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Abstract. In cognitive modeling and intelligent agent design, a widely
accepted architectural pipeline is Perception–Reasoning–Action. But lan-
guage understanding, while a type of perception, involves many types of
reasoning, and can even involve action, such as asking a clarification ques-
tion about the intended meaning of an utterance. In the field of natural
language processing, for its part, the common progression of process-
ing modules is Syntax–Semantics–Pragmatics. But this modularization
lacks cognitive plausibility and misses opportunities to enhance efficiency
through the timely application of knowledge from multiple sources. This
paper provides a high-level description of semantically-deep, reasoning-
rich language processing in the OntoAgent cognitive agent environment,
which illustrates the practical gains of moving away from a strict adher-
ence to traditional modularization and pipeline architectures.
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1 Introduction

The analytic method in science prescribes decomposing problems into subprob-
lems, finding solutions to those subproblems, then synthesizing the solutions.
Despite the well-known benefits of such modularization, it has certain unfor-
tunate consequences that have come center stage in our work on developing
the cognitively modeled agents we call OntoAgents. Strict modularization of
perception, reasoning and action fails to capture the rich information transfer
that appears to characterize human cognition and behavior. Our current work
on OntoAgents attempts to more accurately model general artificial intelligence
by integrating these cognitive modules. In this paper, we discuss one aspect of
this integration: the integration of decision-making (traditionally subsumed un-
der reasoning) into the process of natural language understanding (traditionally
subsumed under perception).

OntoAgents feature integrated physiological and cognitive simulations, mod-
eling the body and the mind. The mind-body connection is modeled as the
process of interoception, i.e., the perception of bodily signals [5], [13]. To date,
the simulated minds of implemented OntoAgents have shown the capabilities
of goal-oriented planning, decision-making influenced by personal biases and
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situational parameters, learning, memory management, and natural language
processing (see [7], [8], [6], among others).

In this paper we present a conceptual overview of our work toward tran-
scending the boundaries of processing modules in models of cognitive agency.
Our effort addresses two separate modularizations – the traditional Perception–
Reasoning–Action pipeline of cognitive architectures and the familiar Syntax–
Semantics–Pragmatics pipeline of AI-oriented natural language processing.

Pipeline-oriented approaches, while differing in many respects, typically share
the following two characteristics: a) the processing of an input by any module
can start only after the upstream modules have finished with this input; and
b) the machinery and knowledge resources of each module are typically opaque
to those of other modules. There are engineering-oriented reasons for imposing
these constraints. But we hypothesize that they are not optimal either as features
of cognitive models or as architectural choices in computational implementations
of cognitive models.

Issues of modularity and computational architectures have been amply de-
bated in cognitive science and artificial intelligence. This paper is not meant as
a contribution to those debates. Our specific objective is to enhance the effi-
ciency and effectiveness of artificial intelligent agents by improving the ways in
which they apply knowledge. This objective complements rather than competes
with work on enhancing the functioning of agents through more sophisticated
formalisms and improved algorithmic efficiency.

We believe that moving away from pipelines will increase verisimilitude in
modeling human behavior. In this respect, we are motivated by two working
hypotheses. (1) The inclusivity hypothesis suggests that cognitive agents, at any
given time in their functioning, can apply any and all heuristics currently avail-
able to them, irrespective of the provenance of those heuristics. (2) The least
effort hypothesis motivates agents, in well-defined aspects of their functioning,
to “jump to conclusions” – i.e., to declare their current task completed and avoid
exhaustive processing. Such decisions are a function of the agents’ knowledge and
beliefs, their personality traits, and situational constraints. This hypothesis is
observationally quite plausible, as anybody who has ever been justifiably inter-
rupted in a dialog can attest (i.e., if the interlocutor has already understood
one’s point well enough to respond, interrupting can be appropriate).

2 Issues with Pipelines

One insufficiency of the Perception–Reasoning–Action pipeline is that it obscures
the fact that language understanding, a type of perception, itself routinely in-
volves reasoning and action. Such tasks as lexical and referential disambiguation,
the detection and reconstruction of elliptical gaps, and the understanding of in-
direct speech acts are reasoning-intensive. Moreover, if an agent is intended to
model human performance, it must be able to look beyond the boundaries of
the narrowly defined language understanding task to judge its confidence in the
results of its language processing. If, by the time it finishes processing a language
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input, the agent is confident that it has understood the input, this should lead to
reasoning and action. If, by contrast, the agent has not sufficiently understood
the input, then it must select a recovery strategy. One such strategy is the action
of asking its human collaborator for clarification. Incorporating such reasoning
and action into the perception module, we arrive at the following, more realistic,
workflow, in which parentheses show optionality: Perception and reasoning about
perception–(Reasoning about suboptimal perception processing–Recovery action)–
Reasoning–Action.

