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Abstract. We propose that Solomonoff induction is complete in the
physical sense via several strong physical arguments. We also argue that
Solomonoff induction is fully applicable to quantum mechanics. We show
how to choose an objective reference machine for universal induction by
defining a physical message complexity and physical message probabil-
ity, and argue that this choice dissolves some well-known objections to
universal induction. We also introduce many more variants of physical
message complexity based on energy and action, and discuss the ramifi-
cations of our proposals.

“If you wish to make an apple pie from scratch, you must first invent the
universe.” – Carl Sagan

1 Introduction

Ray Solomonoff has discovered algorithmic probability and introduced the
universal induction method which is the foundation of mathematical Artificial
Intelligence (AI) theory [14]. Although the theory of Solomonoff induction is
somewhat independent of physics, we interpret it physically and try to refine
the understanding of the theory by thought experiments given constraints of
physical law. First, we argue that its completeness is compatible with contem-
porary physical theory, for which we give arguments from modern physics that
show Solomonoff induction to converge for all possible physical prediction prob-
lems. Second, we define a physical message complexity measure based on initial
machine volume, and argue that it has the advantage of objectivity and the
typical disadvantages of using low-level reference machines. However, we show
that setting the reference machine to the universe does have benefits, potentially
eliminating some constants from algorithmic information theory (AIT) and re-
futing certain well-known theoretical objections to algorithmic probability. We
also introduce a physical version of algorithmic probability based on volume and
propose six more variants of physical message complexity.

2 Background

Let us recall Solomonoff’s universal distribution. Let U be a universal com-
puter which runs programs with a prefix-free encoding like LISP. The algorith-
mic probability that a bit string x ∈ {0, 1}+ is generated by a random program
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π ∈ {0, 1}+ of U is:

PU (x) =
∑

U(π)=x(0|1)∗
2−|π| (1)

We also give the basic definition of Algorithmic Information Theory (AIT), where
the algorithmic entropy, or complexity of a bit string x ∈ {0, 1}+ is defined
as HU (x) = min({|π| | U(π) = x}). Universal sequence induction method of
Solomonoff works on bit strings x drawn from a stochastic source µ. Equation 1
is a semi-measure, but that is easily overcome as we can normalize it. We merely
normalize sequence probabilities, P ′U (x0) = PU (x0).P ′U (x)/(PU (x0) + PU (x1)),
eliminating irrelevant programs and ensuring that the probabilities sum to 1,
from which point on P ′U (x0|x) = P ′U (x0)/P ′U (x) yields an accurate prediction.
The error bound for this method is the best known for any such induction
method. The total expected squared error between P ′U (x) and µ is less than
−1/2 lnP ′U (µ) according to the convergence theorem proven in [13], and it is
roughly HU (µ) ln 2 [15].

3 Physical Completeness of Universal Induction

Solomonoff induction model is known to be complete and incomputable.
Equation 1 enumerates a non-trivial property of all programs (the membership
of a program’s output in a regular language), which makes it an incomputable
function. It is more properly construed as a semi-computable function that may
be approximated arbitrarily well in the limit. Solomonoff has argued that the
incomputability of algorithmic probability does not inhibit its practical applica-
tion in any fundamental way, and emphasized this often misunderstood point in
a number of publications.

The only remaining assumptions for convergence theorem to hold in general,
for any µ are a) that we have picked a universal reference machine, and b) that
µ has a computable probability density function (pdf). The second assumption
warrants our attention when we consider modern physical theory. We formalize
the computability of µ as follows:

HU (µ) ≤ k,∃k ∈ Z (2)

which entails that the pdf µ(x) can be perfectly simulated on a computer, while
x are (truly) stochastic. This condition is formalized likewise in [5].

3.1 Evidence from physics

There is an exact correspondence of such a construct in physics, which is
the quantum wave function. The wave function of a finite quantum system is
defined by a finite number of parameters (i.e., complex vector), although its
product with its conjugate is a pdf from which we sample stochastic observa-
tions. Since it is irrational to consider an infinite quantum system in the finite
observable universe, µ can model the statistical behavior of matter for any quan-
tum mechanical source. This is the first evidence of true, physical completeness
of Solomonoff induction we will consider. Von Neumann entropy of a quantum
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system is described by a density matrix ρ:

S = − tr(ρlnρ) = −
∑
j

ηj ln ηj (3)

where tr is the trace of a matrix, ρ =
∑
j ηj |j〉 〈j| is decomposed into its eigen-

vectors, and ηj is algebraic multiplicity. Apparently, von Neumann entropy is
equivalent to classical entropy and suggests a computable pdf, which is expected
since we took ρ to be a finite matrix. Furthermore, the dynamic time evolution
of a wave function is known to be unitary, which entails that if µ is a quantum
system, it will remain computable dynamically. Therefore, if µ is a quantum
system with a finite density matrix, convergence theorem holds.

