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Abstract.  A first step is taken towards incorporating emotional processing into 

Sigma, a cognitive architecture that is grounded in graphical models, with the 

addition of appraisal variables for expectedness and desirability plus their initial 
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leverage many of Sigma’s existing capabilities but with a few key additions. 
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1   Introduction 

Sigma [1] is a cognitive architecture/system that is based on combining what has been 

learned from over three decades worth of independent work in cognitive architectures 

[2] and graphical models [3].  Its development is being guided by a trio of desiderata: 

(1) grand unification (expanding beyond strictly cognitive processing to all of the 

capabilities required for intelligent behavior in complex real worlds); (2) functional 

elegance (deriving the full range of necessary capabilities from the interactions among 

a small general set of mechanisms); and (3) sufficient efficiency (executing at a speed 

sufficient for anticipated applications).  We have recently begun exploring the 

incorporation of emotion into Sigma, driven by: the theoretical desideratum of grand 

unification; the practical goal of building virtual humans for applications in education, 

training, counseling, entertainment, etc.; and the hypothesis that emotion is critical for 

general intelligences to survive and thrive in complex physical and social worlds. 

A major focus of this effort concerns what aspects of emotion are properly 

architectural – that is, fixed parts of the mind – versus enabled primarily by learned 

knowledge and skills. A large fragment of emotion is non-voluntary and immutable, 

providing hard-to-ignore input to cognition and behavior from what could be called the 

wisdom of evolution.  It also makes direct contact with bodily processes, to the extent 

such exist, to yield the heat in emotion. Thus, significant fractions of it must be 

grounded architecturally even with knowledge clearly being critical at higher levels. 

Driven by functional elegance, there is also a major emphasis here on reusing as 

much as possible the capabilities provided by the existing architecture, rather than 

simply building a separate emotion module.  One obvious example is leveraging 

Sigma’s hybrid (discrete + continuous) mixed (symbolic + probabilistic) nature to 

support both the low-level subsymbolic aspects of emotion and the high-level symbolic 



aspects.   Another such example is the seamless mapping of Sigma’s tri-level cognitive 

control [4] – as inherited from Soar [5] and comprising reactive, deliberative and 

reflective levels – onto tri-level theories of emotion [6], suggesting a more unified tri-

level model of emotocognitive processing. 

A less obvious example is the essential role that Sigma’s gradient-descent learning 

mechanism [7] has turned out to play in appraisal [8].  Appraisal is typically considered 

the initial stage of emotional processing, capturing emotionally and behaviorally 

relevant assessments of situations in terms of a relatively small set of variables, such as 

relevance, desirability, likelihood, expectedness, causal attribution, controllability and 

changeability in the EMA theory [9].  These ground appraisals, or combinations 

thereof, may then lead to higher-order appraisals, transient emotional states, and a 

variety of important impacts on thought and behavior. 

Still, extensions to Sigma’s architecture are clearly necessary to fully support 

emotional processing.  Prior to this work, Sigma had no emotions.  Yet, the immutable 

and mandatory nature of emotions implies they must be deeply rooted in the 

architecture.  Central to this effort is understanding the architectural extensions 

necessary to (1) enable the ground appraisals that initiate emotional processing, and (2) 

yield the appropriate emotional modulations of thought and behavior. 

This article provides an initial report on work towards emotion in Sigma, focused on 

architectural variants of desirability and expectedness, along with their initial impacts 

on attention.  Key to both appraisals is a new architectural mechanism for comparing 

distributions, with desirability based on comparing the distributions over the current 

state and the goal, and expectedness based on comparing the distributions over a 

fragment of memory before and after learning.  Attention then leverages these 

appraisals to focus processing at multiple levels of control.  This is the first architectural 

model of low-level attention that stretches all of the way from appraisal to its impact 

on thought.  It also demonstrates a complementary impact on higher-level attention. 

There is considerable recent work on emotion in cognitive architectures – e.g., in 

Soar [10], PsychSim [11], FAtiMA [12], EmoCog [13], MicroPsi [14], ACT-R [15], 

BICA [16], and CLARION [17] – but 

Sigma’s unique aspects shed new light on 

how this can be done.  Section 2 provides 

the basics of Sigma needed for this work.  