With respect to language modeling itself, the traditional, theory-driven Syntax–
Semantics–Pragmatics pipeline fails to accommodate the large number of cross-
modular methods available for treating individual linguistic phenomena. To take
just one example, many instances of ellipsis – the null referring expression – can
be detected and resolved prior to semantic analysis, with the results then be-
ing available to inform semantic analysis.1 Therefore, just as we modified the
cognitive modeling pipeline above, so must we modify the language processing
pipeline, leading to the more functionally sufficient approach detailed in Section
4.

3 Pursuing Actionable Language Analyses

The goal of language understanding in OntoAgent is for the agent to arrive at an
actionable interpretation of text input. We define as actionable those interpre-
tations that are deemed by the agent to be sufficient to support post-perception
reasoning and action. An actionable interpretation might represent a complete
and correct analysis of all input strings, or it might be incomplete; it might in-
volve only a partial analysis of the input strings, or it might invoke maximally
deep reasoning; and it might be achievable by the agent alone, or it might require
interactive clarifications or corrections by a human or artificial collaborator. In
short, for each language input, after each stage of processing, the agent must
estimate whether it has arrived at a level of input understanding sufficient for
passing control to the reasoning and action modules. As soon as the answer is
positive, it can proceed to post-perception reasoning and action.

This modeling strategy reflects our belief that, in order to foster the devel-
opment of viable agent applications at a time when the state of the art cannot
yet support full and perfect semantic analysis of unrestricted input, it is nec-
essary to define practical halting conditions for language analysis. Consider an
example from an OntoAgent prototype system called Maryland Virtual Patient
[5], [13]. One of the intelligent agents in this system plays the role of a virtual
patient being diagnosed and treated by a human medical trainee. During simu-
lated office visits, the virtual patient engages in dialog with the trainee during
which the latter can ask questions, suggest diagnostic and treatment protocols,
provide background knowledge about the patient’s disease, and answer the pa-
tient’s questions. In each of the trainee’s dialog turns, the agent attempts to

1 If ellipsis were to be treated like other referring expressions, it would normally be
subsumed under pragmatic analysis.
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detect something actionable, such as a question it should answer or a recom-
mendation it should respond to. Responding to this actionable input becomes
the agent’s communicative goal of choice, absolving it from the necessity of full
and confident analysis of every element of input.

This type of incomplete processing is not merely an escape hatch for modeling
intelligent agents in the early 21st century. We believe that it models how people
naturally behave in communicative situations: they pay attention to the main
point but often ignore many of the details of what others say. For example, if a
doctor provides exhaustive detail about the potential side effects of a medication,
do live patients pay full attention? Would they understand and remember every
detail even if they did? Selective attention is a manifestation of the principle of
least effort; it represents natural conservation of energy and thus protects against
cognitive overload [15]. So, even though OntoAgents show “focused attention” for
practical reasons, the effects of this behavior in simulation will, we hypothesize,
make agents more human-like.

We will now consider, in turn, how the canonical pipelines introduced above
can be modified to better serve OntoAgents in their quest for actionable language
interpretations.

4 The Stages of Language Analysis

To reiterate, the agent’s goal in processing language input is to arrive at a
confident, actionable analysis as soon as possible. For this reason, we are working
toward configuring agents that can treat phenomena as soon as the necessary
heuristic evidence becomes available. At any point in language analysis, an agent
should be able to decide that the current state of analysis is actionable and
proceed directly to post-perception reasoning and action. We discuss the stages
of language processing under development in the order presented below.

1. Perception and reasoning about perception

(a) Exploiting situational expectations and conventions

(b) Syntactic analysis

i. Syntactically-informed reference resolution
ii. Tree trimming

(c) Semantic analysis

i. Semantically-informed reference resolution
ii. Semantically-informed speech act understanding

(d) Reference resolution

(e) Indirect speech act interpretation

(f) Reasoning about suboptimal perception processing

i. Recovery action

2. Post-Perception Reasoning

3. Action
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Space constraints preclude a detailed description of how the system arrives
at each type of analysis or a detailed rundown of results to date. Regarding the
latter, we have recently evaluated our engines for basic semantic analysis [6], the
treatment of multi-word expressions [12], verb phrase ellipsis resolution [10] and
tree trimming in support of the latter [11]. The other microtheories mentioned
above are at various stages of development. The rationale behind presenting
this blueprint for agent functioning even before an end-to-end implementation
is available is that we believe that drawing the big picture is an essential prereq-
uisite for long-term progress on the many component challenges of configuring
truly intelligent artificial agents. The modest goal of the current contribution
is to motivate the reconceptualization of the traditional pipeline architectures
introduced earlier.

