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Abstract. Artificial emotions of different varieties have been used for control-
ling behavior, e.g. in cognitive architectures and reinforcement learning models.
We propose to use artificial emotions for a different purpose: controlling con-
cept development. Dynamic networks with mechanisms for adding and removing
nodes are more flexible than networks with a fixed topology, but if memories are
added whenever a new situation arises, then these networks will soon grow out
of proportion. Therefore there is a need for striking a balance that ideally ensures
that only the most useful memories will be formed and preserved in the long run.
Humans have a tendency to form and preserve memories of situations that are
repeated frequently or experienced as emotionally intense (strongly positive or
strongly negative), while removing memories that do not meet these criteria. In
this paper we present a simple network model with artificial emotions that imi-
tates these mechanisms.
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1 Introduction

One strategy toward artificial general intelligence (AGI) uses mathematical methods
developed without regard to natural intelligence [23]. A second strategy imitates the
mechanisms of human psychology [3,18]. A third tries to simulate the human brain at
the neural level – as attempted in the BRAIN Initiative and the Human Brain Project.
A fourth tries to imitate computational mechanisms that are present in nervous systems
across the animal kingdom [1,6].

Bees have less than a million neurons in their brains, yet they are able to learn
new concepts with the help of reward and punishment and adapt to a wide range of
environments [24,9]. Bees are arguably more flexible and better at adapting to new en-
vironments than present-day AI systems, so it might be possible to create more flexible
AI systems by mimicking certain of their computational mechanisms.

In this paper, we present a simple graphical model for network-based computa-
tion and an algorithm for developing such networks – one that uses emotional factors
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to guide their development. Thus we tackle the problem of novelty-driven concept-
formation, which easily leads to explosive memory formation [20]. Although our model
was inspired by mechanisms described in neuroscience, we have made no attempt to
model any particular biological system. Because our research focus is on AGI, we have
felt free to mix biologically realistic features with more strictly pragmatically motivated
ones.

Bees are capable of forming memories, reflecting capacities that cannot possibly
be innate. In one revealing study [9], bees learned to differentiate between vowels and
consonants of the Latin alphabet with the help of bowls of water containing or not con-
taining sugar – placed next to the letters. The bees learned the two concepts robustly
despite large variations in color, font, size, and mode of presentation. Bees have only
about 950,000 neurons in their brains, implying that they can only form a limited num-
ber of memories [24]. This raises the obvious question of which memories would be
most useful from the perspective of survivability.

Contemporary research has emphasized the importance of emotions to memory for-
mation [13] and the role of emotional systems in decision making [4]. Sensory events
can trigger reward signals (e.g., food) or indicate danger (e.g., an approaching preda-
tor). The emotional circuits receive sensory information from both lower and higher
(i.e., cortical) levels; in mammals, they include the amygdala (for punishment) and the
dopaminergic and opioid systems – such as the ventral tegmental area and periaque-
ductal gray (for reward). Their activation affects memory formation via several mech-
anisms: e.g., by directing attention towards the stimulus and then activating the brain’s
arousal systems [12]. Emotions can act directly on memory circuits in the hippocam-
pus to sort more from less relevant memories: so-called emotional tagging [17]. It has
recently been shown how repetitive or iterative mechanisms for memory formation –
the classical Hebbian view – interact critically with emotion-driven mechanisms in the
formation of behaviorally useful long-term memories [10].

Automatic-concept-formation techniques have been used for categorization [16,21],
clustering [11], and automatic theorem proving [8]. Blum and colleagues [7] survey sev-
eral concept-formation techniques for machine-learning. Concept formation is a central
component of such cognitive architectures as Sigma [18] and MicroPsi [2].

Concept formation finds a close statistical analogue in learning the structure of
graphical models [19]: e.g., variable-order Markov models (VMMs: see [5]), which
can be used for sequential prediction. The main difficulty with learning such models is
discovering which parts of the past are useful for predicting the future. VMMs make
predictions based on variable-length history windows; they are very efficient to learn,
given that they can be described in terms of non-parametric tree distributions. Conse-
quently, VMMs – and other tree models – have been used in reinforcement learning for
some time. One of the first successful models was the U-tree [15], which adds leaf nodes
to a VMM tree only when the new nodes’ utility predictions are statistically different
from the current ones. This and similar models are not limited to sequential partitions
of observations: it is possible to generate trees using an arbitrary metric, to compare
histories [22] within a fully Bayesian framework.
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Marsella and colleagues [14] survey computational models of emotion, including
models based on appraisal theory; while Bach [2] offers a framework for modeling
emotions.