Sections 3 and 4 cover expectedness and 

desirability.  Attention is covered in Section 

5, with a wrap up in Section 6. 

2   Sigma 

Sigma is based on factor graphs [18] – 

undirected graphical models with variable and factor nodes – and hybrid mixed 

piecewise-linear functions [19] (Fig. 1) stored at factor nodes and sent as messages via 

the summary product algorithm [18] (Fig. 2).  Sigma’s factor graphs are compiled from 

a high-level language that is based on predicates with typed arguments plus 

conditionals embodying patterns over predicates.  Predicates specify relations over 

Fig. 1: A piecewise-constant function, the 

special case of piecewise linear functions 

used here.  Dimension spanning slices exist 

wherever there are adjacent regions with 

different functions. 



 

continuous, discrete and/or symbolic arguments.  They may be closed world – 

assuming, as in production systems, that unspecified values are false – or open world – 

assuming, as in probabilistic 

reasoning, that unspecified 

values are unknown. 

Each predicate has a portion 

of working memory (WM) 

allocated to it that forms part of 

the full factor graph.  Predicates 

may also have perception and/or 

long-term memory (LTM) 

functions.  For perceptual 

predicates, factor nodes for 

perceptual buffers are connected 

to the WM subgraphs.  For 

memorial predicates, function 

factor nodes (FFNs) are likewise 

connected.  Messages into FFNs 

provide the gradient for learning 

the nodes’ functions.  Conditionals structure LTM and basic reasoning, compiling into 

more extended subgraphs that also connect to the appropriate WM subgraphs. 

Processing in Sigma is driven by a cognitive cycle that comprises input, graph 

solution, decisions (selection of best elements from distributions), learning, and output.  

Graph solution occurs by product of the messages coming into a node – including the 

node’s function when it is a factor node – and then summarization out, via integration 

or maximum, of unneeded variables from outgoing messages.  Most of perception and 

action is to occur within graph solution in Sigma, rather than within external modules 

[20].  Reactive processing occurs within individual cycles, whereas deliberative 

processing occurs across a sequence of cycles.  As in Soar, impasses occur when 

decisions cannot be made, leading to reflective processing. 

3   Expectedness 

Expectedness concerns whether an event is predicted by past knowledge.  Its inverse 

maps naturally, as unexpectedness, onto the notion of surprise that underlies the 

bottom-up aspects of today’s leading models of visual attention.  In other words, 

attention is drawn to what is surprising or unexpected; e.g., the Bayesian Theory of 

Surprise compares the prior distribution over the visual field – i.e., the model that has 

previously been learned for it – with the posterior distribution derived via Bayesian 

belief updating of the prior given the image [21].  The size of the difference correlates 

with how poorly past knowledge predicts the image. This comparison is computed by 

the Kullback-Leibler (KL) divergence, with M the current model and D the new data: 

 

 

Fig. 2: Summary product computation over the factor 

graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = 

fi(x,y)f2(y,z) of the marginal on y given evidence 

concerning x and z. 
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The computation of surprise in Sigma tracks this approach, but differs in several 

details.  Distribution updating is mediated by Sigma’s gradient-descent learning 

mechanism – as applied at FFNs – with the functions before and after learning 

compared ere the prior is replaced by the posterior as the node’s function.  Also, rather 

than basing the comparison on KL divergence it is based on Hellinger distance: 

.))(())(|(1))(),|((),('  dxxMPxDMPMPDMPHDMDS  

While both measure the difference between two distributions, KL divergence is non-

symmetric – and thus not a metric – and undefined for 0s in the second distribution.  

The Hellinger distance was chosen primarily because it can deal with these 0s. 

Fig. 3 shows the computation of surprise in a simple visual field, represented by a 

three-argument predicate: image(x:[0:4), y:[0:4), color:[red, 

yellow, green, blue, black]%).  The first two dimensions are modeled as 

discrete numeric, while color is symbolic.  The % denotes that there is a distribution 

over the color given the location.  Fig. 3(a) shows the initial visual field.  It remains this 

way for ~20 cycles to learn a model.  Then, the bottom-left location is switched from 

blue to green, as in Fig. 3(b).  Fig. 3(c) shows the (normalized) surprise map, which 

highlights the changed location.  The surprise map is a form of architectural self-

perception [22], and therefore stored in the perceptual buffer of an automatically 

created surprise predicate – image*surprise(x:[0:4)%, y:[0:4)%) – that 

embodies a joint distribution over the conditioning variables in the original predicate. 