The second piece of evidence from physical theory is that of universal quan-
tum computer, which shows that any local quantum system may be simulated
by a universal quantum computer [7]. Since a universal quantum computer is
Turing-equivalent, this means that any local quantum system may therefore be
simulated on a classical computer. This fact has been interpreted as a physi-
cal version of Church-Turing thesis by the quantum computing pioneer David
Deutsch, in that ’every finitely realizable physical system can be perfectly sim-
ulated by a universal model computing machine operating by finite means’ [3].
As a quantum computer is equivalent to a probabilistic computer, whose out-
puts are probabilistic after decoherence, these two facts together entail that the
pdf of a local quantum system is always computable. Which yields our second
conclusion. If µ is a local quantum system, the convergence theorem holds.

The third piece of evidence from physics is that of the famous Bekenstein
bound and the holographic principle. Bekenstein bound was originally conceived
for black holes, however, it applies to any physical system, and states that any
finite energy system enclosed within a finite volume of space will have finite
entropy:

S ≤ 2πkRE

~c
(4)

where S is entropy, andR is the radius of the sphere that encloses the system, E is
the total energy of the system including masses, and the rest are familiar physical
constants. Such a finite entropy readily transforms into Shannon entropy, and
corresponds to a computable pdf. The inequality acts as a physical elucidation
of Equation 2. Therefore, if µ is a finite-size and finite-energy physical system,
the convergence theorem holds.

Contemporary cosmology also affirms this observation, as the entropy of the
observable universe has been estimated, and is naturally known to be finite [4].
Therefore, if contemporary cosmological models are true, any physical system in
the observable universe must have finite entropy, thus validating the convergence
theorem.

Thus, since we have shown wide-reaching evidence for the computability of
pdf of µ from quantum mechanics, general relativity, and cosmology, we conclude
that contemporary physical science strongly and directly supports the universal
applicability of the convergence theorem. In other words, it has been physically
proven, as opposed to merely mathematically.
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3.2 Randomness, computability and quantum mechanics

Wood et. al interpreted algorithmic probability as a ”universal mixture” [19],
which is essentially an infinite mixture of all possible computations that match
the input. This entails that it should model even random events, due to Chaitin’s
strong definitions of algorithmic randomness [2]. That is to say, the universal
mixture can model white noise perfectly (e.g., µ(x0) = µ(x1) = 1/2). More
expansive definitions of randomness are not empirically justifiable. Our tenta-
tive analysis is that stronger definitions of randomness are not needed as they
would be referring to halting oracles, which would be truly incomputable, and by
our arguments in this paper, have no physical relevance. Note that the halting
probability is semi-computable.

The computable pdf model is a good abstraction of the observations in quan-
tum mechanics (QM). In QM, the wave function itself has finite description
(finite entropy), with unitary (deterministic) evolution, while the observations
(measurements) are stochastic. Solomonoff induction is complete with respect to
QM, as well, even when we assume the reality of non-determinism – which many
interpretations of QM do admit. In other words, such claims that Solomonoff in-
duction is not complete could only be true if and only if either physical Church-
Turing thesis were false, or if hypercomputers (oracle machines) were possible –
which seem to be equivalent statements. The physical constraints on a stochastic
source however rules out hypercomputers, which would have to contain either in-
finite amount of algorithmic information (infinite memory), or be infinitely fast,
both of which would require infinite entropy, and infinite energy. A hypercom-
puter is often imagined to use a continuous model of computation which stores
information in real-valued variables. By AIT, a random real has infinite algorith-
mic entropy, which contradicts with the Bekenstein bound (Equation 4). Such
real-valued variables are ruled out by the uncertainty principle, which places
fundamental limits to the precision of any physical quantity – measurements
beneath the Planck-scale are impossible. Hypercomputers are also directly ruled
out by limits of quantum computation [6]. In other words, QM strongly supports
the stochastic computation model of Solomonoff.

4 On The Existence of an Objective U

The universal induction model is viewed as subjective, since the generaliza-
tion error depends on the choice of a universal computer U as the convergence
theorem shows. This choice is natural according to a Bayesian interpretation
of learning as U may be considered to encode the subjective knowledge of the
observer. Furthermore, invariance theorem may be interpreted to imply that the
choice of a reference machine is irrelevant. However, it is still an arbitrary choice.
A previous proposal learns reference machines that encode good programs with
short codes in the context of universal reinforcement learning [17].

