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Abstract. Building formal models of the world and using them to plan
future action is a central problem in artificial intelligence. In this work,
we combine two well-known approaches to this problem, namely, reac-
tive hierarchical task networks (HTNs) and symbolic linear planning.
The practical motivation for this hybrid approach was to recover from
breakdowns in HTN execution by dynamically invoking symbolic plan-
ning. This work also reflects, however, on the deeper issue of tradeoffs
between procedural and symbolic modeling. We have implemented our
approach in a system that combines a reactive HTN engine, called Disco,
with a STRIPS planner implemented in Prolog, and conducted a prelim-
inary evaluation.

1 Introduction

Hierarchical task networks (HTNs) are widely used for controlling intelligent
agents and robots in complex, dynamic environments. There are many different
formalizations and graphical notations in use for HTNs. In this paper we use the
simple tree notation shown in Fig. 1, which we will explain in detail in Section 4.1.
HTNs are typically hand-authored and can be quite large, with five or more levels
of task hierarchy and dozens or even hundreds of tasks at the leaves.

All HTNs share the basic structure of decomposing tasks into sequences (or
sometimes partially ordered sets) of subtasks, with alternative decompositions
(sometimes called recipes) for different situations. In addition to the decompo-
sition tree structure, most HTNs also have conditions, such as preconditions
and postconditions, associated with nodes in the tree to control execution of the
HTN.

HTNs were originally a hierarchical extension of classical linear (e.g., STRIPS
[4]) plans, and as in classical plans, the conditions associated with tasks were
symbolic, i.e., they were written in some kind of formal logic and logical inference
was used to reason about them. Later, in response to the difficulties of symbolic
modeling (see Section 3) a variant, called reactive HTNs, was developed in which
the conditions are procedural, i.e., they are written in a programming language
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Fig. 1: Breakdown in HTN execution after wind blows door closed and locked.
Check marks indicate successfully executed tasks; “T” indicates a condition that
has been evaluated and returned true; “F” indicates a condition that has re-
turned false.

and evaluated by the appropriate programming language interpreter. The idea
of reactive HTNs has also been used in game development, where they are called
behavior trees.3

This work is focused on reactive HTNs, and specifically on recovering from
breakdowns in their execution. The basic idea is to add a small proportion of
symbolic conditions to a reactive HTN in order to support a linear planner
performing local plan recovery. Section 2 below starts with a simple, motivating
example.

The problem of plan recovery has been studied in symbolic HTNs (see [1, 2,
7, 10]). This work is inspirational, but not directly relevant, because these plan
repair techniques rely upon all of the conditions in the HTN being symbolically
expressed, which obviates the use of a reactive HTN.

Others have proposed adding some kind of symbolic planning to reactive
HTNs. For example, Firby [5] proposed using a planner to reorder tasks in the
HTN execution or to help choose between alternative decompositions. Brom [3]
proposed using planning to help execute tasks with time constraints. However,
no one has yet developed a complete hybrid procedural/symbolic algorithm (see
Section 4.2) similar to ours.

Finally, this work is preliminary because, although we have implemented and
tested our algorithm on synthetically generated data (see Section 5), how well
it will work in practice is still an open question.

2 A Motivating Example

To further introduce and motivate our work, we first consider a small, intuitive
example of reactive HTN execution breakdown and recovery. The basic idea of
this example, shown in Fig. 1 is that a robot has been programmed using an
HTN to transport an object through a locked door. In this HTN, the toplevel

3 See http://aigamedev.com/open/article/popular-behavior-tree-design
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unlock open walkthru unlock open 

✔ ✔ 

Fig. 2: Sequence of two primitive tasks (in bold) added to plan for Navigate to
recover from breakdown in Fig. 1.

task, Transport, is decomposed into three steps: pickup, Navigate and putdown.
Navigate is further decomposed into three steps: unlock, open and walkthrough.
Each of these tasks is represented by an oval in Fig. 1. (The square boxes in the
HTN are there to support alternative decompositions, which can be ignored in
this example.)

