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Abstract. General reinforcement learning is a powerful framework for
artificial intelligence that has seen much theoretical progress since in-
troduced fifteen years ago. We have previously provided guarantees for
cases with finitely many possible environments. Though the results are
the best possible in general, a linear dependence on the size of the hy-
pothesis class renders them impractical. However, we dramatically im-
proved on these by introducing the concept of environments generated
by combining laws. The bounds are then linear in the number of laws
needed to generate the environment class. This number is identified as a
natural complexity measure for classes of environments. The individual
law might only predict some feature (factorization) and only in some
contexts (localization). We here extend previous deterministic results to
the important stochastic setting.
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1 Introduction

General reinforcement learning [2, 3, 12] is a theoretical foundation for artificial
intelligence that has now been developed over the last fifteen years. A recent
line of work starting with [8, 9] has studied finite classes of completely general
environments and primarily optimistic agents that can be proven to eventually
achieve optimality regardless of which environment turns out to be true. [8] pre-
sented finite-error bounds for the deterministic case and asymptotic guarantees
for stochastic environments while [5] proved near-optimal sample complexity
bounds for the latter stochastic case.

The bounds given in [8] have a linear dependence on the number of environ-
ments in the class. While this rate is easily seen to be the best one can have
in general [5], it is exponentially worse than what we are used to from Markov
Decision Processes (MDPs) [4] where the linear (up to logarithms) dependence
is on the size of the state space instead. In [10] we introduced the concept of
deterministic laws that predict some but not all features (factorization) and only
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in some contexts (localization), and environments generated by sets of such laws.
We presented bounds that are linear in the number of laws instead of the number
of environments. All deterministic environment classes are trivially generated by
sets of laws that equal the environments but some can also be generated by
exponentially fewer laws than there are environments.

We here expand the formal analysis of optimistic agents with hypothesis
classes based on laws, from the deterministic to the stochastic case and we further
consider fruitful combinations of those two basic cases.

Outline. Section 2 provides background on general reinforcement learning agents.
Section 3 introduces the concept of environments generated by laws and extends
previous concepts and results from the determinstic to the stochastic case as
well as to the mixed setting. Section 4 concludes.

2 Background

We begin by introducing general reinforcement learning as well as the agent
framework.

2.1 General reinforcement learning

We will consider an agent [6, 2] that interacts with an environment through
performing actions at from a finite set A and receives observations ot from a
finite set O and rewards rt from a finite set R ⊂ [0, 1] resulting in a history ht :=
a0o1r1a1, ..., otrt. These sets can be allowed to depend on time or context but we
do not write this out explicitly. Let H := {ε}∪(A×∪n(O×R×A)n×(O×R)) be
the set of histories where ε is the empty history and A×(O×R×A)0×(O×R) :=
A×O×R . A function ν : H×A → O×R is called a deterministic environment.
A function π : H → A is called a (deterministic) policy or an agent. We define
the value function V based on geometric discounting by V πν (ht−1) =

∑∞
i=t γ

i−tri
where the sequence ri are the rewards achieved by following π from time step t
onwards in the environment ν after having seen ht−1.

Instead of viewing the environment as a function H × A → O × R we can
equivalently write it as a function H × A × O × R → {0, 1} where we write
ν(o, r|h, a) for the function value. It equals zero if in the first formulation (h, a)
is not sent to (o, r) and 1 if it is. In the case of stochastic environments we
instead have a function ν : H×A×O×R → [0, 1] such that

∑
o,r ν(o, r|h, a) =

1 ∀h, a. The deterministic environments are then just a degenerate special case.
Furthermore, we define ν(ht|π) := Πt

i=1ν(oiri|ai, hi−1) where ai = π(hi−1).
ν(·|π) is a probability measure over strings, actually one measure for each string
length with the corresponding power set as the σ-algebra. We define ν(·|π, ht−1)
by conditioning ν(·|π) on ht−1 and we let V πν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri :=

limj→∞ Eν(·|π,ht−1)

∑j
i=t γ

i−tri and V ∗ν (ht−1) := maxπ V
π
ν (ht−1).