4.1 The universe as the reference machine

In the following, we shall examine a sense which we may consider the best
choice for U . Solomonoff himself mentioned such a choice [16], explaining that
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he did find an objective universal device but dismissed it because it did not have
any prior information, since subjectivity is a desirable and necessary feature of
algorithmic probability.

We proposed a philosophical solution to this problem in a previous article
where we made a physical interpretation of algorithmic complexity, by setting U
to the universe itself [10]. This was achieved by adopting a physical definition of
complexity, wherein program length was interpreted as physical length. The cor-
respondence between spatial extension and program length directly follows from
the proper physicalist account of information, for every bit extends in space.
Which naturally gives rise to the definition of physical message complexity as
the volume of the smallest machine that can compute a message, eliminating
the requirement of a reference machine. There are a few difficulties with such a
definition of complexity whose analysis is in order. Contrast also with thermo-
dynamic entropy and Bennett’s work on physical complexity [20,1].

4.2 Minimum machine volume as a complexity measure
In the present article, we support the above philosophical solution to the

choice of the reference machine with basic observations. Let us define physical
message complexity:

CV (x) , min{V (M) | M → x} (5)

where x ∈ D+ is any d-ary message written in an alphabet D, M is any phys-
ical machine (finite mechanism) that emits the message x (denoted M → x),
and V (M) is the volume of machine M . M is supposed to contain all physical
computers that can emit message x.

Equation 5 is too abstract and it would have to be connected to physical law
to be useful. However, it allows us to reason about the constraints we wish to
put on physical complexity. M could be any possible physical computer that can
emit a message. For this definition to be useful, the concept of emission would
have to be determined. Imagine for now that the device emits photons that can
be detected by a sensor, interpreting the presence of a photon with frequency fi
as di ∈ D. It might be hard for us to build the minimal device that can do this.
However, let us assume that such a device can exist and be simulated. It is likely
that this minimal hardware would occupy quite a large volume compared to
the output it emits. With every added unit of message complexity, the minimal
device would have to get larger. We may consider additional complications. For
instance, we may demand that these machines do not receive any physical input,
i.e., supply their own energy, which we call a self-contained mechanism. We note
that resource bounds can also be naturally added into this picture.

When we use CV (x) instead of HU (x), we do not only eliminate the need for a
reference machine, but we also eliminate many constraints and constants in AIT.
First of all, there is not the same worry of a self-delimiting program, because
every physical machine that can be constructed will either emit a message or not
in isolation, although its meaning slightly changes and will be considered in the
following. Secondly, we expect all the basic theorems of AIT to hold, while the ar-
bitrary constants that correspond to glue code to be eliminated or minimized. Re-
call that the constants in AIT usually correspond to such elementary operations
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as function composition and so forth. Let us consider the sub-additivity of infor-
mation which represents a good example: HU (x, y) = HU (x) +HU (y|x) +O(1)
When we consider CV (x, y), however, the sub-additivity of information becomes
exactly CV (x, y) = CV (x) + CV (y|x) since there does not need to be a gap be-
tween a machine emitting a photon and another sensing one. In the consideration
of an underlying physical theory of computing (like quantum computing), the
relations will further change, and become ever clearer.

4.3 Volume based algorithmic probability

From the viewpoint of AI theory, however, what we are interested in is
whether the elimination of a reference machine may improve the performance
of machine learning. Recall that the convergence theorem is related to the algo-
rithmic entropy of the stochastic source with respect to the reference machine.
A reasonable concern in this case is that the choice of a “bad” reference machine
may inflate the errors prohibitively for small data size, for which induction works
best, i.e., as the composition of a physical system may be poorly reflected in an
artificial language, increasing generalization error. On the other hand, setting
U to the universe obtains an objective measurement, which does not depend
on subjective choices, and furthermore, always corresponds well to the actual
physical complexity of the stochastic source. We shall first need to re-define al-
gorithmic probability for an alphabet of D. We propose using the exponential
distribution for a priori machine probabilities because it is a maximum entropy
distribution, and applicable to real values, although we would favor Planck-units.

