
Optimization Framework with Minimum Description

Length Principle for Probabilistic Programming

Alexey Potapov1,2,3, Vita Batishcheva2,3, and Sergey Rodionov3,4

1ITMO University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia

3AIDEUS, Russia
4Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR

7326, 13388, Marseille, France

{pas.aicv, elokkuu, astroseger}@gmail.com

Abstract. Application of the Minimum Description Length principle to optimi-

zation queries in probabilistic programming was investigated on the example of

the C++ probabilistic programming library under development. It was shown

that incorporation of this criterion is essential for optimization queries to behave

similarly to more common queries performing sampling in accordance with

posterior distributions and automatically implementing the Bayesian Occam’s

razor. Experimental validation was conducted on the task of blood cell detection

on microscopic images. Detection appeared to be possible using genetic pro-

gramming query, and automatic penalization of candidate solution complexity

allowed to choose the number of cells correctly avoiding overfitting.

Keywords: probabilistic programming, MDL, image interpretation, AGI

1 Introduction

Occam’s razor is the crucial component of universal algorithmic intelligence models

[1], in which it is formalized in terms of algorithmic information theory. In practice,

Occam’s razor is most widely used in the form of the Minimum Description/Message

Length (MDL/MML) principles [2, 3], which can also be grounded in algorithmic

information theory [4], but usually are applied loosely using heuristic coding schemes

instead of universal reference machines [5].

Another form of Occam’s razor is the Bayesian Occam’s razor. In its simplest

form, it penalizes complex models assigning them lower prior probabilities. However,

these priors can be difficult to define non-arbitrarily. Some additional principles such

as the maximum entropy principle were traditionally used to define priors, but algo-

rithmic information theory providing universal priors resolves this difficulty more

generally and elegantly [6] absorbing this simple form of the Bayesian Occam’s razor.

Real alternative to the information-theoretic interpretation of Occam’s razor is ‘a

modern Bayesian approach to priors’ [7], in which model complexity is measured by

its flexibility (possibility to fit to or generate different data instances) estimated on the

second level of inference.

Interestingly, Bayesian Occam’s razor arises naturally without special implementa-

tion in probabilistic programming languages (PPLs) with posterior probability infer-

ence [8]. Programs in PPLs are generative models. They require a programmer to

define prior probabilities for some basic random variables, but the total probability

distribution is derived from the program. One can easily obtain universal priors by

writing a function like (define (gen) (if (flip) '() (cons (if (flip) 0 1) (gen)))), where

(flip) equiprobably returns #t or #f, and interpreting generated binary lists as programs

for Universal Turing Machine (UTM).

Universal priors appear here from the natural structure of the program, and a con-

crete form of the selected distributions for the basic random choices only shifts them

as the choice of a concrete UTM does. Similar situation appears in the case of models

specifying Turing-incomplete spaces – higher-order polynomials with concrete coef-

ficients will naturally have smaller prior probabilities than lower-order polynomials

even if the degree of polynomials is uniformly sampled from a certain range.

Inference methods implemented in PPLs are intended for evaluating posterior

probabilities incorporating priors defined by a program. Thus, instead of manually

applying the MDL principle, one can simply use PPLs, which provide both the over-

learning-proof criterion and automatic inference methods.

However, existing PPLs don’t solve the problem of efficient inference in a general

case, although they provide more efficient inference procedures than blind search.

Now, different attempts to improve inference procedures are being made (e.g. [9,

10]). Most of them are done within the full Bayesian framework. The optimization

framework, in which only maximum of posterior distribution (or other criterion) is

sought, can be much more efficient and is enough in many practical tasks, but is much

less studied in probabilistic programming.