Section 2 presents our network model and Section 3 describes computations in such
models. Section 4 offers an algorithm for developing these networks automatically. Sec-
tion 5 presents results. Section 6 draws some preliminary conclusions.

2 Transparent Networks

Definition 1 (network). A (transparent) network is a finite, labeled, directed, and acyclic
graph (V,E) where nodes a ∈V may be labeled:

– SENSORi, where i ∈ ω (fan-in 0)
– MOTOR (fan-in 1, fan-out 0)
– AND (fan-in 2)
– OR (fan-in 2)
– DELAY (fan-in 1)
– REV ERB (fan-in 1)

The fan-in and fan-out conditions in parentheses are restrictions on E. Each (a,b) ∈ E
has an associated weight w(a,b) ∈ [0,1].

Nodes labeled SENSORi model sensors of modality i. SENSORi could e.g. model a
receptor cell with ion channels sensitive to cold temperature, mechanical pressure, or
acidity. Nodes labeled MOTOR model muscle-controlling motor neurons. Nodes la-
beled AND and OR model nerve cells with high and low thresholds respectively. Nodes
labeled DELAY model nerve cells that re-transmit action potentials with a delay. Nodes
labeled REV ERB model nerve cells or nerve-cell clusters that stay active (i.e., reverber-
ate) for some time after they have been excited. Figure 1 provides example networks.
Note that some nodes that appear in figures throughout this paper have labels that do not
appear in Definition 1. They represent sensors or more complex networks computing
the concept indicated by the label.

3 Network Computation

Definition 2 (stimulus). Let G=(V,E) be a network and let S(V ) consist of the sensors
of V , i.e. those nodes that are labeled SENSORi, for some i. A stimulus for G is a
function σ : S(V )→{0,1}.

Stimuli model the presence or absence of action potentials on receptors.

Definition 3 (input stream). Let G = (V,E) be a network. An input stream for G is a
sequence σ1,σ2, . . ., where each σi is a stimulus for G.

Input streams give rise to two types of activity that propagate through the networks:
perception and imagination. We chose to model perception and imagination separately,
thus distinguishing clearly between exogenous perception and endogenous imagination.
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Fig. 1: Examples of transparent networks. (a) The tentacle of an anemone that retracts
upon being touched. (b) The letter H immediately followed by the letter I. (c) Lightning
followed by thunder (within ten time steps of the system).

Definition 4 (time). Let T be the set of natural numbers, modeling time.

Input streams give rise to two types of activity that propagate through the networks:
perception and imagination. We chose to model perception and imagination separately,
thus distinguishing clearly between exogenous perception and endogenous imagination.

Definition 5 (perception). Let G = (V,E) be a network and let L(a) be the label of
node a∈V . The perception pG :V×T →{0,1} generated by the input stream σ1,σ2, . . .
is defined as follows. Let pG(a,0) = 0 for all a ∈V . Let

pG(a,n+1) =



σn+1(a) if L(a) = SENSORi

pG(a′,n+1) if L(a) = MOTOR,(a′,a) ∈ E
min{pG(a′,n+1) : (a′,a) ∈ E} if L(a) = AND
max{pG(a′,n+1) : (a′,a) ∈ E} if L(a) = OR
pG(a′,n) if L(a) = DELAY,(a′,a) ∈ E
1 if L(a) = REV ERB,(a′,a) ∈ E,∃n′ ∈ [n−10,n]pG(a′,n′) = 1
0 if L(a) = REV ERB,(a′,a) ∈ E, 6 ∃n′ ∈ [n−10,n]pG(a′,n′) = 1

Given a certain input sequence, node a is active at step n in G if pG(a,n) = 1. A DELAY
node is active at n iff its parent node was active at n−1. A REVERB node is active at
n iff its parent node was active at some point during the last ten time steps. Figure 2
offers examples of perception, where perceptual activity is indicated by boldface node
borders.

