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Abstract. This paper motivates the study of counterpossibles (logically
impossible counterfactuals) as necessary for developing a decision theory
suitable for generally intelligent agents embedded within their environ-
ments. We discuss two attempts to formalize a decision theory using
counterpossibles, one based on graphical models and another based on
proof search.
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1 Introduction

What does it mean to “make good decisions”? To formalize the question, it
is necessary to precisely define a process that takes a problem description and
identifies the best available decision (with respect to some set of preferences1).
Such a process could not be run, of course; but it would demonstrate a full
understanding of the question.

The difficulty of this question is easiest to illustrate in a deterministic setting.
Consider a deterministic decision procedure embedded within a deterministic
environment (e.g., an algorithm operating in a virtual world). There is exactly
one action that the decision procedure is going to select. What, then, “would
happen” if the decision procedure selected a different action instead? At a glance,
this question seems ill-defined, and yet, this is the problem faced by a decision
procedure embedded within an environment.

Philosophers have studied candidate procedures for quite some time, under
the name of decision theory. The investigation of what is now called decision
theory stretches back to Pascal and Bernoulli; more recently decision theory has
been studied by Lehmann [7], Lewis [9], Jeffrey [6], Pearl [12] and many others.
Unfortunately, the standard answers from the literature do not allow for the
description of an idealized decision procedure, as discussed in Section 2. Section 3
introduces the notion of “counterpossibles” (logically impossible counterfactuals)
and motivates the need for a decision theory using them. It goes on to discuss

1 For simplicity, assume von Neumann-Morgenstern rational preferences [13], that is,
preferences describable by some utility function. The problems discussed in this
paper arise regardless of how preferences are encoded.
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two attempts to formalize such a decision theory, one using graphical models
and another using proof search. Section 4 concludes.

2 Counterfactual Reasoning

The modern academic standard decision theory is known as “causal decision
theory,” or CDT. It is used under the guise of “potential outcomes” in statistics,
economics and game theory, and it is used implicitly by many modern narrow
AI systems under the guise of “decision networks.”

Pearl’s calculus of interventions on causal graphs [12] can be used to formalize
CDT. This requires that the environment be represented by a causal graph in
which the agent’s action is represented by a single node. This formalization of
CDT prescribes evaluating what “would happen” if the agent took the action a
by identifying the agent’s action node, cutting the connections between it and
its causal ancestors, and setting the output value of that node to be a. This is
known as a causal intervention. The causal implications of setting the action
node to a may then be evaluated by propagating this change through the causal
graph in order to determine the amount of utility expected from the execution of
action a. The resulting modified graph is a “causal counterfactual” constructed
from the environment.

Unfortunately, causal counterfactual reasoning is unsatisfactory, for two rea-
sons. First, CDT is underspecified: it is not obvious how to construct a causal
graph in which the agent’s action is an atomic node. While the environment can
be assumed to have causal structure, a sufficiently accurate description of the
problem would represent the agent as arising from a collection of transistors (or
neurons, or sub-atomic particles, etc.). While it seems possible in many cases to
draw a boundary around some part of the model which demarcates “the agent’s
action,” this process may become quite difficult in situations where the line be-
tween “agent” and “environment” begins to blur, such as scenarios where the
agent distributes itself across multiple machines.

Secondly, CDT prescribes low-scoring actions on a broad class of decision
problems where high scores are possible, known as Newcomblike problems [11].
For a simple example of this, consider a one-shot Prisoner’s Dilemma played by
two identical deterministic agents. Each agent knows that the other is identical.
Agents must choose whether to cooperate (C) or defect (D) without prior coor-
dination or communication. If both agents cooperate, they both achieve utility
2. If both defect, they both achieve utility 1. If one cooperates and the other
defects, then the defector achieves 3 utility while the cooperator achieves 0.2

2 This scenario (and other Newcomblike scenarios) are multi-agent scenarios. Why use
decision theory rather than game theory to evaluate them? The goal is to define a
procedure which reliably identifies the best available action; the label of “decision
theory” is secondary. The desired procedure must identify the best action in all set-
tings, even when there is no clear demarcation between “agent” and “environment.”
Game theory informs, but does not define, this area of research.
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The actions of the two agents will be identical by assumption, but neither
agent’s action causally impacts the other’s: in a causal model of the situation,
the action nodes are causally separated, as in Figure 1. When determining the
best action available to the left agent, a causal intervention changes the left node
without affecting the right one, assuming there is some fixed probability p that
the right agent will cooperate independent of the left agent. No matter what
value p holds, CDT reasons that the left agent gets utility 2p if it cooperates
and 2p + 1 if it defects, and therefore prescribes defection [8].

