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Abstract. Inductive reasoning requires to find for given instances a
general rule. This makes inductive reasoning an excellent test-bed for
artificial general intelligence (AGI). An example being part of many 1Q-
tests are number series: for a given sequence of numbers the task is to
find a next “correct” successor number. Successful reasoning may require
to identify regular patterns and to form a rule, an implicit underlying
function that generates this number series. Number series problems can
be designed along different dimensions, such as structural complexity, re-
quired mathematical background knowledge, and even insights based on
a perspective switch. The aim of this paper is to give an overview of ex-
isting cognitive and computational models, their underlying algorithmic
approaches and problem classes. A first empirical comparison of some
of these approaches with focus on artificial neural nets and inductive
programming is presented.

1 Introduction

Over the last decade, there has been growing interest in computer models solving
intelligence test problems. Especially, the proposal to establish a psychometric
artificial intelligence (PAIT; [3,6]) with the aim to evaluate the intelligence of an
artificial cognitive system based on its performance on a set of tests of intelligence
and mental abilities motivated research in this domain [2].

One of the mental abilities considered by researchers as a fundamental con-
stituent of general intelligence is inductive reasoning [22]. A well established,
culture free test in this domain is Raven Progressive Matrices (RPM; [18]) where
regularities have to be identified in a two-dimensional matrix of geometrical pat-
terns. Another problem domain is inductive reasoning with numbers. In contrast
to RPM, problems are represented in one dimension, that is, as a sequence, and
a certain amount of mathematical knowledge is presupposed. Number series are,
for example, included in two well known intelligence test batteries, namely the
IST [1] and the MIT [25]. To solve RPM as well as number series problems, one
has to analyze the given components, construct a hypothesis about the regu-
larity characterizing all components, generalize this regularity and apply it to
generate a solution.
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Currently, there are different proposals of computer models solving number
series problems which are studied in isolation. In our opinion it would be worth-
while to compare these models to gain insight into (1) the general power of the
underlying algorithmic approaches with respect to scope and efficiency, and (2)
their correspondence to human cognitive processes.

In the following, we first introduce the domain of number series problems in
more detail and identify characteristics to classify such problems. Afterwards, we
shortly present the computer systems developed to solve number series problems
within artificial intelligence and cognitive systems research. A first empirical
comparison of systems concludes the article.

2 Number Series Problems

A number series can be mathematically defined by a function mapping the natu-
ral numbers into the real numbers: f : N — R. For intelligence test problems, typ-
ically the co-domain is restricted to integers. Series used in intelligence tests are
usually restricted to the four basic arithmetic operations. Furthermore, numbers
are restricted to small values which allow easy mental calculations [12]. Num-
ber series problems in intelligence tests are characterized as “having a unique
solution” [1]. However, in general, there do not exist unique solutions for induc-
tive problems [11]. A more precise characterization is that it must be possible
to identify a unique rule from the given pattern which captures its regularity.
Whether such a rule can be found depends on the length and kind of the given
sequence. In intelligence tests, often five elements of a series are given and the
test person or the program has to find the next element.

A variety of number series is illustrated in Table 1. Series can be generated by
applying one operation to the predecessor, resulting in a simple linear function
(see E1, Table 1). There can be alternating series where a different rule applies
to elements on even and odd index positions (see E2, Table 1). Series can depend
on more than one predecessor, which is the case for the Fibonacci series (see E3,
Table 1). Series can be composed by nesting two series (see E4, Table 1). An
example for a series which has no unique solution, if only 5 elements are given is
presented as Eb5 in Table 1: One solution can be to double the second last element
and subtract 2 or, equivalently, to decrement the second last element and then
double it. Alternatively, a higher order rule can explain the pattern of the first
5 elements, where 2! is added once, 22 is added twice, 22 is added three times,
and so on. A final example presents a series containing a mathematical pattern
of the index (see E6, Table 1) which has been investigated by Hofstadter [10].
This last sequence is a typical example of a problem which is simple for humans
but difficult for systems based on pattern induction because it has no simple
closed representation.? Human performance depends on the complexity of the
underlying pattern but can also depend on specific background knowledge. E.g.,
computer science students can often easily identify Fibonacci numbers or powers
of two. The examples of Table 1 show that there are simple problems for hu-
mans (such as E6) but difficult for machines and vice versa depending on their

3 The closed representation relies on a non-primitive recursive function: f (n)=f(n—
Fn—1))+ 1.
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Table 1. Examples for number series problems. The numbers in brackets represent for
the given series two possible successor sequences.