Definition 6 (imagination). Imagination i : V × T → [0,1] is defined as follows. Let
i(a,n) = max{p(a′,n) ·w(a′,b,n) : E(a′,b) and E(a,b)}, where w(a′,b,n) is the label
on edge (a′,b) ∈ E at time n.

Figure 3 offers examples of imagination, where imagination is indicated by dashed-
line node borders. The darker the interior of the node, the more intense the imagination.
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Fig. 2: Propagation of perception. The phonetic sequence [æpl] is perceived in three
consecutive steps.

4 Network development

Next, we define the network-development mechanism that generates a sequence of net-
works G0,G1, . . . from input stream σ0,σ1, . . . and initial network G0. The initial graph
G0 is called the genotype; all graphs Gn+1 are phenotypes. For each n, Gn+1 is obtained
either by extending Gn or trimming Gn. As in natural nervous systems, activity contin-
ues to flow in the networks while they are being modified. The definitions of activity
propagation can be taken directly from fixed graphs and applied to graph sequences.
First, we must introduce some basic concepts pertaining to networks.

Definition 7 (reward signal). A reward signal is a function r : T → [−1,1], where
[−1,1] is the real interval between -1 and 1.

Positive reward signals model reward; negative reward signals model punishment.

Definition 8 (arousal). Let arousal(n) = abs(r(n)), where abs means absolute value.

Definition 9 (birth). Let G0,G1, . . . be a sequence of networks. Suppose node a ap-
pears in some Gi. Then birth(a) is the smallest n such that a ∈ Gn.

Definition 10 (relative frequency). Let RF(a,n) = card{m ∈ [birth(a),n] : p(a,m) =
1}/(n−birth(a)), where card is the cardinality function.

Definition 11 (closure). Let E∗ be the reflexive and transitive closure of E.

Definition 12 (learning parameters). The following parameters regulate the network
development process:
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Fig. 3: Propagation of imagination. (a) Perceiving coffee, while imagining sugar
strongly. (b) Perceiving sugar, while imagining coffee weakly. (c) Expecting thunder
after lightning.

– p0 ∈ ω (size parameter)
– p1 ∈ [0,1] (construction parameter)
– p2 ∈ [0,1] (viability parameter)
– p3 ∈ [0,1] (destruction parameter)
– p4 ∈ [0,1] (multimodality parameter)

Next, we will introduce a number of notions that trigger extensions (14-17) or trim-
ming (18-19) of the network. We begin with a local notion of emotionality.

Definition 13 (emotionality). Let emo(a,n)= avg{r(n′) : pGn′ (a,n
′)= 1 : n′ ∈ [birth(a),n]},

where avg means average.

Example 1. Here are examples of how emotionality might be computed:

– emo(cake, t) = avg{0.7,0.8,0.3}= 0.6
– emo(snake, t) = avg{−0.5,−0.7,−0.9}=−0.7

Definition 14 (top active node). Suppose G = (V,E) is a graph and σ0,σ1, . . . a se-
quence of stimuli: a ∈ V is top active in G at n if pG(a,n) = 1 and there is no b 6= a
such that (a,b) ∈ E∗ and pG(b,n) = 1.

Definition 15 (surprise). Let surprise(n)=min{abs(r(n)−emo(a,n)) : a is top active at n}.

Definition 16 (learning rate). Let LR(n) = p1 · surprise(n)+(1− p1) ·arousal(n).

Definition 17 (modality). Suppose G=(V,E) is a network and b∈V . Modality mod(b,G)
is defined as {i : E∗(a,b) and L(a) = SENSORi}.

Definition 18 (emotional importance). Let EI(a,n)=max{abs(emo(b,n)) : E∗(a,b)}.

Definition 19 (viability). Let via(a,n) = p2 ·EI(a,n)+(1− p2) ·RF(a,n).

Finally we are ready to introduce our operations: Two that extend the networks and
one that trims them.
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Definition 20 (spatial construction). Suppose G = (V,E) is a graph and a,b ∈ V .
Then spatial(G,a,b) is the graph (V ′,E ′), where V ′ =V ∪{c}, c is a new node labeled
AND, and E ′ = E ∪{(a,c),(b,c)}, with the weights of both new edges set to 1.