Examples of agents: AIXI and Optimist. Suppose we are given a countable
class of environments M and strictly positive prior weights wν for all ν ∈ M.
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We define the a priori environment ξ by letting ξ(·) =
∑
wνν(·) and the AIXI

agent is defined by following the policy

π∗ := arg max
π

V πξ (ε) (1)

which is its general form. Sometimes AIXI refers to the case of a certain universal
class and a Solomonoff style prior [2]. The above agent, and only agents of that
form, satisfies the strict rationality axioms presented first in [7] while the slightly
looser version we presented in [9] enables optimism. The optimist chooses its next
action based on

π◦ := arg max
π

max
ξ∈Ξ

V πξ (2)

for a set of environments (beliefs) Ξ which we in the rest of the article will
assume to be finite, though results can be extended further [11]. We will rely on
an agent framework presented in [11].

2.2 Agents based on decision functions and hypothesis generating
functions

The primary component of our agent framework is a decision function f : M→ A
where M is the class of all finite sets M of environments. The function value
only depends on the class of environmentsM that is the argument. The decision
function is independent of the history, however, the class M fed to the decision
function introduces an indirect dependence. For example, the environments at
time t+1 can be the environments at time t, conditioned on the new observation.
We are here primarily using optimistic decision functions.

Definition 1 (Optimistic decision function). We call a decision function f
optimistic if f(M) = π(ε) for an optimistic policy π, i.e. for

π ∈ arg max
π̃

max
ν∈M

V π̃ν . (3)

Given a decision function, what remains to create a complete agent is a
hypothesis-generating function G(h) = M that for any history h ∈ H pro-
duces a set of environments M. A special form of hypothesis-generating func-
tion is defined by combining the initial class G(ε) =M0 with an update function
ψ(Mt−1, ht) = Mt. An agent is defined from a hypothesis-generating function
G and a decision function f by choosing action a = f(G(h)) after seeing history
h.

3 Environments defined by laws

We consider observations of the form of a feature vector o = x = (xj)
m
j=1 ∈ O =

×mj=1Oj including the reward as one coefficient where xj is an element of some
finite alphabet Oj . Let O⊥ = ×mj=1(Oj ∪ {⊥}), i.e. O⊥ consists of the feature
vectors from O but where some elements are replaced by a special letter ⊥. The
meaning of ⊥ is that there is no prediction for this feature.
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Definition 2 (Deterministic laws). A law is a function τ : H×A → O⊥.

Using a feature vector representation of the observations and saying that
a law predicts some of the features is a convenient special case of saying that
the law predicts that the next observation will belong to a certain subset of the
observation space. Each law τ predicts, given the history and a new action, some
or none but not necessarily all of the features xj at the next time point. We first
consider sets of laws such that for any given history and action, and for every
feature, there is at least one law that makes a prediction of this feature. Such
sets are said to be complete. We below expand these notions, defined in [10, 11],
from deterministic laws to stochastic laws.

Definition 3 (Stochastic law). A stochastic law is a function τ : H × A ×
O⊥ → [0, 1] such that

∀h∀a
∑
o∈O⊥

τ(h, a, o) = 1

and
∀h∀a∀j ∈ {1, ...,m}

∑
o∈O⊥:oj=⊥

τ(h, a, o) ∈ {0, 1},

i.e. the marginal probability of the “no prediction” symbol ⊥ always equals zero
or one. We will use the notation τ(o|h, a) := τ(h, a, o).

Definition 4 (Stochastic laws making predictions or not). If τ is a law
and ∑

o∈O⊥:oj=⊥

τ(h, a, o) = 0

we say that τ does not make a prediction for j given h, a and write τ(h, a)j = ⊥.
Otherwise, i.e. when ∑

o∈O⊥:oj=⊥

τ(h, a, o) = 1,

we say that τ does make a prediction for j given h, a and write τ(h, a)j 6= ⊥.

As in the deterministic case we need to define what it means for a set of
stochastic laws to be complete and then we can define an environment from
such a set. The definition is an extension of the deterministic counter-part. That
we only demand completeness and not coherence in the stochastic case is because
we are going to study the stochastic case with a domination assumption instead
of excluding laws. The result is that the generated class is infinite even when the
set of laws is finite.

Definition 5 (Complete set of stochastic laws). A set T of stochastic laws
is complete if

∀h, a ∃τi ∈ T ∃Ji ⊂ {1, ...,m} = ∪̇iJi : τi(h, a)j 6= ⊥ ⇐⇒ j ∈ Ji.