ID Series General Rule f(n) Type

El1,4,7, 10, 13, 16, 19, 22, ... = f(n—1)+3,, f(1) =1 linear

E22,4,3,5,4,6,5,7, ... =if(even(n), f(n —1)+2, alternating

fln—1)—1)

E3 4, 11, 15, 26, 41, 67, 108, 175, ... = f(n— 1) + f(n — 2), Fibonacci
f1)=4, f(2) =11

E45, 6,12, 19, 32, 52, 85,138, ... = f(n— 1)+ (f(n —2) + 1), nested
f1)=35, f(2)=6

E5 8, 10, 14, 18, 26, [34, 50, 66,] ... = f(n—2) x2—2 not unique

— (f(n—2)—1) x 2
F(1) =8, £(2) = 10
8, 10, 14, 18, 26, [34, 42, 58,] ... = f(n—1)+2", f(1)=8
E61,2 2 3,3,3,4,4,4,4,5, ... write each number n n-times intuitive

underlying algorithmic principles. Based on these considerations, Number series
may be characterized according to the following features:

Necessary background knowledge: To solve series, only knowledge of basic arith-
metic operators (or even only of the successor function) is necessary. But series can
become more efficiently solvable with mathematical knowledge such as knowing the
factorial or checksum-functions.

Numerical values: Numbers are typically small in the context of psychometric tests.
We can assume that humans have no problems with large values if they can be
represented in a simple form, such as decimal multiples and we can assume that
numerical values have less impact on performance of computer systems than of
humans.

Structural complexity: Series can be solvable by application of one basic operation
to the predecessor or might depend on complex relations between several prede-
Cessors.

Existence of a closed formula: Most number series of interest can be characterized
by a closed formula as given in Table 1. However, some series, such as E6 in Table
1 can be easily described verbally while a closed form is highly sophisticated or
even not known. Other problems even need a switch of perspective, such as 3, 3, 5,
4, 4, 8 which gives the number of letters of the verbal representation of the index.

We assume that these features influence performance of humans as well as
machines, however not necessarily in the same way. In the context of psychomet-
rics, difficulty of a problem is assessed by the percentage of subjects that solve
the problem at hand on a given time. This measure does not capture charac-
teristics of the number series and its impact on the cognitive or computational
processes involved. An empirical investigation of the cognitive determinants of
number series performance was presented by Holzman et al. [12]. It was shown
that mathematical skill has an impact on performance for more complex series.
A proposal to capture difficulty of number series problems based on a resource-
bounded Kolmogorov complexity was made by Strannegard et al. [23] with a
focus on structural complexity.
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Table 2. Series solved by the anti-unification approach of Burghardt [4].

0,1,49 f(n)=nx*n 0,1,2,1,4,1 f(n) =if(even,n,1)
0,246 f(n)=f(n—1)+2 0,0,1,1,0,0,1,1 f(n) = even(n — 2)

3 Systems Solving Number Series

Approaches for solving number series problems can be distinguished in systems
which are specifically designed to solve this type of problems and in the ap-
plication of general purpose algorithms or algorithms developed for a different
problem domain. For both kinds of approaches, there are computer models which
aim at performance criteria such as scope and efficiency and computer models
which aim at simulation of cognitive systems.

Early Systems. The earliest computational approach for a cognitively-inspired
AT systems solving number series is SEEKWHENCE [10, 14]. Hofstadter aimed on
an expert system which depends on a set of specific rules characterizing mathe-
matical relations. Instead, his aim was to solve sequences using general principles
such as pattern recognition and analogy. The system was able to identify well
known sequences appearing interleaved. For example, given 1, 1, 3, 4, 6, 9it rec-
ognizes the square numbers 1, 4, 9 and the triangle numbers 1, 3, 6. Hofstadter
was especially interested in sequences which do not require typical mathemati-
cal operations. One example is the index number problem (see E6 in Table 1).
Another example is 1, 1, 1, 2, 1, 1, 2, 1, 2, 3. To identify the inherent pat-
tern of this sequence, chunking is necessary: ((1)) ((1)(12)) ((1)(12)(123)). To
solve such problems Mahabal [13] developed SEQSEE influenced by the CopyCat
system [10].