At the moment in time depicted in Fig. 1, the robot has successfully picked up
the object, unlocked the door and opened it. However, before the precondition
of the walkthru step is evaluated, the wind blows the door closed and the door
locks. The walkthru precondition checks that the door is open and thus returns
false. At this point, there are then no executable tasks in the HTN, which is
what we call a breakdown.

Such breakdowns are not unusual in reactive HTNs, especially when they
are executing in complex, dynamic environments. In fact, something similar to
this actually happened recently to the winning robot in the prestigious DARPA
Robotics Challenge4 (emphasis added): “However, team Schaft lost points when
a gust of wind blew a door out of the robot’s hand and the robot was unable to
exit a vehicle after navigated a driving course successfully.” It can be hard to
anticipate all possible things that can go wrong; and trying to incorporate all
possible recovery plans into the HTN in advance can lead to an explosion of
programming effort.

However, looking at this breakdown in particular, the recovery solution,
shown in Fig. 2, is obvious, namely to unlock and open the door. Furthermore,
this would be a trivial problem for a symbolic linear (e.g., STRIPS) planner to
solve if only the pre- and postconditions of the relevant primitives were specified
symbolically.

In a reactive HTN, pre- and postconditions are written in a procedural (pro-
gramming) language and evaluated by the appropriate programming language
interpreter. Fig. 3a shows the relevant procedural conditions in the Navigate
plan as they might typically be written, for example, in JavaScript. For exam-
ple, “isOpen()” would call code in the robot’s sensory system to check whether
the door is currently open. In comparison, Fig. 3b shows how the same primi-
tive tasks would typically be formalized for a STRIPS planner using symbolic
features.

Suppose that when the breakdown in Fig. 1 occurred, the HTN execution en-
gine somehow had available the symbolic modeling knowledge shown in Fig. 3b.
Recovering from the breakdown could then be formulated as a STRIPS planning

4 https://herox.com/news/148-the-darpa-robotics-challenge
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Fig. 3: Procedural versus symbolic conditions for Navigate plan.

Final State: {+open} 
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Operators 
    unlock: +locked ! -locked 
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    walkthru: +open " ... 
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{...} {...} open 

Fig. 4: Recovery from breakdown in Fig. 1 as a STRIPS planning problem.

problem (see Fig. 4) in which the initial state is the current world state, i.e., the
door is not open and is locked, and the final state is the failed precondition of
walkthru, i.e., the door is open. Simple backward-chaining would then quickly
find the solution sequence of operators, namely unlock followed by open. This re-
covery plan could then be spliced into the HTN as shown in Fig. 2 and execution
could continue.

The goal of this paper is to generalize the solution to this example problem
into an application-independent plan recovery algorithm and associated model-
ing methodology for reactive HTNs, as described in the next two sections.

3 Procedural versus Symbolic Modeling

A reasonable first question to ask after reading the motivating example above is
why not just use a symbolic planner instead of an HTN to control the robot in
the first place, and apply well-known replanning approaches when a breakdown
occurs?

Answering this question leads directly to the issue of modeling. Symbolic
planners, such as STRIPS, require complete and correct symbolic descriptions
of all of the primitive tasks (operators) in the problem domain. Different plan-
ners use different symbolic formalisms to represent this knowledge, such as the
add/delete lists shown in Fig. 3b, PDDL [6], and others. However, what all sym-
bolic planners have in common is that if these symbolic descriptions are incorrect
or incomplete (relative to reality), then the generated plans will fail—the poorer
the correspondence to reality, the less reliable the plans will be.
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Unfortunately, artificial intelligence research has shown that producing com-
plete and correct symbolic descriptions of complex real-world domains is ex-
tremely hard and, for practical purposes, often impossible. Certainly the text-
book example in Fig. 4 is easy to model symbolically, but no one participating
in the DARPA Robotics Challenge seriously considered symbolically modeling
the complete task domain.