Optimization queries require some criterion function to be defined instead of a

strict condition. It is usually straightforward to define precision-based criteria. Actual-

ly, in some tasks, strict conditions are defined as stochastic equality based on likeli-

hood (otherwise it will be necessary to blindly generate and fit noise), so the latter is

more basic. Of course, if there is no appropriate quantitative criterion, the optimiza-

tion framework is not applicable. However, if one uses stochastic equality, priors will

be automatically taken into account by conditional sampling (since samples will be

generative in accordance with prior probabilities and then kept proportionally to like-

lihood), while optimization queries will directly maximize the given criterion and will

be prone to overfitting if this criterion is precision-based.

Thus, the necessity for MDL-like criteria arises in the optimization approach to

probabilistic programming. Necessity for manual specification of such criteria, which

incorporate not only precision, but also complexity, makes optimization queries much

less usable and spoils the very idea of probabilistic programming. Thus, optimization

queries should be designed in such a form that user-defined likelihood criteria are

modified using automatically estimated priors.

In this work, we re-implement a functional PPL with optimization queries in the

form of C++ library, which have been implemented in Scheme and described in the

companion paper [11]. We add a wrapper for OpenCV to this library in order to deal

with non-toy problems. In these settings, we develop a procedure to calculate prior

probabilities of instantiations of generative models in the form of computation traces

used in optimization queries, and study its applicability to avoid overlearning.

2 Background

Minimum Description Length Principle

Universal induction and prediction models are based on algorithmic complexity and

probability, which are incomputable and cannot be directly applied in practice. In-

stead, the Minimum Description (or Message) Length principle (MDL) is usually

applied. Initially, these principles were introduced in some specific strict forms [2, 3],

but now are utilized in many applied methods (e.g. [5]) in the form of the following

loose general definition [4]: the best model of the given data source is the one which

minimizes the sum of

 the length, in bits, of the model description;

 the length, in bits, of data encoded with the use of the model.

Its main purpose is to avoid overfitting by penalizing models on the base of their

complexity that is calculated within heuristically defined coding schemes. Such “ap-

plied MDL principle” is quite useful, but mostly in the context of narrow AI. Bridging

the gap between Kolmogorov complexity and applications of the MDL principle can

also be a step towards bridging the gap between general and narrow AI.

Probabilistic Programming

In traditional semantics, a program with random choices being evaluated many times

yields different results. The main idea behind probabilistic programming is to associ-

ate the result of program evaluation not with such particular outcomes, but with the

distribution of all possible outcomes. Of course, the problem is to represent and com-

pute such distributions for arbitrary programs with random choices. It can be done

directly only for some Turing-incomplete languages. In general case, the simplest way

to deal with this problem is via sampling, in which a distribution is represented by the

samples generated by a program evaluated many time using traditional semantics.

Crucial feature of PPLs is conditioning, which allows a programmer to impose

some conditions on (intermediate or final) results of program evaluation. Programs

with such conditions are evaluated to conditional (posterior) distributions, which are

the core of Bayesian inference. The simplest implementation of conditional inference

is rejection sampling, in which outcomes of the program evaluation, which don’t meet

the given condition, are rejected (not included into the generated set of outcomes

representing conditional distribution). Such rejection sampling can be easily added to

most existing programming languages as a common procedure, but it is highly ineffi-

cient, so it is usable only for very low-dimensional models. Consequently, more ad-

vanced inference techniques are being applied. For example, Metropolis-Hastings

method is quite popular. In particular, it is used in Church [8], which extends Scheme

with such sampling functions as rejected-query, mh-query, and some others.

PPLs extend traditional programming languages also adding to them some func-

tions to sample from different distributions. In Church, such functions as flip, ran-

dom-integer, gaussian, multinomial, and some others are implemented.

Bayesian Occam’s Razor in Probabilistic Programming

As was mentioned, such PPLs as Church naturally support the Bayesian Occam’s

razor [8]. Let us consider the following very simple example.

(mh-query 1000 100

 (define n (+ (random-integer 10) 1))

 (define xs (repeat n (lambda () (random-integer 10))))

 n

 (= (sum xs) 12))

Here, we want a sum of unknown number n of random digits xs be equal to the

given number, 12. Values of n belonging to the specified range are equiprobable a

priori. However, the derived posterior probabilities are highly non-uniform –

P(n=2|sum=12)0.9; P(n=3|sum=12)0.09; P(n=4|sum=12)0.009.