A O

U

Fig. 1. The causal graph for a one-shot Prisoner’s Dilemma. A represents the agent’s
action, O represents the opponent’s action, and U represents the agent’s utility.

Indeed, many decision theorists hold that it is in fact rational for an agent to
defect against a perfect copy of itself in a one-shot Prisoner’s Dilemma, as after
all, no matter what the opponent does, the agent does better by defecting [5,
9]. Others object to this view, claiming that since the agents are identical, both
actions must match, and mutual cooperation is preferred to mutual defection,
so cooperation is the best available action [1]. Our view is that, in the moment,
it is better to cooperate with yourself than defect against yourself, and so CDT
does not reliably identify the best action available to an agent.

CDT assumes it can hold the action of one opponent constant while freely
changing the action of the other, because the actions are causally separated.
However, the actions of the two agents are logically connected; it is impossible for
one agent to cooperate while the other defects. Causal counterfactual reasoning
neglects non-causal logical constraints.

It is a common misconception that Newcomblike scenarios only arise when
some other actor is a perfect predictor (perhaps by being an identical copy).
This is not the case: while Newcomblike scenarios are most vividly exemplified
by situations involving perfect predictors, they can also arise when other actors
have only partial ability to predict the agent [10]. For example, consider a situ-
ation in which an artificial agent is interacting with its programmers, who have
intimate knowledge of the agent’s inner workings. The agent could well find itself
embroiled in a Prisoner’s Dilemma with its programmers. Let us assume that
the agent knows the programmers will be able to predict whether or not it will
cooperate with 90% accuracy. In this case, even though the programmers are
imperfect predictors, the agent is in a Newcomblike scenario.

In any case, the goal is to formalize what is meant when asking that agents
take “the best available action.” Causal decision theory often identifies the best
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action available to an agent, but it sometimes fails in counter-intuitive ways, and
therefore, it does not constitute a formalization of idealized decision-making.

3 Counterpossibles

Consider the sort of reasoning that a human might use, faced with a Prisoner’s
Dilemma in which the opponent’s action is guaranteed to match our own:

The opponent will certainly take the same action that I take. Thus, there
is no way for me to exploit the opponent, and no way for the opponent
to exploit me. Either we both cooperate and I get $2, or we both defect
and I get $1. I prefer the former, so I cooperate.

Contrast this with the hypothetical reasoning of a reasoner who, instead, reasons
according to causal counterfactuals:

There is some probability p that the opponent defects. (Perhaps I can
estimate p, perhaps not.) Consider cooperating. In this case, I get $2
if the opponent cooperates and $0 otherwise, for a total of $2p. Now
consider defecting. In this case I get $3 if the opponent cooperates and
$1 otherwise, for a total of $2p + 1. Defection is better no matter what
value p takes on, so I defect.

Identifying the best action requires respecting the fact that identical algorithms
produce identical outputs. It is not the physical output of the agent’s hardware
which must be modified to construct a counterfactual, it is the logical output of
the agent’s decision algorithm. This insight, discovered independently by Dai [4]
and Yudkowsky [14], is one of the main insights behind “updateless decision
theory” (UDT).

UDT identifies the best action by evaluating a world-model which represents
not only causal relationships in the world, but also the logical effects of algo-
rithms upon the world. In a symmetric Prisoner’s Dilemma, a reasoner following
the prescriptions of UDT might reason as follows:

The physical actions of both myself and my opponent are determined
by the same algorithm. Therefore, whatever action this very decision
algorithm selects will be executed by both of us. If this decision algorithm
selects “cooperate” then we’ll both cooperate and get a payoff of 2. If
instead this decision algorithm selects “defect” then we’ll both defect and
get a payoff of 1. Therefore, this decision algorithm selects “cooperate.”