Let Ĉ(T ) denote the set of complete subsets of T .
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Definition 6 (Environments from stochastic laws). Given a complete class
of stochastic laws T , we define the class of environments Ξ(T ) generated by T
as consisting of all ν for which there are τi and Ji as in Definition 5 such that

ν(x|h, a) = Πiτi|Ji(h, a)(x|Ji).

Error analysis. We first consider deterministic environments and deterministic
laws and the optimistic agent from [8]. Every contradiction of an environment is a
contradiction of at least one law and there are finitely many laws. This is what is
needed for the finite error result from [8] to hold but with |M| replaced by |T | (see
Theorem 1 below) which can be exponentially smaller. We have presented this
result previously [10, 11] but here we extend from the deterministic to stochastic
settings.

Theorem 1 (Finite error bound when using laws). Suppose that T is a
finite class of deterministic laws and let G(h) = {ν(·|h) | ν ∈ M({τ | τ ∈ T
consistent with h})}. We define π̄ by combining G with the optimistic decision
function (Definition 1). Following π̄ for a finite class of deterministic laws T in
an environment µ ∈M(T ), we have for any 0 < ε < 1

1−γ that

V π̄µ (ht) ≥ max
π

V πµ (ht)− ε (4)

for all but at most |T |− log ε(1−γ)
1−γ time steps t.

We now introduce optimistic agents with classes of stochastic dominant laws.
To define what dominant means for a law we first introduce the notion of a
restriction. We will say that a law τ is a restriction of a stochastic environment
ν if it assigns the same probabilities to what τ predicts. We then also say that
ν is an extension of τ . Similarly a law can be a restriction or an extension of
another law. If τ is a restriction of some environment ν that µ is absolutely
continuous w.r.t. (for every policy), then we say that µ is absolutely continuous
(for every policy) with respect to τ . We here make use of the slightly more
restrictive notion of dominance. We say that ν dominates µ if there is c > 0 such
that ν(·) ≥ cµ(·). We extend this concept to laws.

Example 1 (Stochastic laws based on estimators). Consider again a binary vector
of length m where each coefficient is an i.i.d. Bernoulli process, i.e. there is a
fixed probability with which the coefficient equals 1. Consider laws that are such

that there is one for each coefficient and they predict a 1 with probability a+1/2
a+b+1

where a is the number of 1s that have occurred before for that coefficient and
b is the number of 0s. Then we have a complete set of stochastic laws that are
based on the so called Krichevsky-Trofimov (KT) estimator. Also, they satisfy
the absolute continuity property. These laws can e.g. be combined with laws
based on the Laplace estimator which assigns probability a+1

a+b+2 instead.

Example 2 (Dominant laws, AIXI-CTW). Consider the AIXI agent defined by
(1) with ξ being the mixture of all context tree environments up to a certain
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depth as defined in [13]. A context is defined by a condition on what the last
few cycles of the history is. The context tree contains contexts of variable length
upto the maximum depth. The Context Tree Weighting (CTW) algorithm relied
on by [13], which is originally from [14], defines a prediction for each context
using a Krichevsky-Trofimov estimator. ξ is a mixture of all of those predictions.
Given a context, we can define a law as the restriction of ξ to the histories for
which we are in the given context. All of these laws will be absolutely continuous
for any context tree environment, hence so are all of these laws. If we consider
the same restrictions for other dominant mixtures than ξ, e.g. by using the
CTW construction on other/all possible binarizations of the environment, we
have defined a large set of laws.

Theorem 2 (Convergence for stochastic laws). Suppose that T is a finite
class of stochastic laws as in Definition 6 and that they all are absolutely contin-
uous w.r.t. the true environment µ and that for every h, there is an environment
νh ∈ Ξ(T ) such that V ∗νh(h) ≥ V ∗µ (h). Let G(h) = {ν(·|h) | ν ∈ Ξ(T )} . We
define π̃ by combining G with an optimistic decision function. Then almost surely
V π̃µ (ht)→ V ∗µ (ht) as t→∞.

