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Abstract. Application of the Minimum Description Length principle to optimi-

zation queries in probabilistic programming was investigated on the example of 

the C++ probabilistic programming library under development. It was shown 

that incorporation of this criterion is essential for optimization queries to behave 

similarly to more common queries performing sampling in accordance with 

posterior distributions and automatically implementing the Bayesian Occam’s 

razor. Experimental validation was conducted on the task of blood cell detection 

on microscopic images. Detection appeared to be possible using genetic pro-

gramming query, and automatic penalization of candidate solution complexity 

allowed to choose the number of cells correctly avoiding overfitting. 
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1 Introduction 

Occam’s razor is the crucial component of universal algorithmic intelligence models 

[1], in which it is formalized in terms of algorithmic information theory. In practice, 

Occam’s razor is most widely used in the form of the Minimum Description/Message 

Length (MDL/MML) principles [2, 3], which can also be grounded in algorithmic 

information theory [4], but usually are applied loosely using heuristic coding schemes 

instead of universal reference machines [5]. 

Another form of Occam’s razor is the Bayesian Occam’s razor. In its simplest 

form, it penalizes complex models assigning them lower prior probabilities. However, 

these priors can be difficult to define non-arbitrarily. Some additional principles such 

as the maximum entropy principle were traditionally used to define priors, but algo-

rithmic information theory providing universal priors resolves this difficulty more 

generally and elegantly [6] absorbing this simple form of the Bayesian Occam’s razor. 

Real alternative to the information-theoretic interpretation of Occam’s razor is ‘a 

modern Bayesian approach to priors’ [7], in which model complexity is measured by 

its flexibility (possibility to fit to or generate different data instances) estimated on the 

second level of inference. 



Interestingly, Bayesian Occam’s razor arises naturally without special implementa-

tion in probabilistic programming languages (PPLs) with posterior probability infer-

ence [8]. Programs in PPLs are generative models. They require a programmer to 

define prior probabilities for some basic random variables, but the total probability 

distribution is derived from the program. One can easily obtain universal priors by 

writing a function like (define (gen) (if (flip) '() (cons (if (flip) 0 1) (gen)))), where 

(flip) equiprobably returns #t or #f, and interpreting generated binary lists as programs 

for Universal Turing Machine (UTM). 

Universal priors appear here from the natural structure of the program, and a con-

crete form of the selected distributions for the basic random choices only shifts them 

as the choice of a concrete UTM does. Similar situation appears in the case of models 

specifying Turing-incomplete spaces – higher-order polynomials with concrete coef-

ficients will naturally have smaller prior probabilities than lower-order polynomials 

even if the degree of polynomials is uniformly sampled from a certain range. 

Inference methods implemented in PPLs are intended for evaluating posterior 

probabilities incorporating priors defined by a program. Thus, instead of manually 

applying the MDL principle, one can simply use PPLs, which provide both the over-

learning-proof criterion and automatic inference methods. 

However, existing PPLs don’t solve the problem of efficient inference in a general 

case, although they provide more efficient inference procedures than blind search. 

Now, different attempts to improve inference procedures are being made (e.g. [9, 

10]). Most of them are done within the full Bayesian framework. The optimization 

framework, in which only maximum of posterior distribution (or other criterion) is 

sought, can be much more efficient and is enough in many practical tasks, but is much 

less studied in probabilistic programming. 

Optimization queries require some criterion function to be defined instead of a 

strict condition. It is usually straightforward to define precision-based criteria. Actual-

ly, in some tasks, strict conditions are defined as stochastic equality based on likeli-

hood (otherwise it will be necessary to blindly generate and fit noise), so the latter is 

more basic. Of course, if there is no appropriate quantitative criterion, the optimiza-

tion framework is not applicable. However, if one uses stochastic equality, priors will 

be automatically taken into account by conditional sampling (since samples will be 

generative in accordance with prior probabilities and then kept proportionally to like-

lihood), while optimization queries will directly maximize the given criterion and will 

be prone to overfitting if this criterion is precision-based. 

Thus, the necessity for MDL-like criteria arises in the optimization approach to 

probabilistic programming. Necessity for manual specification of such criteria, which 

incorporate not only precision, but also complexity, makes optimization queries much 

less usable and spoils the very idea of probabilistic programming. Thus, optimization 

queries should be designed in such a form that user-defined likelihood criteria are 

modified using automatically estimated priors. 

