{agent x} \\
5. \(ay = 10 \) \hspace{1em} // \hspace{1em} \text{agent y} \\
6. Dynamics:
7. \(dx(t) = 0 \) \hspace{1em} // \hspace{1em} \text{step x} \\
8. \(dy(t) = 0 \) \hspace{1em} // \hspace{1em} \text{step y} \\
9. \(ax(t) = ax(t-dt) + dx(t) \) \\
10. \(ay(t) = ay(t-dt) + dy(t) \) \\
11. \(at(t) = ax(t) == gx(t) \&\& \\
\hspace{1em} ay(t) == gy(t) \) \\
12. \(\text{reward(t) = 10 if at(t) else -1} \) \\

17. \(ax(t-dt), ay(t-dt) \) \\
18. \(gx, gy @ [1:2:] \) \\

- To make it harder we can e.g. decrease observability

16. \(\text{reward(t)} \) \\
17. \(\text{Observations:} \) \\
18. \(ax(t), ay(t), gx(t), gy(t) \) \\
19. \(\text{Controls:} \) \\
20. \(dx(t) = [-1, 0, 1] \) \\
21. \(dy(t) = [-1, 0, 1] \)
Does This Approach Scale?

- Can this seemingly simplistic approach help us with evaluating AGI-aspiring systems?
- We think so. For instance:
 - Larger-size tasks: Because of its simplicity automated construction should not be possible
 - Given a high-level spec for desired constraints, worst-case scenario: desired properties reached by brute-force
Remaing Work

- Developing good measurements of task-environment complexity
- Developing good measurements of task-environment difficulty (given initial & goal states)
 - Will depend in part on identification and classification of larger task-environment patterns than we have looked at so far