The difficulty of symbolic modeling is why reactive HTNs were invented. The
knowledge in a reactive HTN is encoded in two places: in the decomposition
structure of the tree and in the code for the procedural conditions (especially
the applicability conditions for decomposition choices, which will be explained
in the next section).

So is it easier to model complex real-world domains using reactive HTNs
than symbolically? As a practical matter, the answer appears to be yes, since
reactive HTNs are commonly used in such applications. Our guess is that there
are two main reasons for this. First, it is well known that hierarchy helps people
organize their thinking to deal with complexity. Second, a procedural condition,
such as a precondition, is only applied to the current world, whereas symbolic
descriptions are essentially axioms that must be true in all possible worlds.

But of course, as we saw above, reactive HTNs can break down, which leads
us to the hybrid approach, described in the next section, in which a reactive HTN
is augmented with some symbolic conditions to aid specifically with recovery.

4 A Hybrid Approach

In this section we generalize the motivating example in Section 2 in two ways by
considering: (1) other types of breakdowns and (2) a larger set of possible final
states. We will first present a general plan recovery algorithm and then discuss
the modeling methodology that goes along with it.

4.1 Reactive HTNs

For the purpose of this work, a reactive HTN, such as the general example in
Fig. 5a, is formally a bipartite tree with alternating levels of task nodes (shown
as circles or ovals) and decomposition (recipe) nodes (shown as squares), with a
task node at the root and task nodes at the leaves. The tasks at the leaves are
called primitive; the other tasks are called abstract.

Associated with the nodes of the tree are three kinds of boolean-valued pro-
cedures, each of what are evaluated in the current world state. Task nodes have
an optional precondition and/or postcondition. Every decomposition node has an
applicability condition.

Reactive HTNs are basically a kind of and/or tree, where the task nodes are
“and” and the decomposition nodes are “or.” Execution is a depth-first, left-
to-right traversal of the tree starting at the root, with various conditions being
evaluated along the way, as described below.

If the current execution node is a task, then its precondition, if any, is first
evaluated. If the precondition returns false, then execution is halted (a break-
down); otherwise execution continues. If the task is primitive, then it is directly
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Fig. 5: Examples of the three types of breakdown in reactive HTN execution.

executed (typically changing the world state); otherwise (i.e., for abstract tasks)
the applicability conditions of the children (decomposition) nodes are evaluated
in order until the first one that returns true—execution continues with this de-
composition node. If all of the applicability conditions of the children return
false, then execution is halted (a breakdown).

When execution of a task node is completed, its postcondition, if any, is eval-
uated. If the postcondition returns false, then execution is halted (a breakdown);
otherwise execution continues.

If the current execution node is a decomposition, then the children (task)
nodes are executed in order.

Fig. 5 summarizes the three types of execution breakdowns that are possible
in reactive HTN execution. The motivating example in Section 2 was a failed
precondition, as in Fig. 5a. Notice that this taxonomy does not distinguish be-
tween different possible underlying causes of a breakdown. A breakdown can be
caused by an external, i.e., unmodeled, agency unexpectedly changing the envi-
ronment (e.g., the wind in Section 2); or it can be due to a programming bug,
such as incorrect tree structure or an incorrectly coded condition. The fact these
different causes are indistinguishable in the breakdown is an inherent limitation
of reactive HTNs.

4.2 Plan Recovery Algorithm

The most significant generalization of the plan recovery algorithm over the mo-
tivating example in Section 2 concerns the choice of final state for the linear
planning problem. In the example (see Fig. 4), the final state is the failed precon-
dition of the walkthru primitive. However, there are other recovery possibilities
that might also make sense.

For example, suppose there was a symbolic postcondition on walkthru that
specified that the robot is located in the room on the other side of the door. After
the breakdown, another way to recover could be for the robot to successfully find
a plan (using other operators than just unlock and open) to achieve this condi-
tion, e.g., by going out another door of the current room and taking a different
hallway to the original destination room. We will call this process making the
postcondition of walkthru the target of a candidate recovery planning problem.
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Continuing with this line of thought, suppose that there was no symbolic
postcondition provided for walkthru, but the symbolic postcondition of Navigate
specified the desired location of the robot. In that case, the postcondition of
Navigate would be a good candidate recovery target.