Using reasoning of this form, a selfish agent acting according to the prescriptions
of UDT cooperates with an identical agent on a symmetric one-shot Prisoner’s
Dilemma, and achieves the higher payoff.3

3 The agent does not care about the utility of its opponent. Each agent is maximizing
its own personal utility. Both players understand that the payoff must be symmetric,
and cooperate out of a selfish desire to achieve the higher symmetric payoff.
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Evaluating a counterfactual outcome in which the decision algorithm be-
haves differently requires evaluating a logically impossible possibility, known as
a “counterpossible.”4 As noted by Cohen [3], “the problem of counterpossible
conditionals remains very near the center of philosophy.”

To our knowledge, there does not yet exist a formal method of evaluating
counterpossibles that is suitable for use in decision theory. This paper discusses
two early attempts to formalize a decision theory which makes use of counter-
possible reasoning.

3.1 Counterpossibles Using Graphical Models

Following Pearl’s formalization of CDT (2000), one might be tempted to for-
malize UDT using a graphical approach. For example, one might attempt to
construct a “logical graph” of the one-shot prisoner’s dilemma, where each al-
gorithm has its own “logical node,” as in Figure 2. To do so, the graphical
representation of the environment must encode not only causal relations, but
also logical relations.

A()

A O

U

Fig. 2. The logical graph for a symmetric Prisoner’s Dilemma where both the agent’s
action A and the opponent’s action O are determined by the algorithm A().

Given a probabilistic graphical model of the world representing both logical and
causal connections, and given that one of the nodes in the graph corresponds to
the agent’s decision algorithm, and given some method of propagating updates
through the graph, UDT can be specified in a manner very similar to CDT. To
identify the best action available to an agent, iterate over all available actions a ∈
A, change the value of the agent’s algorithm node in the graph to a, propagate
the update, record the resulting expected utility, and return the action a leading
to the highest expected utility. There are two obstacles to formalizing UDT in
this way.

4 Some versions of counterpossibles are quite intuitive; for instance, we could imagine
how the cryptographic infrastructure of the Internet would fail if we found that
P = NP, and it seems as if that counterfactual would still be valid even once we
proved that P 6= NP. And yet by the Principle of Explosion, literally any consequence
can be deduced from a falsehood, and thus no counterfactual could be “more valid”
than any other in a purely formal sense.
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The first obstacle is that UDT (like CDT) is underspecified, pending a formal
description of how to construct such a graph from a description of the environ-
ment (or, eventually, from percepts). However, constructing a graph suitable
for UDT is significantly more difficult than constructing a graph suitable for
CDT. While both require decreasing the resolution of the world model until the
agent’s action (in CDT’s case) or algorithm (in UDT’s case) is represented by a
single node rather than a collection of parts, the graph for UDT further requires
some ability to identify and separate “algorithms” from the physical processes
that implement them. How is UDT supposed to recognize that the agent and its
opponent implement the same algorithm? Will this recognition still work if the
opponent’s algorithm is written in a foreign programming language, or otherwise
obfuscated in some way?

A() X

A O

U

Fig. 3. The desired logical graph for the one-shot Prisoner’s Dilemma where agent
A acts according to A(), and the opponent either mirrors A() or does the opposite,
according to the random variable X.

Even given some reliable means of identifying copies of an agent’s decision al-
gorithm in the environment, this may not be enough to specify a satisfactory
graph-based version of UDT. To illustrate, consider UDT identifying the best
action available to an agent playing a Prisoner’s Dilemma against an opponent
that does exactly the same thing as the agent 80% of the time, and takes the
opposite action otherwise. It seems UDT should reason according to a graph as
in Figure 3, in which the opponent’s action is modeled as dependent both upon
the agent’s algorithm and upon some source X of randomness. However, gener-
ating logical graphs as in Figure 3 is a more difficult task than simply detecting
all perfect copies of the an algorithm in an environment.