Sanghi and Dowe [19] presented a very simple program which was able to
solve a variety of number series problems. This program was not intended as
an Al or cognitive system as a demonstration that rather trivial programs can
be able to pass an intelligence test. An approach developed in the context of
automated theorem proving was applied to solve number series problems [4]:
An algorithm for anti-unification of mathematical expressions was successfully
applied to several number series, among them alternating series and Fibonacci
(see Table 2).

Rule-Based Systems. In the last four years, two rule-based systems for solving
number series were proposed. Siebers and Schmid [21] presented a semi-analytical
approach where the term structure defining a given number series is guessed
based on heuristic enumeration of term structure. To evaluate the approach,
a generator of number series was realized (see also [5]) and the system was
evaluated with 25,000 randomly created number series resulting in an accuracy
of 93%.

A system based on similar principles is ASOLVER. However, this system takes
into account plausible restrictions of working memory [24,23]. Systems perfor-
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nat
[nat]

0 | s(nat) eq Plustwo((s 0) nil) = s"3 0
[ | nat:[nat] eq Plustwo((s"3 0) (s 0) nil) = s"5 0
eq Plustwo((s”5 0) (s”3 0) (s 0) nil) = s"7 0

Fig. 1. Representation of a simple number series for IGOR2, s is the successor function.

mance was evaluated with 11 (non published) problems from the IQ test PJP and
shown to outperform mathematical tools such as MAPLE and WOLFRAMALPHA.

An Inductive Programming Approach. Rule-based systems are specifically de-
signed for solving problems from the number series domain. However, when
being interested in systems which are able to general intelligent behavior, the
challenge is to identify approaches which can be applied to different domains
without specific adaptation and without a meta-algorithm which selects a suit-
able special purpose algorithm. The anti-unification approach of Burghardt [4]
is a first example of a successful application of a system designed for a different
domain to number series.

Another example is the inductive program system IGOR2 [9, 20] which learns
functional (MAUDE or HASKELL) programs from small sets of input/output ex-
amples. For instance, given examples for reversing a list with up to three el-
ements, IGOR2 generalizes the recursive reverse function together with helper
functions last and init. IGOR2 is based on constructor-term rewriting and there-
fore, besides the examples for the target function, the data types have to be
declared. For lists, the usual algebraic data type [a]l = [1 | a:[a] is used. To
apply IGOR2 for induction of a constructor-function which correctly describes
and continues a given number series, as a crucial first step, we have to decide
how to represent the needed data types, equations, and background knowledge.

In a first investigation the effect of different representations on IGOR2’s per-
formance was investigated with 100 number series varied with respect to size of
numerical values and structural complexity [8]. It turned out that the system
performed comparably with all representation formats tested, in the following
we only consider the format given in Figure 1: The system needs the data types
for list and natural number as input. A number series problem is represented as
a set of example equations. For instance, the sequence 1, 8, 5 is represented as
three examples giving the sequence up to a given length as input and the next
element as output.

IGOR2 can induce functions characterizing the infinite sequence without
background knowledge, for series which can be characterized by incrementing
or decrementing values of predecessors. For more complex series, more special-
ized mathematical operations can be pre-defined and the system can use them
for rule construction. However, while the availability of mathematical knowledge
typically will improve human performance [12], IGOR2’ performance time and
memory requirements increase when background knowledge is given.
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A Neural Network Approach. All approaches introduced so far are based on
symbolic computation. Such systems generate the solution of a number series
problem by identifying the underlying regularity. The generalized rule to char-
acterize the infinite sequence is explicitly constructed. That is, the symbolic
systems are not only able to produce the next number, but to “explain” by
the given function why this number was given. A limitation is that the set of
functions that can be computed is rather restricted. In contrast, artificial neural
networks (ANNSs) are in principle able to approximate arbitrary functions. Ragni
and Klein [16] investigated number series prediction with three-layered networks
with error back-propagation and the hyperbolic tangent as activation function.
The approach uses a dynamic learning approach: An ANN was trained on the
given numbers and the missing number was the target value to be predicted.
The number of training values of a pattern is equivalent to the number of input
nodes ¢ of the network used. Starting with the first number, a sub-sequence of
training values was shifted through the number series. As corresponding target
value, the next number of the sub-sequence was used. Since the last given value
of the number series with length n remains as target value and at least one
training and one test pattern is needed, the maximum length of a subsequence
of training values is n — 2. Hence, for a network configuration with m input
nodes n — m patterns were generated. The first (n —m) — 1 patterns were used
for training, while the last one remained for testing and thus predicting the last
given number of the sequence.