Similarly, suppose the original breakdown in the example had instead oc-
curred due to the postcondition of unlock failing. In this situation, the symbolic
precondition of walkthru and the symbolic postconditions of walkthru and Nav-
igate, if they are provided, are still good recovery targets.

Based on this reasoning, in the algorithm below we consider the largest pos-
sible set of pre- and postconditions in the tree as candidate recovery targets,
excluding only those that have already been used in the execution process and
have evaluated to true. We suspect this is an over-generalization, but need more
practical experience to determine a better approach.

The recovery target issue for applicability conditions is somewhat different.
The only time that an applicability condition should be a recovery target is when
its and all of its siblings’ conditions have evaluated to false, as in Fig. 5c.

Fig. 6 shows the pseudocode for the hybrid system we have designed. The
toplevel procedure, Execute, executes an HTN until either it is successfully
completed, or there is a breakdown with no possible recovery. The plan recovery
algorithm starts at line 5. The main subroutine, FindCandidates, recursively
walks the HTN tree, accumulating candidate target conditions for the recovery
planning. Notice that SymbolicPlanner is not defined here, since any symbolic
linear planner can be used (our implementation is described in Section 5). Notice
also that since the set of operators used for symbolic planning doesn’t change
during execution of the HTN, it is not an explicit argument to the symbolic
planner (see further discussion regarding symbolic operators in Section 4.3).

In more detail, notice on line 6 that our approach requires a method for
computing from the current world state an initial state representation in the
formalism used by the symbolic planner. For example, for the STRIPS planner
in Section 2 this means that for every feature, such as “open,” there must be an
associated procedure, such as “isOpen(),” to compute its value in the current
world state. This association is a basic part of the hybrid modeling methodology
discussed in next section.

Notice on line 8 that the candidate conditions are sorted by distance from
the current node in the tree (closest first), using a simple metric such as the
length of the shortest path between them in the undirected graph. The reason
for this is to give preference to recovery plans that keep more closely to the
structure of the original HTN. We do not yet have any experience with how well
this heuristic works in practice.

Finally in Execute, notice on line 12 that when a recovery plan is found,
it must be properly spliced into the HTN. In the simple example in Fig. 2, this
is merely a matter of inserting a sequence of nodes as children of the common
parent between the initial and final nodes. However, if the initial and final nodes
are more distant in the tree, more complicated changes are needed to replace
the intervening tree structure with the new plan.
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1: procedure Execute(htn)
2: while htn is not completed do
3: current← next executable node in htn
4: if current 6= null then execute current
5: else [breakdown occurred]
6: initial← symbolic description of current world state
7: candidates← FindCandidates(htn)
8: sort candidates by distance from current
9: for final ∈ candidates do

10: plan← SymbolicP lanner(initial, final)
11: if plan 6= null then
12: splice plan into htn between current and final
13: continue while loop above

14: Recovery failed!

15: procedure FindCandidates(task)
16: conditions← ∅
17: pre← symbolic precondition of task
18: if pre 6= null ∧ procedural prec of task has not evaluated to true then
19: add pre to conditions

20: post← symbolic postcondition of task
21: if post 6= null ∧ procedural postc of task has not evaluated to true then
22: add post to conditions

23: applicables← ∅
24: allFalse← true
25: for decomp ∈ children of task do
26: for task ∈ children of decomp do FindCandidates(task)

27: if allFalse then
28: if procedural appl condition of decomp has evaluated to false then
29: app← symbolic applicability condition of decomp
30: if app 6= null then add app to applicables

31: else allFalse← false
32: if allFalse then add applicables to conditions

33: return conditions

Fig. 6: Pseudocode for hybrid reactive HTN execution and recovery system.