Underlying combinatorics is quite obvious. However, this is exactly the effect of

“penalizing complex solutions” that works in less obvious cases [8], e.g. polynomial

approximation using polynomials of arbitrary degree, or clustering with unknown

number of clusters.

3 Optimization Framework for Probabilistic Programming

Implemented Library

We aim at the practical, but general implementation of probabilistic programming, so

we consider Turing-complete languages and optimization framework. We implement-

ed a subset of Scheme language inside C++ using class constructors instead of func-

tion application. For example, such classes as Define, Lambda, List, Cons, Car, Cdr,

Nullp, ListRef, If, and others with the corresponding constructors were implemented.

All these classes are inherited from the Expression class, which has the field

std::vector<Expression *> children, so expressions can constitute a tree. To create

expressions from values, the class Value (with the synonym V) was added. This class

is used for all values dynamically resolving supported types.

Also, such classes as Add, Sub, Mult, Div, Gt, Gte, Ls, Lse, etc. were added, and

such operations as +, –, *, /, >, >=, <, <=, etc. were overloaded to call corresponding

constructors. Consequently, one can write something like

Define(f, Lambda(xs, If(Nullp(xs), V(0), Car(xs) + f(Cdr(xs)))))

corresponding to

(define f (lambda (xs) (+ (if (null? xs) 0 (+ (car xs) (f (cdr xs)))))))

To use symbols f and xs, one needs to declare them as instances of the class Symbol

(with the synonym S) or to write S(“xs”) instead of xs. Parentheses operator is also

overloaded, so one can write f(xs) instead of Apply(f, xs), where Apply is also the child

of Expression. Similarly, one can write xs[n] instead of ListRef(xs, n).

Classes corresponding to the basic random distributions were also added including

Flip, Gaussian, RndInt, etc.

We also wrapped some OpenCV functions and data structures in our library. Sup-

port for cv::Mat as the basic type was added, so it is possible to write something like

Define(S(“image”), V(cv::imread(“test.jpg”))). All basic overloaded operations with

cv::Mat are inherited, so values corresponding to cv::Mat can be summed or multi-

plied with other values.

To avoid huge program traces while filling image pixels with random values (each

such value will become a node in a program trace), we introduced such classes as

MatGaussian and MatRndInt for generating random matrices as holistic values. These

random matrices can be also generated as deviations from given data.

The mentioned constructors of different classes are used simply to create expres-

sions and arrange them into trees. Evaluation of such expressions was also imple-

mented. A given expression tree is expanded into a program trace during evaluation.

This program trace is also an expression tree, but with values assigned to its nodes.

Evaluation process and program traces implemented in our C++ library are similar to

that implemented in Scheme and described in the companion paper [11], so we will

not go into detail here. Also, we re-implemented the optimization queries based on

simulated annealing and genetic programming over computation traces. For example,

one can write the following program with the result of evaluation shown in Fig. 1

Symbol imr, imb;

AnnealingQuery(List()

 << Define(imr, MatRndInt(img.rows, img.cols, CV_8UC3, 256, img))

 << Define(imb, GaussianBlur(imr, V(11.), V(3.)))

 << imr

 << (MatDiff2(imb, V(img)) + MatDiff2(imb, imr) * 0.3));

Here, img is some cv::Mat loaded beforehand, List() << x << y << z … is equiva-

lent to (list x y z …). Operator << can be used to put additional elements to the list on

the step of expression tree creation (not evaluation). imr is created as the random 3-

channel image with img as the initial value. MatDiff2 calculates RMSE per pixel be-

tween two matrices. AnnealingQuery is the simulated annealing optimization query,

which minimizes the value of its last child, and its return value is set to the corre-

sponding value of its last but one child. Here, the second term in the optimization

function prevents from too noisy results. Also, GPQuery based on genetic program-

ming is implemented.