4 Performance Comparison: Igor2, ANNs, and Humans

IGOR2’s performance was tested with the series presented in [4] (see Table 2)
and could generate correct solutions for all of them. We did not systematically
evaluate performance time, since performance was very fast (some milliseconds)
for all problems. Most series could be solved without background knowledge with
the following exceptions: For Fibonacci, addition had to be pre-defined, for the
square function, the square function had to be pre-defined, and for the series
f(n) =2x f(n—1)+ 1, multiplication had to be pre-defined. IGOR2 could not
solve problem E6 from Table 1 since it depends on identifying a pattern in form
of a recursive function which is p-recursive for this problem.

Furthermore, IGOR2’s performance was tested against human performance
on 20 series systematically varied with respect to structural complexity and
numerical values [15]. Based on results of 46 subjects who participated in an
online experiment, it showed that indeed, a lesser number of humans (34 out
of 46) succeeded for number series with high numbers, such as 257, 811, 386,
462, 539, characterizable as f(n) = f(n — 1) + n 4 73. Furthermore, due to the
constructive representation of numbers, IGOR2 failed to solve this series. The
largest constant for which IGOR2 could produce a result was for with problem
was 36. Details of the study are given in [15],

The ANN approach was applied to the 73 SEQSEE number series problems
described in section 3 and presented in [13]. As in a previous investigation [17]
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settings were systematically varied from 500, 1000, 5000, 10000, 15000, each with
a learning rate ranging from .125 up to .875 with a step width of .125. The
number of input nodes from 1 to 3 are varied, but the number of nodes within
the hidden layer from 1 to 20. On average, over all number series, an increas-
ing number of training iterations was counter-effective, that is, the number of
solvable series was reduced. For 500 iterations 19 number series could not be
solved by any configuration. For 15 000 iterations this number rose to 22. Over
all types of configurations there remain 13 number series unsolved. Furthermore,
the ANN approach was applied to number series given in intelligence tests: the
20 problems of IST, also investigated by Strannegard et al. [23] and the 14 prob-
lems of the MIT. Again number of input nodes, hidden layers, and learning rate
were varied as above. Over all configurations 19 out of the 20 IST number series
could be solved, one remains unsolved. For the MIT over all configurations 12
out of the 14 number series could be solved, two remain unsolved. Analyzing
the networks show again, that 3 input nodes and about 5-6 hidden nodes with
a low learning rate are the most successful ones. This pattern appears in all our
benchmarks. Ragni and Klein [16] developed 20 number series as a benchmark
for the ANN approach given in Table 3. The problems differed in the underly-
ing construction principle and varied from simple additions and multiplications
to combinations of these operations. One series (S12) is of the type studied by
Hofstadter [10]: it is composed of the numbers which are not squares.

An empirical study with 17 human subjects was conducted?. Subjects re-
ceived the series in randomized order on paper and had to fill in the last number
of the series. With the exception of the low performance for the simple series
S05, the empirical results support our assumptions: While humans deal easily
with series based on a simple operation on the immediate predecessor, they
have problems with series depending on more than one predecessor number (as
the Fibonacci variant S11). Although humans can deal with alternating series
for simple operations, they have problems if these series involve multiplications
(S15) or a nested series depending on the index (S17). IGOR2 and the ANN
approach were tested with the same problems. However, IGOR2 did only receive
the first 5 elements of a series as input, the ANN was trained with 7 inputs and
had to predict the 8th value. For some of the series, solution success of IGOR2
did depend on the chosen representation for the series. For some of the series,
mathematical background knowledge was given to IGOR2 as described in section
3. Details of the empirical results for IGOR2 are given in [7]. Overall, there are
six number series which could not be solved by IGOR2 and three number series
which could not be solved by the ANNs. Among them is only one series (S06)
which could be solved by neither approach.