 

Surprise has also been explored in more complex pre-existing tasks, such as 

Simultaneous Localization and Mapping (SLAM) [7].  In SLAM surprise is computed 

over the learned map, a fragment of mental imagery [23] rather than direct perception, 

with local input focusing surprise on the current and previous locations in the map.  In 

all, the work to date has moved Sigma from where it had no measure of surprise to 

where it is computable over any memorial predicate, whether perceptual or cognitive. 

Fig. 3: Visual field before and after change in bottom left cell, plus the resulting surprise 

map.  Each cell has a (Boolean) distribution over colors, but just the argmaxes are shown. 

(1) 

(2) 



 

4   Desirability 

Desirability concerns whether or not an event facilitates or thwarts what is wanted.  In 

Sigma it is modeled as a relationship between the current state and the goal.  The former 

is in working memory; however, until recently, Sigma did not have goals that the 

architecture could comprehend. Although Sigma, like Soar, has deep roots in search 

and problem solving, neither natively embodied declarative goals that would enable 

automated comparisons.  Driven by the needs of emotion, a goal function can now be 

specified for each predicate in Sigma, leading to an automatically created goal 

predicate whose WM represents the goal function; e.g., a pattern of tiles to be reached 

in the Eight Puzzle can be stored in the WM of the board*goal predicate.  Thus, 

investigating appraisal has led to the resolution of a decades-long issue in problem-

solving architectures.  In principle, this shouldn’t be too surprising – if emotions exist 

for functional reasons, they ought to support gains in other system capabilities. 

Given a predicate’s state and goal, desirability amounts to how similar/different the 

state is to/from the goal.  Although similarity in Sigma was first implemented as the dot 

product of the state and goal functions, once surprise was implemented it became clear 

that the Hellinger distance could directly yield a difference measure here, while the 

Bhattacharyya coefficient, a key subpart of the Hellinger distance, could replace the dot 

product in computing similarity: 

.)()(1),(),(  dxxgxsGSHDGSDifference  
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Thus, only one difference measure is needed for both expectedness and desirability, 

with a similarity measure computed for free.  Both variants of desirability are now 

computed and stored, as a progress map (for similarity) and a difference map, in the 

perceptual buffers for automatically created progress and difference predicates. 

Progress yields a region-by-region map of how similar the two distributions are.  

With Boolean goal and state distributions, what is computed corresponds to the fraction 

of the goal conjuncts achieved.  With a Boolean goal and a more general state 

distribution, this more closely resembles the probability that the goal has been achieved.  

A full distribution over the goal corresponds more to a utility or heuristic function than 

a goal.  Fig. 4 shows a sample state and goal for the Eight Puzzle, plus the progress and 

difference maps (normalized by the number of goal regions). 

 

Fig. 4: Eight Puzzle state and goal configurations, plus the resulting desirability maps.  The 

first two show argmaxes over (Boolean) distributions.  No goal has been set for the center cell. 

(3) 

(4) 



Beyond problem solving, desirability is also relevant to quite different sorts of 

problems, such as a visual search that, e.g., is to find the yellow locations in the visual 

field.  For complex visual searches, human processing is slow and sequential, but for 

simple searches like this one, detection occurs in time that is nearly independent of the 

number of distractors.  In Sigma, goals for visual search are specified just like those for 

problem-solving search – yielding an image*goal predicate here – with progress 

comparing the image with this goal.  However, instead of expressing a desire to change 

the existing image, it specifies what is to be found in it.  Fig. 5 shows sample states and 

goals for visual search, plus the progress and difference maps. 