Fig. 1. The original blurred image and the result of inference

Simulated annealing is not really suitable to perform search in the space of images,

but reasonable result is obtained here in few seconds. It can also be seen that general

C++ code can be easily used together with our probabilistic programming library. Of

course, this code is executed before or during construction of expression tree or after

its evaluation, but not during the process of evaluation. The latter can be done by

extending the library with new classes that is relatively simple, but slightly more in-

volved.

Expression trees can be used not as fixed programs written by a programmer, but

as dynamic data structures built automatically. So, such a library can easily be made a

part of a larger system (e.g. a cognitive architecture).

Our library is under development and is used in this paper as the research tool, so

we will not go into more detail. Nevertheless, the current version can be downloaded

from https://github.com/aideus/prodeus

Undesirable Behavior

Optimization framework is suitable for many tasks, and optimization queries even

without complexity penalty can be applied in probabilistic programming (see some

examples in our companion paper [11]). However, even very simple generative mod-

els can be inappropriate in this framework. Consider the following program

Symbol xobs, centers, sigmas, n, xgen;

AnnealingQuery(List()

<< Define(xobs, V(4.))

<< Define(centers, List(3, -7., 2., 10.))

<< Define(sigmas, List(3, 1., 1., 1.))

<< Define(n, RndInt(Length(centers)))

 << Define(xgen, Gaussian(ListRef(centers, n), ListRef(sigmas, n)))

<< n

<< (xobs – xgen) * (xobs – xgen));

Intuitively, this program should simply return the number of the center closest to

xobs since AnnealingQuery will minimize the distance from the generated value to the

class center. However, evaluation of this program yields almost random indices of

centers. The same model works fine in Church. The following query will return the

distribution with p(n=1)1; and in the case of (define centers '(-7., -2., 10.)) it will

return p(n=1)p(n=2)0.5.

(define (noisy-equal? x y)

(flip (exp (* -1 (– x y) (– x y)))))

(mh-query 100 100

 (define xobs 4)

 (define centers '(-7., 2., 10.))

 (define sigmas '(1., 1., 1.))

 (define n (random-integer (length centers)))

 (define xgen (gaussian (list-ref centers n) (list-ref sigmas n)))

 n

 (noisy-equal? xobs xgen))

It should be noted that noisy-equal? should apply flip to the correctly estimated

likelihood, if one wants e.g. to get correct posterior probabilities for xgen. In particu-

lar, it should include such parameter as dispersion or precision. That is, these pro-

grams in C++ and Church really include the same information.

Inappropriate result of AnnealingQuery originates from its possibility to reduce the

given criterion adjusting values of all random variables including both n and xgen in

this model. It is much easier to adjust xgen directly since its probability is not taken

into account in the criterion. This problem can be easily fixed here, if we will tell

AnnealingQuery to minimize the distance from the n-th center to xobs. The program

will be simpler, and its result will be correct. However, the general problem will re-

main. It will reveal itself in the form of overfitting, impossibility to select an appro-

priate number of cluster or segments in the tasks of clustering and segmentation, ne-

cessity to manually define ad hoc criteria, and so on. These are exactly the problems,

which are solved with the use of the MDL principle.

Complexity Estimation
Apparently, if we want optimization queries to work similarly to sampling queries, we

need to account for probabilities, with which candidate solutions are generated. Here,

we assume that the criterion fed to optimization queries can be treated as the negative

log-likelihood. Then, it will be enough to automatically calculate and add minus loga-

rithm of prior probability of a candidate solution to achieve the desirable behavior.

We calculate these prior probabilities by multiplying probabilities in those nodes of

the program trace subtree starting from AnnealingQuery or GPQuery, in which basic

random choices are made. Here, we assume that the list of expressions fed to queries

is relevant. As the result, each such choice is taken into account only once, even if a

variable referring to this choice is used many times.