Secondly, a graphical model capable of formalizing UDT must provide some
way of propagating “logical updates” through the graph, and it is not at all
clear how these logical updates could be defined. Whenever one algorithm’s
“logical node” in the graph is changed, how does this affect the logical nodes
of other algorithms? If the agent’s algorithm selects the action a, then clearly
the algorithm “do what the agent does 80% of the time and nothing otherwise”
is affected. But what about other algorithms which correlate with the agent’s
algorithm, despite not referencing it directly? What about the algorithms of
other agents which base their decisions on an imperfect model of how the agent
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will behave? In order to understand how logical updates propagate through a
logical graph, we desire a better notion of how “changing” one logical fact can
“affect” another logical fact.

3.2 Counterpossibles Using Proof Search

Given some method of reasoning about the effects of A() = a on any other algo-
rithm, a graphical formalization of UDT is unnecessary: the environment itself is
an algorithm which contains the agent, and which describes how to compute the
agent’s expected utility! Therefore, a formal understanding of “logical updating”
could be leveraged to analyze the effects of A() = a upon the environment; to
evaluate the action a, UDT need only compute the expected utility available in
the environment as modified by the assumption A() = a.

This realization leads to the idea of “proof-based UDT,” which evaluates
actions by searching for formal proofs, using some mathematical theory such as
Peano Arithmetic (PA), of how much utility is attained in the world-model if
A() selects the action a. As a bonus, this generic search for formal proofs ob-
viates the need to identify the agent in the environment: given an environment
which embeds the agent and a description of the agent’s algorithm, no matter
how the agent is embedded in the environment, a formal proof of the outcome
will implicitly identify the agent and describe the implications of that algorithm
outputting a. While that proof does the hard work of propagating counterpos-
sibles, the high-level UDT algorithm simply searches all proofs, with no need to
formally locate the agent. This allows for an incredibly simple specification of
updateless decision theory, given below.

First, a note on syntax: Square quotes (p · q) denote sentences encoded as
objects that a proof searcher can look for. This may be done via e.g., a Gödel
encoding. Overlines within quotes denote “dequotes,” allowing the reference of
meta-level variables. That is, if at some point in the algorithm a := 3 and o := 10,
then the string pA() = a → E() = oq is an abbreviation of pA() = 3 → E() =
10q. The arrow p→q denotes logical implication.

The algorithm is defined in terms of a finite set A of actions available to the
agent and a finite sorted list O of outcomes that could be achieved (ordered from
best to worst). The proof-based UDT algorithm takes a description pE()q of the
environment and pA()q of the agent’s algorithm. E() computes an outcome, A()
computes an action. It is assumed (but not necessary) that changing the output
of A() would change the output of E().

To demonstrate how the algorithm works, consider UDT evaluating the actions
available to a UDT agent in a symmetric prisoner’s dilemma. The list of outcomes
is O := [ 3, 2, 1, 0 ] according to the cases where the agent exploits, mutually
cooperates, mutually defects, and is exploited, respectively. The set of actions is
A := {C,D } according to whether the agent cooperates or defects. To identify
the best action, UDT iterates over outcomes in order of preference, starting with
3. For each outcome, it iterates over actions; say it first considers C. In the case
that A() = C, the agent cannot achieve the outcome 3, so there is no proof of
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Algorithm 1: Proof-based UDT

Function UDT(pE()q, pA()q):
Sort the set of outcomes O in nonincreasing preference order;
for outcome o ∈ O do

for action a ∈ A do
if PA proves pA() = a → E() = oq then return a ;

return the lexicographically first action in A

pA() = C → E() = 3q5. Next, UDT considers D. If the agent defects, then
so does the opponent, so it would get outcome 1, and so there is no proof of
pA() = D→ E() = 3q. So UDT moves on to the next outcome, 2, and considers
C. In this case, if the agent cooperates then so will the opponent, so there is a
proof of pA() = C→ E() = 2q, and so UDT selects C.