In this work, we re-implement a functional PPL with optimization queries in the 

form of C++ library, which have been implemented in Scheme and described in the 

companion paper [11]. We add a wrapper for OpenCV to this library in order to deal 

with non-toy problems. In these settings, we develop a procedure to calculate prior 

probabilities of instantiations of generative models in the form of computation traces 

used in optimization queries, and study its applicability to avoid overlearning. 



2 Background 

Minimum Description Length Principle 

Universal induction and prediction models are based on algorithmic complexity and 

probability, which are incomputable and cannot be directly applied in practice. In-

stead, the Minimum Description (or Message) Length principle (MDL) is usually 

applied. Initially, these principles were introduced in some specific strict forms [2, 3], 

but now are utilized in many applied methods (e.g. [5]) in the form of the following 

loose general definition [4]: the best model of the given data source is the one which 

minimizes the sum of 

 the length, in bits, of the model description; 

 the length, in bits, of data encoded with the use of the model. 

Its main purpose is to avoid overfitting by penalizing models on the base of their 

complexity that is calculated within heuristically defined coding schemes. Such “ap-

plied MDL principle” is quite useful, but mostly in the context of narrow AI. Bridging 

the gap between Kolmogorov complexity and applications of the MDL principle can 

also be a step towards bridging the gap between general and narrow AI. 

Probabilistic Programming 

In traditional semantics, a program with random choices being evaluated many times 

yields different results. The main idea behind probabilistic programming is to associ-

ate the result of program evaluation not with such particular outcomes, but with the 

distribution of all possible outcomes. Of course, the problem is to represent and com-

pute such distributions for arbitrary programs with random choices. It can be done 

directly only for some Turing-incomplete languages. In general case, the simplest way 

to deal with this problem is via sampling, in which a distribution is represented by the 

samples generated by a program evaluated many time using traditional semantics. 

Crucial feature of PPLs is conditioning, which allows a programmer to impose 

some conditions on (intermediate or final) results of program evaluation. Programs 

with such conditions are evaluated to conditional (posterior) distributions, which are 

the core of Bayesian inference. The simplest implementation of conditional inference 

is rejection sampling, in which outcomes of the program evaluation, which don’t meet 

the given condition, are rejected (not included into the generated set of outcomes 

representing conditional distribution). Such rejection sampling can be easily added to 

most existing programming languages as a common procedure, but it is highly ineffi-

cient, so it is usable only for very low-dimensional models. Consequently, more ad-

vanced inference techniques are being applied. For example, Metropolis-Hastings 

method is quite popular. In particular, it is used in Church [8], which extends Scheme 

with such sampling functions as rejected-query, mh-query, and some others. 

PPLs extend traditional programming languages also adding to them some func-

tions to sample from different distributions. In Church, such functions as flip, ran-

dom-integer, gaussian, multinomial, and some others are implemented. 

Bayesian Occam’s Razor in Probabilistic Programming 

As was mentioned, such PPLs as Church naturally support the Bayesian Occam’s 

razor [8]. Let us consider the following very simple example. 

(mh-query 1000 100 



          (define n (+ (random-integer 10) 1)) 

          (define xs (repeat n (lambda () (random-integer 10)))) 

          n 

          (= (sum xs) 12)) 

Here, we want a sum of unknown number n of random digits xs be equal to the 

given number, 12. Values of n belonging to the specified range are equiprobable a 

priori. However, the derived posterior probabilities are highly non-uniform – 

P(n=2|sum=12)0.9; P(n=3|sum=12)0.09; P(n=4|sum=12)0.009. 

Underlying combinatorics is quite obvious. However, this is exactly the effect of 

“penalizing complex solutions” that works in less obvious cases [8], e.g. polynomial 

approximation using polynomials of arbitrary degree, or clustering with unknown 

number of clusters. 

3 Optimization Framework for Probabilistic Programming 

Implemented Library 

We aim at the practical, but general implementation of probabilistic programming, so 

we consider Turing-complete languages and optimization framework. We implement-

ed a subset of Scheme language inside C++ using class constructors instead of func-

tion application. For example, such classes as Define, Lambda, List, Cons, Car, Cdr, 

Nullp, ListRef, If, and others with the corresponding constructors were implemented. 