AnnealingQuery and GPQuery were modified and tested on the program presented

above, and they returned n=1 in all cases, so they behave desirably. Of course, opti-

mization queries give less information than sampling queries. For example, in the

case of centers '(-7., -2., 10.) the former will return n=1 or n=2 randomly, while the

latter will return their probabilities. However, optimization queries can be much more

efficient, and can be used to find the first point, from which methods like mh-query

can start.

4 Evaluation

Since we aim at practical probabilistic programming for Turing-complete languages,

we consider image analysis tasks which are computationally quite heavy. To the best

of our knowledge, the only example of such application is the work [12] (and unfor-

tunately it lacks information about computation time). Thus, possibility to solve im-

age analysis tasks in a reasonable time can be used as a sufficient demonstration of

efficiency of the optimization framework. This is also our goal in addition to verifica-

tion of the automatic MDL criterion calculation procedure.

Consider the task of detection of erythrocytes (our system wasn’t aimed to solve

this specific task, and it is taken simply as an example; other tasks could be picked).

The typical image is shown in Fig. 2. The task is to detect and count cells. This task is

usually solved by detecting edge pixels and applying Hough transform, or by tracking

contours and fitting circles. Direct application of existing implementations of image

processing methods is not enough, and application of non-trivial combinations of

different processing functions or even ad hoc implementation of these functions is

needed (e.g. [13]).

Fig. 2. The original image with red blood cells

However, an acceptable solution can be obtained using the following very small

generative model:

Define(n, RndInt(20) + 10)

Define(circs, Repeat(n, Lambda0(List(RndInt(img.cols),

 RndInt(img.rows),

 RndInt(12)+6))))

Define(gen, Foldr(Lambda(circ, im,

 DrawCircle(im, circ[0], circ[1], circ[2], V(168), V(-1))),

 circs, V(cv::Mat::zeros(img.rows, img.cols, cv::CV_8UC1))))

circs

Log(MatDiff2(gen, V(img))) * V(img.cols * img.rows)

Here, n is the number of circles to draw, circs is the list of random circle centers

and radii (img is the inverted image to be analyzed), gen is the generated image. It is

generated starting from an empty image and consequently drawing circles from circs.

It should be noted that since our library implements a functional quasi-language, such

functions as DrawCircle don’t modify the given image, but return a new one. The last

two expressions in the model contain the resulting value and estimation of minus log-

likelihood. To increase performance, we also implemented Drawer class. During

evaluation Drawer processes a list of shapes and draws them using one resulting im-

age. The program with Drawer instead of Foldr and DrawCircle was tested.

AnnealingQuery failed on the image with many objects, since each step of simulat-

ed annealing consists in an attempt to modify coordinates and sizes of all circles sim-

ultaneously, and successful modification becomes very unlikely for large number of

variables. GPQuery showed acceptable results (see Fig. 3), but with some adjustment

of the crossover operator.

Fig. 3. The result yielded by GPQuery (population size = 300,

number of generations = 100, mutation rate = 0.005)

GPQuery yields better results here, since it automatically performs “soft decompo-

sition” of the given problem. However, its results are not optimal, and the search time

is not too small (5–30 seconds on i5 2.6 GHz depending on GP parameters). Never-

theless, it is already usable for rapid prototyping.

The search problem is one of the most important problems here, and it is far from

being fully solved. However, we are interested in testing the developed method for

incorporating the MDL criterion into the optimization queries. Let us consider the

calculated value of this criterion on different small images (Fig. 4) for different num-

ber of circles in order to ensure that the found solution is nearly optimal. Table 1

summarizes the obtained results.

Fig. 4. Image fragments and best results for them

Table 1. Total description lengths, bits

Image #
n

1 2 3 4 5 6

1 14650.4 14038.0 13131.2 12687.3 12689.3 12690.0

2 20201.3 19612.1 18888.2 17955.2 17104.2 17115.2

3 14680.3 13995.2 12808.1 12391.7 12316.6 12321.0

4 9270.7 8155.1 8160.6 8162.6 8163.2 8168.5

It can be seen that the total description length starts to slowly increase from some

number of circles for each image. Each circle adds around 10 bits of complexity. So,

negative log-likelihood slightly decreases, but slower than increase of complexity.