 

5   Attention 

Attention broadly concerns the effective allocation of limited resources.  Standard 

dichotomies for it include perceptual (e.g., visual) versus cognitive (or central), overt 

(e.g., involving eye movements) versus covert (sans observable changes), and top down 

(i.e., task relevant) versus bottom up (i.e., stimulus driven) [24, 25].  Yet, from Sigma’s 

perspective, the first two of these dichotomies are best reconceptualized in terms of: (1) 

physical versus computational, and (2) the level of control involved (i.e., reactive, 

deliberative or reflective).  The first relates to overt versus covert, since allocating a 

physical resource such as the eye is overt; however, both covert perceptual attention 

and cognitive attention are computational, so the pie is cut a bit differently.  Within 

computational attention, quite different mechanisms may then operate at different 

levels of control.  For example, at the deliberative level, the decision procedure is a 

canonical means of allocating resources – and thus of focusing attention – but it is too 

slow, at ~50 msec per decision, to allocate reactive resources. 

The work here focuses on two levels of computational attention – reactive and 

deliberative – and in particular on how expectedness and desirability impact them.  

Computational attention is more difficult to evaluate than overt perceptual attention, 

but it is critical in cognitive architectures and likely also underlies physical attention.  

Reactive attention spans both covert perceptual attention and low-level cognitive 

attention.  It should largely be architectural given the timings, although architecturally 

accessible knowledge – such as is provided by appraisals – is still fair game.  Top-down 

versus bottom-up is less a distinction among types of attention than types of input to it.  

Here both factor into attention to reduce the cost of reactive processing. 

Fig. 5: Visual field state and goal (argmaxes), plus the resulting desirability maps. 



 

The primary reactive cost in Sigma is message processing at nodes in the factor 

graph; i.e., computing message products and summarizing out unneeded dimensions 

from them. Many optimizations have already been introduced into Sigma to reduce the 

number of messages passed [26] and the cost per message [27].  Simulated parallelism 

has also been explored [26].  Yet, attention may support further non-correctness-

preserving optimizations that still yield good enough answers. 

A range of attentional approaches have been considered that reduce the number of 

messages sent and/or the cost of processing individual messages, with one form of the 

latter chosen for initial experiments.  The basic idea is to use an attention map for each 

predicate in guiding abstraction of messages out of FFNs. The intent is to yield smaller 

messages that are cheaper to process yet still maintain the information critical for 

effective performance. The approach is analogous to attention-based image 

compression [28], but here it reduces inner-loop costs within a cognitive architecture. 

The attention map for a predicate is automatically computed from its surprise map 

and/or its progress/difference map.  When there is a learned function for a predicate, a 

surprise map exists and provides the bottom-up input to attention.  This makes sense 

conceptually – what is expected is not informative, and has little utility unless relevant 

to goals (making it a top-down factor) – and has a strong grounding in human cognition 

[21].  When a predicate has a goal, progress and difference maps exist, and one of them 

is reused as the top-down input to the attention map.  Again this makes sense 

conceptually, as top-down input is goal/task related, but there is some subtlety required 

in determining which of the two desirability maps to use. 

In problem solving, the focus should be on those parts of the state that differ from 

the goal – i.e., the difference map – as this is where problem-solving resources are most 

needed.  However, in visual search, what matters are the regions that match the goal – 

i.e., the progress map – as they correspond to what is being sought.  One way of dealing 

with this conundrum is to invert the sense of the goal in visual search so that it would 

seek differences from not yellow rather than similarities to yellow.  An alternative is to 

identify a fundamental distinction between the two problem classes that would enable 

difference to be used for the first and progress for the second. 

A variant of the second approach has been implemented, 

based on closed-world predicates – as seen in the more 

stable, all-or-none, states found in problem solving – versus 

open-world predicates – as seen in perception and other 

forms of more transient distributional information.  The 

attention map for a predicate is therefore a combination of 

surprise and difference for closed-world predicates, and 

surprise and progress for open-world predicates.  If either 

map in the pair doesn’t exist, the attention map is simply the 

one that does exist.  If neither exists, there is no attention map.  When both maps exist, 

they are combined via an approximation to probabilistic or that enables both to 

contribute while their combination remains ≤1: 

).()()()()()()()( BPAPBPAPBAPBPAPBAP   

Fig. 6 shows the attention map for visual search after the change in Fig. 3(b), based on 

the surprise map in Fig. 3(c) and the progress map in Fig. 5(c).  Bottom-up attention 

boosts the single changed region, while top-down boosts the two yellow regions. 