While this proof-based formalism of UDT is extremely powerful, it is not
without its drawbacks. It requires a halting oracle in order to check whether
proofs of the statement pA() = a → E() = oq exist; but this is forgivable, as it
is meant to be a definition of what it means to “choose the best action,” not a
practical algorithm. However, this formalization of UDT can only identify the
best action if there exists a proof that executing that action leads to a good
outcome. This is problematic in stochastic environments, and in any setting
where PA is not a strong enough theory to find the appropriate proofs (which
may well occur if agents in the environment are themselves searching for proofs
about what UDT will prescribe, in order to guess the behavior of agents which
act according to UDT).

There is also larger problem facing this formalism of UDT: even in sim-
ple examples, the algorithm is not guaranteed to work. Consider a case where
the outcomes are O := [ 3, 2, 1 ] corresponding in E() to the actions A :=
{ High, Med, Low }. If we ask proof-based UDT to identify the best available ac-
tion to the agent A() := const Low, and it considers the action Med before the
action High, then it will misidentify Med as the best available action! This hap-
pens because there is a proof that A() 6= Med, and so A() = Med → E() = 3 by
the principle of explosion. (In fact, this sort of thing can happen whenever there
is any action that is provably not taken.)

As discussed by Benson-Tilsen [2], this problem is averted in the important
case A() = UDT(pE()q,pA()q) (this fixed point exists, by Kleene’s second recur-
sion theorem). In this case, UDT does in fact get the best provably attainable
outcome. This follows from the consistency of PA: imagine that a is a action such
that PA proves A() 6= a. Then PA proves that A() = a implies the first outcome
in O (which has the highest possible preference), and so UDT must either return
a or return another action which implies the first outcome in O—but returning

5 One must be careful with this sort of reasoning, for if PA could prove that A() = D
then it could also prove A() = C → E() = 3 by the principle of explosion. However,
in this case, that sort of “spurious proof” is avoided by technical reasons discussed
by Benson-Tilsen [2]
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a would be a contradiction. Therefore, either UDT will return an action which
truly leads to the highest outcome, or there is no action a such that PA can prove
A() 6= a, and thus the only proofs found will be genuine implications. Even so,
the apparent deficits of UDT at analyzing other algorithms are troubling, and
it is not obvious that reasoning about the logical implications of A() = a is the
right way to formalize counterpossible reasoning.

A better understanding of counterpossible reasoning may well be necessary in
order to formalize UDT in a stochastic setting, where it maximizes expected util-
ity instead of searching for proofs of a certain outcome. Such an algorithm would
evaluate actions conditioned on the logical fact A() = a, rather than searching
for logical implications. How does one deal with the case where A() 6= a, so that
A() = a is a zero-probability event? In order to reason about expected utility
conditioned on A() = a, it seems necessary to develop a more detailed under-
standing of counterpossible reasoning. If one deterministic algorithm violates the
laws of logic in order to output something other than what it outputs, then how
does this affect other algorithms? Which laws of logic, precisely, are violated,
and how does this violation affect other logical statements?

It is not clear that these questions are meaningful, nor even that a satisfactory
general method of reasoning about counterpossibles actually exists. It is plau-
sible that a better understanding of reasoning under logical uncertainty would
shed some light on these issues, but a satisfactory theory of reasoning under
logical uncertainty does not yet exist.6 Regardless, it seems that some deeper
understanding of counterpossibles is necessary in order to give a satisfactory
formalization of updateless decision theory.

4 Conclusion

The goal of answering all these questions is not to identify practical algorithms,
directly. Rather, the goal is to ensure that the problem of decision-making is well
understood: without a formal description of what is meant by “good decision,” it
is very difficult to justify high confidence in a practical heuristic that is intended
to make good decisions.

It currently looks like specifying an idealized decision theory requires for-
malizing some method for evaluating counterpossibles, but this problem is a
difficult one, and counterpossible reasoning is an open philosophical problem.
While these problems have remained open for some time, our examination in
the light of decision-theory, with a focus on concrete algorithms, has led to some
new ideas. We are optimistic that further decision theory research could lead
to significant progress toward understanding the problem of idealized decision-
making.

6 A logically uncertain reasoner can know both the laws of logic and the source code
of a program without knowing what the program outputs.
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