Definition 21 (temporal construction). Suppose G = (V,E) is a graph and a,b ∈ V .
Then temporal(G,a,b) is the graph (V ′,E ′), where V ′ = V ∪{c,d}, c is a new node
labeled DELAY , d is a new node labeled AND, and E ′ = E∪{(a,c),(c,d),(b,d)}, with
the weights of the three new edges set to 1.

Definition 22 (destruction). Suppose G=(V,E) is a graph and a∈V . Then f orget(G,a)
is the graph (V ′,E ′), where V ′=V−V ′′, V ′′= {b∈V : E∗(a,b)} and E ′=E−{(b,c)∈
E : b ∈V ′′ or c ∈V ′′}.
Definition 23 (admissibility). Let G0,G1, . . . be a sequence of networks and σ0,σ1, . . .
a sequence of stimuli. Spatial(Gn,a,b) is admissible at n if both a and b are top active
in Gn at n. Temporal(Gn,a,b) is admissible at n if a is top active in Gn−1 at n−1 and
b is top active in Gn at n.

With the terminology in place, we are ready to define the network development
algorithm: see Algorithm 1, where f lip(p) is the result of flipping a weighted coin that
produces outcome 1 with probability p.

Algorithm 1 Network development algorithm
loop

if card(Vn)< p0 and f lip(LR(n)) = 1 then
if there are preferred a,b s.t. spatial(Gn,a,b) is admissible at n
and mod(a,Gn) = mod(b,Gn) = {i}, for some i then

Let Gn+1 = spatial(Gn,a,b).
else if there are preferred a,b s.t. temporal(Gn,a,b) is admissible at n
and mod(a,Gn) = mod(b,Gn) = {i}, for some i then

Let Gn+1 = temporal(Gn,a,b).
else if arousal(Gn)> p4

if there are preferred a,b s.t. spatial(Gn,a,b) is admissible at n
Let Gn+1 = spatial(Gn,a,b).

else if there are preferred a,b s.t. temporal(Gn,a,b) is admissible at n
Let Gn+1 = temporal(Gn,a,b).

end if
end if

else if via(a,n)< p3 for some a ∈Vn then
Let Gn+1 = f orget(Gn,a), where via(a,n) is minimal.

end if
Compute the edge weights w(a,b,n+1) reflecting Pr(b|a).
Compute the learning rate LR(n+1).
Compute the viabilities via(a,n+1).

end loop

Figures 4 and 6 offer examples of network development processes generated by
Algorithm 1. Figure 4 shows the formation of a memory of apple taste. Figure 5 shows
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Fig. 4: Unimodal spatial construction: formation of a memory structure for the taste of
a certain apple. (a) The sensors for low bitterness, low sourness, and high sweetness
are activated. (b) Two of the top active nodes are randomly selected and joined. (c) The
only top active nodes are joined.
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Fig. 5: Unimodal temporal construction: formation of a memory structure for the written
word "HI" takes place in three steps.

the formation of a memory of the written word "HI". A memory of the spoken word
[æpl], shown in Figure 2 (a), can be formed analogously, but it requires one repetition
of the sequence [æpl]. Figure 6, finally, shows how the apple taste and apple word
networks are joined.

5 Results

Algorithm 1 was implemented in Python 2.7 using the graphic package Graphviz for
visualization. All of the development processes described in this paper were obtained
using this program and straightforward input streams.

Figures 1–6 illustrate how networks are formed by the algorithm. In this case the al-
gorithm develops exactly the desired memory structures with no undesirable structures
as side effects. The algorithm gravitates toward memories that are emotionally intense,
frequently repeated, or both.
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Fig. 6: Multimodal spatial construction: when the top node was formed, the two nodes
representing apple taste and the phonetic sequence [æpl] were active and the level of
arousal was sufficiently high. At present, only apple taste is active, giving rise to imag-
ination in the form of the word [æpl].

6 Conclusion

Our study indicates that artificial emotions are well suited for guiding the development
of dynamic networks by regulating the quality and quantity of memories formed and
removed. The presented network model and network development mechanism are rel-
atively simple and were mainly devised for presenting the idea of emotional concept
development. Both can clearly be improved and elaborated in several directions. We
conclude that artificial emotions can be fruitful, not only for guiding behavior, but also
for controlling concept development.
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