P (x) ,

∑
M→xD∗ e−λV (M)∑
M→D+ e−λV (M)

(6)

An unbiased choice for parameter λ here would be 1; further research may im-
prove upon this choice. Here, it does not matter that any machine-encodings
of M are prefix-free, because infinity is not a valid concern in physical theory,
and any arrangement of quanta is possible (although not stable). Due to general
relativity, there cannot be any influence from beyond the observable universe,
i.e., there is not enough time for any message to arrive from beyond it, even if
there is anything beyond the cosmic horizon. Therefore, the volume V (M) of
the largest machine is constrained by the volume of the observable universe, i.e.,
it is finite. Hence, the sums always converge.

4.4 Minimum machine energy and action

We now propose alternatives to minimum machine volume complexity. While
volume quantifies the initial space occuppied by a machine, energy accounts for
every aspect of operation. In general relativity, the energy distribution deter-
mines the curvature of space-time, and energy is equivalent to mass via creation
and annihilation of particle-antiparticle pairs. Likewise, the unit of h is J.sec,
i.e., energy-time product, quantum of action and quantifies dynamical evolution
of physical systems. Let CE(x) , min{E(M) | M → x} be the energy complex-
ity of message, and CA(x) , min{A(M) | M → x} action (or action volume
E.t) complexity of message which quantify the computation and transmission
of message x by a finite mechanism [8]. Further variants may be construed by
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considering how much energy and action it takes to build M from scratch, which
include the work required to make the constituent quanta, and are called con-
structive energy CEc(x) and action CAc(x) complexity of messages, respectively.
Measures may also be defined to account for machine construction, and message
transmission, called total energy CEt(x), and total action CAt(x) complexity of
messages. Versions of algorithmic probability may be defined for each of these six
new complexity measures in similar manner to Equation 6. Note that the trick in
algorithmic probability is maximum uncertainty about the source µ. For energy
based probability, if µ is at thermal equilibrium we may thus use the Boltzmann
distribution P (M) = e−E/kT for a priori machine probabilities instead of the
exponential distribution, which also maximizes uncertainty. We may also model
a priori probabilities with a canonical ensemble, using P (M) = e(F−E)/kT where
F is the Helmholtz free energy.

4.5 Restoring subjectivity

Solomonoff’s observation that subjectivity is required to solve any problem of
significant complexity is of paramount importance. Our proposal of using a phys-
ical measure of complexity for objective inference does not neglect that property
of universal induction. Instead, we observe that a guiding pdf contains prior in-
formation in the form of a pdf. Let U1 be a universal computer that contains
much prior information about a problem domain, based on a universal computer
U that does not contain any significant information. Such prior information may
always be split off to a memory bank.

PU1
(x) = PU (x|M) (7)

Therefore, we can use a conditional physical message complexity given a memory
bank to account for prior information, instead of modifying a pdf. Subjectivity
is thus retained. Note that the universal induction view is compatible with a
Bayesian interpretation of probability, while admitting that the source is real,
which is why we can eliminate the bias about reference machine – there is a
theory of everything that accurately quantifies physical processes in this universe.

Choosing the universe as U has a particular disadvantage of using the lowest
possible level computer architecture. Science has not yet formulated complete de-
scriptions of the computation at the lowest level of the universe, therefore further
research is needed. However, for solving problems at macro-scale, and/or from
artificial sources, algorithmic information pertaining to such domains must be
encoded as prior information in M , since otherwise solution would be infeasible.

4.6 Quantum algorithmic probability and physical models

Note that it is well possible to extend the proposal in this section to a quan-
tum version of AIT by setting U to a universal quantum computer. There are
likely other advantages of using a universal quantum computer, e.g., efficient
simulation of physical systems. For instance, the quantum circuit model may be
used, which seems to be closer to actual quantum physical systems than Quan-
tum Turing Machine model [9]. A universal quantum computer model will also
extend the definition of message to any quantum measurement. In particular,
the input to the quantum circuit is |0 . . .〉 (null) while the output is the quantum
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measurement of message |x〉. Since quantum computers are probabilistic, mul-
tiple trials must be conducted to obtain the result with high probability. Also,
Grover’s algorithm may be applied to accelerate universal induction approxima-
tion procedures.

All physical systems do reduce properly to quantum systems, however, only
problems at the quantum-scale would require accurate simulation of quantum
processes. An ultimate AI system would choose the appropriate physical model
class for the scale and domain of sensor readings it processes. Such a machine
would be able to adjust its attention to the scale of collisions in LHC, or galaxy
clusters according to context. This would be an important ability for an artificial
scientist, as different physical forces are at play at different scales; nature is not
uniformly scale-free, although some statistical properties may be invariant across
scales. The formalism of phase spaces and stochastic dynamical systems may
be used to describe a large number of physical systems. What matters is that
a chosen physical formalism quantifies basic physical resources in a way that
allows us to formulate physical complexity measures. We contend however that
a unified language of physics is possible, in accordance with the main tenets of
logical empiricism.