The code in the definition of FindCandidates closely follows the discussion
above regarding possible target conditions.

4.3 Modeling Methodology

The hybrid system described above tries to take advantage of whatever symbolic
knowledge is provided by the HTN author. Notice that for the pre- or postcon-
dition of each task node there are four possibilities: no specified condition, only
a procedural condition, only a symbolic condition, or both. Since applicability
conditions are not optional, there are only two possibilities for decomposition
nodes: only a procedural condition, or a procedural and a symbolic condition.
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As we have argued earlier, symbolic modeling is very difficult in general. The
reason an author is using a reactive HTN in the first place is likely because it was
not practical to fully model the domain symbolically. Two key methodological
issues are therefore where to best invest whatever effort is available for symbolic
modeling, and how to make the overall process of mixed procedural and symbolic
modeling as convenient as possible for the HTN author. We will share some ideas
below, but this is the area in which our work is also preliminary.

Our initial intuition, illustrated by the example in Section 2, is to concentrate
symbolic modeling on the primitive tasks. This is because we expect symbolic
plan recovery to be most successful as a local planning strategy.

Which pre- and postconditions are provided symbolically also has implica-
tions for the set of operators used by the symbolic planner. Only a task with
both a symbolic precondition and postcondition can be included in the operator
set. However, the planning operators need not be restricted to primitive tasks. If
an abstract task is fully specified symbolically, it can in principle be included in
a linear recovery plan by using its already defined decompositions (and hoping
they are appropriate in the new context).

Finally, we believe there is the opportunity for tools to make the hybrid
modeling process less onerous. For example, we are planning a simple design-
time tool that recognizes common coding conventions, such as in Fig. 3a, and
automatically produces corresponding symbolic conditions, such as in Fig. 3b.
Run-time tools can also keep track of breakdowns and advise where additional
symbolic knowledge may be useful.

5 Implementation and Evaluation

We have implemented the hybrid sys-
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Fig. 7: Discolog implementation.

tem described above in pure Java
(see Fig. 7) using the ANSI/CEA-
2018 standard [8] for reactive HTNs
and Disco [9] as the HTN execution
engine. For the symbolic planner,
we have used a simple implementa-
tion of STRIPS running in a pure Java implementation of Prolog.5 Using Prolog
will facilitate adding additional symbolic reasoning rules to the planning process.

The ultimate evaluation of our proposed new approach is to build several
agents that operate in complex, dynamic real-world environments and to see
how easy they were to build and how robustly they performed. In the meantime,
however, we tested our system on synthetically generated HTNs with different
levels of symbolic knowledge. Our simple hypothesis was that the more symbolic
knowledge provided, the better the recovery algorithm would perform.

Fig. 8 shows the results of our experiments, which confirmed this hypothesis.
We tested trees of two RxSxD sizes, 3x3x3 and 1x5x4, where R is the decom-
position (recipe) branching factor, S is task (step) branching factor, and D is
the task depth (see Fig. 9). For each test, we randomly sampled from the very
large space (millions) of all possible combinations of symbolic knowledge at three

5 See http://tuprolog.apice.unibo.it
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(a) Recovery/breakdown ratio (b) Proportion of candidates repaired

Fig. 8: Results of testing on synthetically generated HTNs with different levels
of symbolic knowledge.

overall levels: 25%, 50% and 75% (percentage of conditions in the tree that are
symbolically specified). We did not test larger trees because the experimental
running times became too long.

Fig. 8a graphs how the proportion of breakdowns that

!  Using randomly generated synthetic HTNs:     
D x R x S 
•  D = depth (of task nodes) 
•  R = recipe branching factor 
•  S = subtask branching factor 
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Fig. 9: RxSxD

are successfully recovered increases as the symbolic knowl-
edge increases. In Fig. 8b, we were interested in the pro-
portion of planning problems submitted to the planner
which it solved, which also increased as the symbolic
knowledge increased. (For this experiment, we made a
small modification to the algorithm to prevent it from
stopping at the first solved problem.)
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