Proof. Any ν ∈ Ξ(T ) is such that ν(·) ≥ cµ(·) where c is the smallest constant
such that all the laws in T are dominant with that constant. For each law τ ∈ T
pick an environment ν ∈ Ξ(T ) such that τ is a restriction of ν, i.e. ν predicts
according to τ whenever τ predicts something. We use the notation ντ for the
environment chosen for τ . The Blackwell-Dubins Theorem says that ντ merges
with µ almost surely under the policy followed (but not necessarily off that
policy) and therefore τ merges with µ, i.e. with the restriction of µ to what τ
makes predictions for, under the followed policy. Given ε > 0, let T be such that

∀t ≥ T : max
τ∈T

d(ντ (·|ht, π̃), µ(·|π̃)) < ε

which implies that

∀t ≥ T : max
ν∈Ξ(T )

d(ν(·|ht, π̃), µ(·|π̃)) < ε

and applying this to νht
proves that |V π̃µ (ht)−V ∗µ (ht)| < ε ∀t ≥ T by Lemma 1 in

[9]. Since there is, almost surely, such a T for every ε > 0 the claim is proved.

Excluding stochastic laws and sample complexity. To prove sample com-
plexity bounds one typically needs to assume that the truth belongs to the class
which is stronger than assuming domination. This agent would need to exclude
implausible environments from the class. In the deterministic case that can be
done with certainty after one contradiction, while [1] shows that in the stochastic
case this can be done after a finite number m of sufficiently large contradiction.
m depends on the confidence required, m = O( 1

ε2 log k
δ where ε is the accuracy,

δ the confidence and k the number of hypothesis, and after m disagreements
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the environment that aligned worse with observations is excluded. The analysis
closely follows the structure learning case in [1] where it relies on a more general
theorem for predictions based on k possible algorithms. The main difference is
that that they could do this per feature which we cannot since we are in a much
more general setting where a law sometimes makes a prediction for a feature
and sometimes not. One can have at most mk2 disagreements (actually slightly
fewer) where k is the number of laws. It is possible that this square dependence
can be improved to linear, but it is already an exponential improvement for many
cases compared to a linear dependence on the number of environments. There
can only be errors when there is sufficient disagreement. The above argument
works under a coherence assumption and for γ = 0 while for γ > 0 there are
horizon effects that adds extra technical difficulty to proving optimal bounds
avoiding losing a factor 1/(1−γ). [5] shows how such complications can be dealt
with.

Having a background environment. The earlier deterministic results de-
manded that the set of laws in the class is rich enough to combine into complete
environments and in particular to the true one. This might require such a large
class of laws that the linear dependence on the number of laws in the error
bound, though much better than depending on the number of environments,
still is large. The problem is simplified if the agent has access to a background
environment, which is here something that given previous history and the next
features predicted by laws, assigns probabilities for the rest of the feature vector.
A further purpose for this section is to prepare for classes with a mix of deter-
ministic laws and stochastic laws. In this case the stochastic laws learn what we
in this section call a background environment. Computer games provide a simple
example where it is typically clear that we have a background and then objects.
If the agent has already learnt a model of the background, then what remains
is only the subproblem of finding laws related to how objects behave and affect
the environment. As an alternative, we might not be able to deterministically
predict the objects but we can learn a cruder probabilistic model for them and
this is background that completes the deterministic world model the agent learns
for the rest.

Example 3 (Semi-deterministic environment). Consider a binary vector of length
m where some elements are fixed and some fluctuate randomly with probability
1/2. Consider the background environment where all coefficients are Bernoulli
processes with probability 1/2 and consider the 2m laws that each always makes
a deterministic prediction for one coefficient and it is fixed. The laws that make
a prediction for a fluctuating coefficient will quickly get excluded and then the
agent will have learnt the environment.

Definition 7 (Predicted and not predicted features). Given a set of de-
terministic laws T , let

q1(h, a, T ) := {j ∈ {1, ...,m} | ν(h, a)j = ⊥ ∀ν ∈ Ξ(T )}

be the features T cannot predict and q2(h, a, T ) := {1, ...,m} \ q1(h, a, T ) the
predicted features.
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Since we are now working with sets of laws that are not complete, subsets
can also not be complete, but they can be maximal in the sense that they predict
all that any law in the full set predicts.

Definition 8 (Coherent and maximal sets of laws). Given a set of deter-
ministic laws, the set of maximal subsets of laws C̄(T ) consists of sets T̃ ⊂ T
with the property

∀h, a∀j ∈ q2(h, a, T )∃τ ∈ T̃ : τ(h, a)j 6= ⊥.