4.7 The physical semantics of halting probability
The halting probability ΩU is the probability that a random program of U

will halt, and it is semi-computable much like algorithmic probability. What
happens when we set U to the universe? We observe that there is an irreducible
mutual algorithmic information between any two stochastic sources, which is the
physical law, or the finite set of axioms of physics (incomplete presently). This
irreducible information corresponds to U in our framework, and it is equivalent to
the uniformity of physical law in cosmology for which there is a wealth of evidence
[18]. It is known that ΩU contains information about difficult conjectures in
mathematics as most can be transformed to instances of the halting problem.
Setting U to a (sufficiently complete) theory of physics biases ΩU to encode
the solutions of non-trivial physical problems in shorter prefixes of its binary
expansion, while it still contains information about any other universal machines
and problems stated within them, e.g., imaginary worlds with alternative physics.

5 Discussion

5.1 Dissolving the problem of induction
The problem of induction is an old philosophical riddle that we cannot justify

induction by itself, since that would be circular. If we follow the proposed phys-
ical message complexity idea, for the first capable induction systems (brains) to
evolve, they did not need to have an a priori, deductive proof of induction. How-
ever, the evolution process itself works inductively as it proceeds from simpler to
more complex forms which constitute and expend more physical entropy. There-
fore, induction does explain how inductive systems can evolve, an explanation
that we might call a glorious recursion, instead of a vicious circle: an inductive
system can invent an induction system more powerful than itself, and it can also
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invent a computational theory of how itself works when no such scientific theory
previously existed, which is what happened in Solomonoff’s brain.

5.2 Disproving Boltzmann brains

The argument from practical finiteness of the universe was mentioned briefly
by Solomonoff in [12]. Let us note, however, that the abstract theory of algorith-
mic probability implies an infinite probabilistic universe, in which every program
may be generated, and each bit of each program is equiprobable. In such an ab-
stract universe, a Boltzmann Brain, with considerably more entropy than our
humble universe is even possible, although it has a vanishingly small probabil-
ity. In a finite observable universe with finite resources, however, we obtain a
slightly different picture, for instance any Boltzmann Brain is improbable, and
a Boltzmann Brain with a much greater entropy than our universe would be
impossible (0 probability). Obviously, in a sequence of universes with increasing
volume of observable universe, the limit would be much like pure algorithmic
probability. However, for our definition of physical message complexity, a proper
physical framework is much more appropriate, and such considerations quickly
veer into the territory of metaphysics (since they truly consider universes with
physical law unlike our own). Thus firmly footed in contemporary physics, we
gain a better understanding of the limits of ultimate intelligence.

5.3 Refuting the Platonist objection to algorithmic information

An additional nice property of using physical stochastic models, e.g., sta-
tistical mechanics, stochastic dynamical systems, quantum computing models,
instead of abstract machine or computation models is that we can refute a well-
known objection to algorithmic information by Raatikainen [11], which depends
on unnatural enumerations of recursive functions, essentially constructing ref-
erence machines with a lot of useless information. Such superfluous reference
machines would incur a physical cost in physical message complexity, and there-
fore they would not be picked by our definition, which is exactly why you cannot
shuffle program indices as you like, because such permutations require additional
information to encode. An infinite random shuffling of the indices would require
infinite information, and impossible in the observable universe, and any substan-
tial reordering would incur inordinate physical cost in a physical implementation
of the reference machine. Raatikainen contends that his self-admittedly bizarre
and unnatural constructions are fair play because a particular way of repre-
senting the class of computable functions cannot be privileged. Better models of
computation accurately measure time, space and energy complexities of physical
devices, which is why they are privileged. RAM machine model is a better model
of personal computers with von Neumann architecture than a Turing Machine,
which is preferable to a model with no physical complexity measures.

5.4 Concluding remarks and future work

We have introduced the basic philosophical problems of an investigation into
the ultimate limits of intelligence. We have covered a very wide philosophical
terrain of physical considerations of completeness and objective choice of ref-
erence machine, and we have proposed several new kinds of physical message
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complexity and probability. We have interpreted halting probability, the prob-
lem of induction, Boltzmann brains, and Platonist objections in the context of
physical, objective reference machines. Much work remains to fully connect ex-
isting body of physical theory to algorithmic probability. We anticipate that
there might be interesting bridge theorems to be obtained.
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