Actually, since blood cells are not perfectly circular, additional circles fitted to un-

covered parts of cells can increase model complexity lesser than decrease of negative

log-likelihood in some cases. However, in these cases, queries calculating posterior

probability will also give a strong peak at the same number of circles. In other words,

the origin of this result is not in query procedures or criteria, but in the model. In gen-

eral, the found minima of the description length criteria correspond to the real number

of blood cells, and partially presented cells are reliably detected.

Conclusion

The developed method for automatic usage of the Minimum Description Length prin-

ciple in probabilistic programming both reduces the gap between the loosely applied

MDL principle and the theoretically grounded, but impractical Kolmogorov complex-

ity, and helps to avoid overfitting in optimization queries making them an efficient

alternative to more traditional queries estimating conditional probabilities. Experi-

ments conducted on the example of an image analysis task confirmed availability of

this approach.

However, even optimization queries being not specialized cannot efficiently solve

arbitrary induction tasks especially connected to AGI. Actually, the task of such effi-

cient inference can itself be considered as the “AI-complete” problem. Thus, deeper

connections between AGI and probabilistic programming fields are to be established.

Acknowledgements

This work was supported by Ministry of Education and Science of the Russian Feder-

ation, and by Government of Russian Federation, Grant 074-U01.

References

1. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic

Probability. Springer (2005)

2. Wallace, C.S., Boulton, D.M.: An Information Measure for Classification. Computer Jour-

nal 11, pp. 185–195 (1968)

3. Rissanen, J.J.: Modeling by the Shortest Data Description. Automatica-J.IFAC 14, pp.

465–471 (1978)

4. Vitanyi, P.M.B., Li, M.: Minimum Description Length Induction, Bayesianism, and Kol-

mogorov complexity. IEEE Trans. on Information Theory 46 (2), pp. 446–464 (2000)

5. Potapov, A.S.: Principle of Representational Minimum Description Length in Image Anal-

ysis and Pattern Recognition. Pattern Recognition and Image Analysis 22 (1), pp. 82–91

(2012)

6. Solomonoff, R.: Does Algorithmic Probability Solve the Problem of Induction? Oxbridge

Research, P.O.B. 391887, Cambridge, Mass. 02139 (1997)

7. MacKay. D.J.C.: Bayesian Methods for Adaptive Models. PhD thesis, California Institute

of Technology (1991)

8. Goodman, N.D., Tenenbaum, J.B.: Probabilistic Models of Cognition.

https://probmods.org/

9. Stuhlmüller, A., Goodman, N. D.: A dynamic programming algorithm for inference in re-

cursive probabilistic programs. In: Second Statistical Relational AI workshop at UAI 2012

(StaRAI-12), arXiv:1206.3555 [cs.AI] (2012)

10. Chaganty, A., Nori A.V., Rajamani, S.K.: Efficiently sampling probabilistic programs via

program analysis. Proc. Artificial Intelligence and Statistics, pp. 153–160 (2013)

11. Potapov, A., Batishcheva, V.: Genetic Programming on Program Traces as an Inference

Engine for Probabilistic Languages. In: LNAI (2015)

12. Mansinghka, V., Kulkarni, T., Perov, Y., Tenenbaum, J.: Approximate Bayesian Image In-

terpretation using Generative Probabilistic Graphics Programs. Advances in Neural Infor-

mation Processing Systems, arXiv:1307.0060 [cs.AI] (2013)

13. Zhdanov, I.N., Potapov, A.S., Shcherbakov, O.V.: Erythrometry method based on a modi-

fied Hough transform. Journal of Optical Technology, vol. 80, no. 3, pp. 201–203 (2013)

https://probmods.org/