All these classes are inherited from the Expression class, which has the field 

std::vector<Expression *> children, so expressions can constitute a tree. To create 

expressions from values, the class Value (with the synonym V) was added. This class 

is used for all values dynamically resolving supported types. 

Also, such classes as Add, Sub, Mult, Div, Gt, Gte, Ls, Lse, etc. were added, and 

such operations as +, –, *, /, >, >=, <, <=, etc. were overloaded to call corresponding 

constructors. Consequently, one can write something like 

Define(f, Lambda(xs, If(Nullp(xs), V(0), Car(xs) + f(Cdr(xs))))) 

corresponding to 

(define f (lambda (xs) (+ (if (null? xs) 0 (+ (car xs) (f (cdr xs))))))) 

To use symbols f and xs, one needs to declare them as instances of the class Symbol 

(with the synonym S) or to write S(“xs”) instead of xs. Parentheses operator is also 

overloaded, so one can write f(xs) instead of Apply(f, xs), where Apply is also the child 

of Expression. Similarly, one can write xs[n] instead of ListRef(xs, n). 

Classes corresponding to the basic random distributions were also added including 

Flip, Gaussian, RndInt, etc. 

We also wrapped some OpenCV functions and data structures in our library. Sup-

port for cv::Mat as the basic type was added, so it is possible to write something like 

Define(S(“image”), V(cv::imread(“test.jpg”))). All basic overloaded operations with 

cv::Mat are inherited, so values corresponding to cv::Mat can be summed or multi-

plied with other values. 

To avoid huge program traces while filling image pixels with random values (each 

such value will become a node in a program trace), we introduced such classes as 



MatGaussian and MatRndInt for generating random matrices as holistic values. These 

random matrices can be also generated as deviations from given data. 

The mentioned constructors of different classes are used simply to create expres-

sions and arrange them into trees. Evaluation of such expressions was also imple-

mented. A given expression tree is expanded into a program trace during evaluation. 

This program trace is also an expression tree, but with values assigned to its nodes. 

Evaluation process and program traces implemented in our C++ library are similar to 

that implemented in Scheme and described in the companion paper [11], so we will 

not go into detail here. Also, we re-implemented the optimization queries based on 

simulated annealing and genetic programming over computation traces. For example, 

one can write the following program with the result of evaluation shown in Fig. 1 

Symbol imr, imb; 

AnnealingQuery(List() 

                      << Define(imr, MatRndInt(img.rows, img.cols, CV_8UC3, 256, img)) 

                      << Define(imb, GaussianBlur(imr, V(11.), V(3.))) 

                      << imr 

                          << (MatDiff2(imb, V(img)) + MatDiff2(imb, imr) * 0.3)); 

Here, img is some cv::Mat loaded beforehand, List() << x << y << z … is equiva-

lent to (list x y z …). Operator << can be used to put additional elements to the list on 

the step of expression tree creation (not evaluation). imr is created as the random 3-

channel image with img as the initial value. MatDiff2 calculates RMSE per pixel be-

tween two matrices. AnnealingQuery is the simulated annealing optimization query, 

which minimizes the value of its last child, and its return value is set to the corre-

sponding value of its last but one child. Here, the second term in the optimization 

function prevents from too noisy results. Also, GPQuery based on genetic program-

ming is implemented. 

  

Fig. 1. The original blurred image and the result of inference 

Simulated annealing is not really suitable to perform search in the space of images, 

but reasonable result is obtained here in few seconds. It can also be seen that general 

C++ code can be easily used together with our probabilistic programming library. Of 

course, this code is executed before or during construction of expression tree or after 

its evaluation, but not during the process of evaluation. The latter can be done by 

extending the library with new classes that is relatively simple, but slightly more in-

volved. 

Expression trees can be used not as fixed programs written by a programmer, but 

as dynamic data structures built automatically. So, such a library can easily be made a 

part of a larger system (e.g. a cognitive architecture). 

Our library is under development and is used in this paper as the research tool, so 

we will not go into more detail. Nevertheless, the current version can be downloaded 

from https://github.com/aideus/prodeus 



Undesirable Behavior 

Optimization framework is suitable for many tasks, and optimization queries even 

without complexity penalty can be applied in probabilistic programming (see some 

examples in our companion paper [11]). However, even very simple generative mod-

els can be inappropriate in this framework. Consider the following program 

Symbol xobs, centers, sigmas, n, xgen; 

AnnealingQuery(List() 

<< Define(xobs, V(4.)) 