5 Conclusions and Further Work

Number series form an excellent testbed for AGI-systems. An overview of sys-
tems solving number series problems show that some systems are designed to

4 For more information please refer to [16]
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Table 3. Empirical comparison of human performance (n = 17) with ANNs and
IGOR2 (ID based on the order of the series as reported in [16]; results for humans are
correct/incorrect /no answer).

Responses
ID Number Series Rule f(n) = Human IGOR2 ANN
05 2,5,8,11,14,17,20,23 f(n—1)+3 9/3/5 + T
07 25,22,19,16,13,10,7,4 f(n—1) —3 16/0/1 + o+
19 8,12,16,20,24,28,32,36 f(n — 1) + 4 15/0/2 + o+
13 54,48,42,36,30,24,18 f(n—1)—6 16/1/0 + o+
08 28,33,31,36,34,39,37 f(n—2)+3 17/0/0 T+
14 6,8,5,7,4,6,3,5 fln—2)—1 16/0/1 + o+
20 9,20,6,17,3,14,0,11  f(n—2)—3 16/0/1 N
01 12,15,8,11,4,7,0,3  f(n—2) —4 15/0/2 + o+
11 4,11,15,26,41,67,108 f(n— 1)+ f(n —2) 8/1/8 T ¥
09 3,6,12,24,48,96,192  f(n—1) x 2 13/1/3 + -
16 7,10,9,12,11,14,13,16 if(even, f(n —1)+3,f(n—1) —1) 14/0/3 + 4+
18 8,12,10,16,12,20,14,24 i f (even, f(n — 2) + 4, f(n — 2) +2) 17/0/0 + o+
15 6,9,18,21,42,45,90,93 if(even, f(n — 1)+ 3, f(n — 1) x 2) 14/1/2 -+
17 8,10,14,18,26,34,50,66 if(even, f(n — 2) + 6 x 2, f(n — 2) + 8) 13/1/3 -+
10 3,7,15,31,63,127,255 f(n) =2 x f(n—1) + 1 12/3/2 ¥ -
04 2,3,5,9,17,33,65,120  f(n—1)+ f(n—1) —1 13/1/3 + 4+
03 2,12,21,29,36,42,47,51 f(n — 1)+ 12 —n 14/1/2 -+
02 148,84,52,36,28,24,22 (f(n —1)/2) + 10 12/2/3 + o+
06 2,5,9,19,37,75,149,299 f(n — 1) x 2+ (—1)" 6/4/7 -
12 5,6,7,8,10,11,14,15 no squares 10/1/6 - +

model human cognitive processes while others aim at high performance. We in-
troduced two approaches: The inductive programming system IGOR2 is a sym-
bolic approach to learning declarative rules from examples and a sub-symbolic
approach using ANNs to function estimation. We compared both approaches
with human performance. It showed that the ANN approach could solve more
problems than IGOR2. However, each ANNs must be trained for each series tak-
ing several thousand training iterations while IGOR2 could be applied to all series
without adaptation. Furthermore, IGOR2 not only returns the next number but
also the function which explains how the solution was generated. This is more
similar to humans that can justify a given solution. This approach shows that
there are many interesting questions left. To compare systems systematically,
a benchmark set — a repository of problems with a difficulty measure indepen-
dent of a specific systems might be necessary. A first step into this direction
was made by Strannegard et al. [23] who characterized problem difficulty by
bounded Kolmogorov complexity, but depending on a specific algorithm. Alter-
natively, human performance could be used as a guideline. Given the 20 series
investigated, IGOR2 as well as the ANN could not solve all problems and they
differed from human performance. However, the 20 series do not represent a
systematic variation over the features characterizing problems as described in
section 2. As a next step, we plan to compose a more systematic repository of
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problems and to invite researchers to discuss and propose other number series
problems — towards a systematic competition in this domain.
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