Fig. 6: Normalized 

attention map for visual 

search. 

(5) 



Given such an attention map, message abstraction out of FFNs then leverages the 

piecewise-linear nature of Sigma’s functions via an existing mechanism that minimizes 

the number of regions in functions by eliminating slices, and thus region boundaries, 

when the difference between the functions in each pair of regions spanning a slice is 

below a threshold.  In particular, at an FFN the attention map for the predicate is first 

scaled and then exponentiated to increase the contrast between large and small values 

(the scale is set so that the maximum value is 1 after exponentiation).  This 

exponentiated attention map is then multiplied times the factor function, and slices in 

the original function are removed if the differences are below threshold in this modified 

version.  In contrast to normal slice removal, where the functions across the slice are 

similar enough for either to be used for the new expanded region, here the functions 

contributing to the new region are averaged.  Fig. 7 shows the resulting message in the 

visual-search task.  Only 4 regions are removed here, but many more can be removed 

for larger images; for example, with a 200×200 image the reduction is from 160,000 

regions to 12.  Significant cost savings can accrue as well, with a factor of ~3 seen with 

large images. 

In addition to visual search, reactive attention has also 

been explored in SLAM.  We were able to verify that a 

correct map could still be learned, and that the messages 

from the FFNs are smaller, but so far these reductions have 

not been sufficient for significant cost savings in this task. 

Moving up the emotocognitive hierarchy to the 

deliberative level, it should be clear that a huge amount is 

already known about attention at this level, just mostly not 

under this name.  Decision-making, planning and problem 

solving are all concerned with deciding what to do next, 

which is the essence of deliberative attention.  However, 

with the notable exception of [29], tying this to appraisals is rare.  To date in Sigma, 

desirability – and, in particular, progress – has been explored as an automatic 

evaluation function for (reflective) hill climbing in the Eight Puzzle. When all of the 

map’s dimensions are summarized out via integration, the result is a single number in 

[0, 1] specifying the fraction of the tiles that are in their desired locations.  The result 

here is an evaluation function that enables successful solution of many Eight Puzzle 

problems without the task-specific control knowledge previously added by hand. 

Further attentional extensions within easy reach include: bottom-up inputs to 

decisions [29], progress as a reward function in reinforcement learning [30], difference 

as a guide in means-ends analysis (as in GPS [31]), and reflective attention. 

6   Wrap Up 

This work contributes novel architectural models of the expectedness and desirability 

appraisal variables, along with an initial investigation of their architectural implications 

for computational attention, both reactive (in aid of reducing message computation) 

and deliberative (in aid of guiding decisions).  The approach to reactive attention 

Fig. 7: Abstracted 

outgoing message with 

two mixed blue-red cells. 



 

particularly breaks new ground, while also contributing an extension of existing ideas 

about perceptual attention to explain low-level cognitive attention. 

These results leverage many of Sigma’s existing capabilities – including its (1) 

hybrid mixed function representation, (2) predicate factor graphs (particularly 

including working memories, perceptual buffers, and factor functions), (3) gradient-

descent learning mechanism, (4) ability to remove unnecessary slices from functions, 

and (5) reflective problem solving.  Added to the architecture were (1) a mechanism for 

comparing two distributions, (2) an architectural representation of declarative goals, (3) 

predicates for appraisal variables, and (4) a mechanism for abstracting graph messages 

based on an attention map.  Rather than forming a distinct emotion module, these 

largely just amount to more reusable architectural fragments. 

Still, this work just scratches the surface of all that is needed to implement emotion 

fully within Sigma.  More appraisal variables are clearly needed, such as controllability 

– with its close ties to decision-making – and social appraisals, with their potential 

grounding in recent work on Theory of Mind in Sigma [4].  It also makes sense to 

explore aggregation of appraisals across predicates.  Much more is also needed 

concerning the impact of appraisals on thought and behavior.  Here we began exploring 

the impact on attention.  We have also begun investigating the impact of the approach 

on drives and moods, based on further leveraging of distribution comparisons and 

learning.  Beyond this are also the broad topic of coping and the larger question of the 

relationship of emotions to embodiment.  Sigma has recently been connected to a virtual 

human body [32], but this is still just a beginning. 
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