<< Define(centers, List(3, -7., 2., 10.)) 

<< Define(sigmas, List(3, 1., 1., 1.)) 

<< Define(n, RndInt(Length(centers))) 

    << Define(xgen, Gaussian(ListRef(centers, n), ListRef(sigmas, n))) 

<< n 

<< (xobs – xgen) * (xobs – xgen)); 

Intuitively, this program should simply return the number of the center closest to 

xobs since AnnealingQuery will minimize the distance from the generated value to the 

class center. However, evaluation of this program yields almost random indices of 

centers. The same model works fine in Church. The following query will return the 

distribution with p(n=1)1; and in the case of (define centers '(-7., -2., 10.)) it will 

return p(n=1)p(n=2)0.5. 

(define (noisy-equal? x y) 

(flip (exp (* -1 (– x y) (– x y))))) 

(mh-query 100 100 

          (define xobs 4) 

          (define centers '(-7., 2., 10.)) 

          (define sigmas '(1., 1., 1.)) 

          (define n (random-integer (length centers))) 

          (define xgen (gaussian (list-ref centers n) (list-ref sigmas n))) 

          n 

          (noisy-equal? xobs xgen)) 

It should be noted that noisy-equal? should apply flip to the correctly estimated 

likelihood, if one wants e.g. to get correct posterior probabilities for xgen. In particu-

lar, it should include such parameter as dispersion or precision. That is, these pro-

grams in C++ and Church really include the same information. 

Inappropriate result of AnnealingQuery originates from its possibility to reduce the 

given criterion adjusting values of all random variables including both n and xgen in 

this model. It is much easier to adjust xgen directly since its probability is not taken 

into account in the criterion. This problem can be easily fixed here, if we will tell 

AnnealingQuery to minimize the distance from the n-th center to xobs. The program 

will be simpler, and its result will be correct. However, the general problem will re-

main. It will reveal itself in the form of overfitting, impossibility to select an appro-

priate number of cluster or segments in the tasks of clustering and segmentation, ne-

cessity to manually define ad hoc criteria, and so on. These are exactly the problems, 

which are solved with the use of the MDL principle. 

 

 

 



Complexity Estimation 
Apparently, if we want optimization queries to work similarly to sampling queries, we 

need to account for probabilities, with which candidate solutions are generated. Here, 

we assume that the criterion fed to optimization queries can be treated as the negative 

log-likelihood. Then, it will be enough to automatically calculate and add minus loga-

rithm of prior probability of a candidate solution to achieve the desirable behavior. 

We calculate these prior probabilities by multiplying probabilities in those nodes of 

the program trace subtree starting from AnnealingQuery or GPQuery, in which basic 

random choices are made. Here, we assume that the list of expressions fed to queries 

is relevant. As the result, each such choice is taken into account only once, even if a 

variable referring to this choice is used many times. 

AnnealingQuery and GPQuery were modified and tested on the program presented 

above, and they returned n=1 in all cases, so they behave desirably. Of course, opti-

mization queries give less information than sampling queries. For example, in the 

case of centers '(-7., -2., 10.) the former will return n=1 or n=2 randomly, while the 

latter will return their probabilities. However, optimization queries can be much more 

efficient, and can be used to find the first point, from which methods like mh-query 

can start. 

4 Evaluation 

Since we aim at practical probabilistic programming for Turing-complete languages, 

we consider image analysis tasks which are computationally quite heavy. To the best 

of our knowledge, the only example of such application is the work [12] (and unfor-

tunately it lacks information about computation time). Thus, possibility to solve im-

age analysis tasks in a reasonable time can be used as a sufficient demonstration of 

efficiency of the optimization framework. This is also our goal in addition to verifica-

tion of the automatic MDL criterion calculation procedure. 

Consider the task of detection of erythrocytes (our system wasn’t aimed to solve 

this specific task, and it is taken simply as an example; other tasks could be picked). 

The typical image is shown in Fig. 2. The task is to detect and count cells. This task is 

usually solved by detecting edge pixels and applying Hough transform, or by tracking 

contours and fitting circles. Direct application of existing implementations of image 

processing methods is not enough, and application of non-trivial combinations of 

different processing functions or even ad hoc implementation of these functions is 

needed (e.g. [13]). 