If
∀h, a∀j ∈ q2(h, a, T )∀τ, τ̃ ∈ T̃ τ̃(h, a)j ∈ {⊥, τ(h, a)j}

we say that T̃ is coherent.

A semi-deterministic environment is defined by combining the predictions of
a number of laws with background probabilities for what the laws do not predict.
We abuse notation by letting ν(h, a) = (o, r) mean that ν assigns probability 1 to
the next observation and reward being (o, r). We then also let ν(h, a) represent
the event predicted. As before, we use xk to denote individual features.

Definition 9 (Semi-deterministic environment). Given a coherent set of
laws T̃ and background probabilities P (x|xk1 , ..., xkn , h) where x = (x1, ..., xm)
for any subset {k1, ..., kn} ⊂ {1, ...,m} of the features and previous history h, we
let ν(P, T̃ ) be the environment ν which is such that

∀h, a∀j ∈ q2(h, a, T )∃τ ∈ T̃ : ν(h, a)j = τ(h, a)j

and

ν
(
x | h, a, x|q2(h,a,T ) = ν(h, a)|q2(h,a,T )

)
= P

(
x | x|q2(h,a,T ) = ν(h, a)q2(h,a,T )

)
.

The last expression above says that the features not predicted by laws (de-
noted by q1) are predicted by P where we condition on the predicted features
(denoted by q2).

Definition 10 (Semi-deterministic environments from laws and back-
ground). Given a set of deterministic laws T and background probabilities
P (x|xk1 , ..., xkn , h, a),
we let

M̄(P, T ) := {ν(P, T̃ ) | T̃ ∈ C̄(T )}.

The resulting error bound theorem has almost identical formulation as the
previous case (Theorem 1) and is true for exactly the same reasons. However,
the class M̄ contains stochasticity but of the predefined form.

Theorem 3 (Finite error bound when using laws and background).
Suppose that T is a finite class of deterministic laws and P is background.
Let G(h) = {ν(·|h) | ν ∈ M̄(P, {τ ∈ T consistent with h})}. We define π̄ by
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combining G with the optimistic decision function (Definition 1). Following π̄
with a finite class of deterministic laws T in an environment µ ∈ M̄(P, T ), for
0 < ε < 1

1−γ we have that

V π̄µ (ht) ≥ max
π

V πµ (ht)− ε

for all but at most |T |− log ε(1−γ)
1−γ time steps t.

Mixing deterministic and stochastic laws. When we introduced the concept
of background environment we mentioned that it prepared for studying sets of
laws that mix deterministic laws with absolutely continuous stochastic laws.
Given an ε̃ > 0, the environment formed by combining the stochastic laws with
a coherent and maximal set of true deterministic laws eventually have a value
function that for the followed policy is within ε̃ of the true one. Combining
the remaining deterministic laws with the dominant stochastic laws into semi-
deterministic environments exactly as with the background probabilities, then
yields the results as before but with the accuracy only being ε + ε̃ instead of
ε and where we only count errors happening after sufficient merging has taken
place.

Example 4 (Mixing deterministic laws and stochastic laws). Consider a binary
vector of length m where some elements are fixed and some fluctuate ran-
domly with a probability unknown to an agent. Consider the laws based on
KT-estimators from Example 1 and consider the 2m laws that each always makes
a fixed prediction for one coefficient. The laws that make a deterministic pre-
diction for a fluctuating coefficient will quickly get excluded and then the agent
will have to fall back on the KT-estimate for this coefficient.

Example 5 (AIXI-CTW as background). Consider the AIXI-CTW environment
ξ described in Example 2. Also, consider two deterministic law for each context
in the context tree, one always predicts 1 and the other 0. Combining those two,
we will have an agent that uses deterministic laws to predict until all laws for a
certain feature in a certain context (including its subcontexts) are contradicted.
Then it falls back on ξ for that situation. Predicting as much as possible with
deterministic laws is very helpful for planning.

4 Conclusions

We have further developed the theory of optimistic agents with hypothesis classes
defined by combining laws. Previous results were restricted to the deterministic
setting while stochastic environments are necessary for any hope of real appli-
cation. We here remedied this by introducing and studying stochastic laws and
environments generated by such.
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