 



Fig. 2. The original image with red blood cells 

However, an acceptable solution can be obtained using the following very small 

generative model: 

Define(n, RndInt(20) + 10) 

Define(circs, Repeat(n, Lambda0(List(RndInt(img.cols), 

          RndInt(img.rows), 

          RndInt(12)+6)))) 

Define(gen, Foldr(Lambda(circ, im, 

       DrawCircle(im, circ[0], circ[1], circ[2], V(168), V(-1))), 

       circs, V(cv::Mat::zeros(img.rows, img.cols, cv::CV_8UC1)))) 

circs 

Log(MatDiff2(gen, V(img))) * V(img.cols * img.rows) 

Here, n is the number of circles to draw, circs is the list of random circle centers 

and radii (img is the inverted image to be analyzed), gen is the generated image. It is 

generated starting from an empty image and consequently drawing circles from circs. 

It should be noted that since our library implements a functional quasi-language, such 

functions as DrawCircle don’t modify the given image, but return a new one. The last 

two expressions in the model contain the resulting value and estimation of minus log-

likelihood. To increase performance, we also implemented Drawer class. During 

evaluation Drawer processes a list of shapes and draws them using one resulting im-

age. The program with Drawer instead of Foldr and DrawCircle was tested. 

AnnealingQuery failed on the image with many objects, since each step of simulat-

ed annealing consists in an attempt to modify coordinates and sizes of all circles sim-

ultaneously, and successful modification becomes very unlikely for large number of 

variables. GPQuery showed acceptable results (see Fig. 3), but with some adjustment 

of the crossover operator.  

 

Fig. 3. The result yielded by GPQuery (population size = 300, 

number of generations = 100, mutation rate = 0.005) 

GPQuery yields better results here, since it automatically performs “soft decompo-

sition” of the given problem. However, its results are not optimal, and the search time 

is not too small (5–30 seconds on i5 2.6 GHz depending on GP parameters). Never-

theless, it is already usable for rapid prototyping. 

The search problem is one of the most important problems here, and it is far from 

being fully solved. However, we are interested in testing the developed method for 

incorporating the MDL criterion into the optimization queries. Let us consider the 

calculated value of this criterion on different small images (Fig. 4) for different num-



ber of circles in order to ensure that the found solution is nearly optimal. Table 1 

summarizes the obtained results. 

    

    

Fig. 4. Image fragments and best results for them 

Table 1. Total description lengths, bits 

Image # 
n 

1 2 3 4 5 6 

1 14650.4 14038.0 13131.2 12687.3 12689.3 12690.0 

2 20201.3 19612.1 18888.2 17955.2 17104.2 17115.2 

3 14680.3 13995.2 12808.1 12391.7 12316.6 12321.0 

4 9270.7 8155.1 8160.6 8162.6 8163.2 8168.5 

 

It can be seen that the total description length starts to slowly increase from some 

number of circles for each image. Each circle adds around 10 bits of complexity. So, 

negative log-likelihood slightly decreases, but slower than increase of complexity. 

Actually, since blood cells are not perfectly circular, additional circles fitted to un-

covered parts of cells can increase model complexity lesser than decrease of negative 

log-likelihood in some cases. However, in these cases, queries calculating posterior 

probability will also give a strong peak at the same number of circles. In other words, 

the origin of this result is not in query procedures or criteria, but in the model. In gen-

eral, the found minima of the description length criteria correspond to the real number 

of blood cells, and partially presented cells are reliably detected. 

Conclusion 

The developed method for automatic usage of the Minimum Description Length prin-

ciple in probabilistic programming both reduces the gap between the loosely applied 

MDL principle and the theoretically grounded, but impractical Kolmogorov complex-

ity, and helps to avoid overfitting in optimization queries making them an efficient 

alternative to more traditional queries estimating conditional probabilities. Experi-

ments conducted on the example of an image analysis task confirmed availability of 

this approach. 

However, even optimization queries being not specialized cannot efficiently solve 

arbitrary induction tasks especially connected to AGI. Actually, the task of such effi-

cient inference can itself be considered as the “AI-complete” problem. Thus, deeper 

connections between AGI and probabilistic programming fields are to be established. 
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