1a. Exploiting Situational Expectations and Conventions The first
stage of language processing relies on textual string matching. The hypothesis is
that some combinations of strings – which can even be entire sentences – are so
frequent or expected that they are stored in memory along with their semantic
analyses, thus not requiring compositional analysis at each encounter. For ex-
ample, in the Maryland Virtual Patient application, we stored semantic analyses
of expected formulaic inputs such as How are you feeling? Storing remembered
analyses not only speeds up system functioning and reduces unexpected misin-
terpretations, it also reflects the human-oriented hypothesis that, in accordance
with the principle of least effort, people store frequently encountered phrases as
ready-made information bundles.

1b. Syntactic Analysis. If the agent does not treat an input “reflexively”,
it proceeds to syntactic analysis. Stanford CoreNLP [4] provides tokenization,
sentence splitting, PoS tagging, morphological analysis, named entity recogni-
tion, syntactic immediate constituent analysis and a dependency parse. Although
syntactic analysis represents only an intermediate result toward semantic analy-
sis, it can inform certain types of decision-making. For example, an agent might
choose to further process sentences only if they contain certain keywords, or
combinations of keywords, of interest.

1bi. Syntactically-informed reference resolution. Next the agent en-
gages in a series of reference resolution procedures that are undertaken at this
early stage because they require as input only the results of syntactic analysis and
access to the lexicon. For example, our agents can detect and resolve verb phrase
ellipsis in sentences like They attempted to win the tournament but couldn’t
[e], as described in [10]. Similarly, they can establish lexico-syntactically-based
coreference links for a pronominal referring expressions in certain linguistically
defined configurations.

The benefits of early reference processing cannot be overstated. Detecting
ellipsis and reconstructing the missing string permits the meaning of the expres-
sion to be computed during basic semantic analysis. Continuing with the example
from above, the agent will actually be semantically analyzing [They]-1 attempted
to [win the tournament]-2 but [they]-1 couldn’t [win the tournament]-2, in which
the indices indicate coreference. Similarly, establishing high-confidence textual
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coreference relations for overt pronouns at this stage enhances the simultaneous
disambiguation of those expressions and their selecting heads. For example, it is
much easier for the agent to disambiguate both the subject and the verb in The
train stopped than to disambiguate these strings in It stopped. So, coreferring it
with train in a context like The train raced toward the station then it suddenly
stopped is of great benefit to semantic analysis.

1bi. Tree Trimming Before proceeding to semantic analysis, the agent has
the option of carrying out “tree trimming,” also known as syntactic pruning or
sentence simplification. Tree trimming refers to automatically deleting non-core
syntactic structures, such as relative clauses and various types of modification,
so that the core elements can be more effectively treated.2 It has been used in
applications ranging from summarization to information extraction to subtitling.
An agent’s decision about whether or not to trim should be a function of (a)
sentence length, (b) the constituents in the parse tree and the dependency parse,
and (c) situational non-linguistic parameters, such as the agent’s cognitive load
and the importance of the goal being pursued through the communication.

1c. Semantic Analysis. Semantic analysis in OntoAgent is defined as gen-
erating an ontologically-grounded text meaning representation (TMR) that in-
cludes the results of lexical disambiguation and semantic dependency determi-
nation.3 TMRs are written in a metalanguage they share with the ontology and
other knowledge repositories in OntoAgent. For example, the TMR for the input
Dr. Jones diagnosed the patient is shown in Table 1. Small caps indicate onto-
logical concepts and numerical suffixes indicate their instances. The “textstring”
and “from-sense” slots are metadata used for system debugging.

Table 1. TMR for Dr. Jones diagnosed the patient.

diagnose-1
agent human-1
theme medical-patient-1
time (before find-anchor-time) ; indicates past tense
textstring “diagnosed”
from-sense diagnosed-v1

human-1
agent-of diagnose-1
has-name “Dr. Jones”
textstring “Dr. Jones”
from-sense *personal-name*

medical-patient-1
theme-of diagnose-1
textstring “patient”
from-sense patient-n1

2 For our approach to tree trimming in service of ellipsis resolution see [11].
3 The OntoSem process of semantic analysis is described in [6] and [14].
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Every TMR produced by an agent is assigned a confidence level, which reflects
the extent to which lexically and ontologically recorded expectations resulted in
a single, unique analysis of the input. The more instances of residual ambiguity,
the lower the overall confidence.

Although this example sketches the basic idea of semantic analysis in On-
toAgent, it fails to convey that this stage of processing actually incorporates
some aspects of early pragmatic analysis. For example, TMRs include the re-
sults of reference processing carried out earlier (cf. 1bi above). They also may
include newly computed aspects of reference resolution as well as the treatment
of indirect speech acts. We consider each of these in turn.

1ci. Semantically-informed reference resolution. The OntoSem lexicon
contains lexical senses that support the detection of certain kinds of ellipsis and
the resolution of certain kinds of overt referring expressions. For example, there
is a sense of the verb start that expects its complement to be an ontological
object rather than an event, as in She started the book. This sense asserts
that there is an elided event whose meaning the system should attempt to re-
cover from the context – all during this same pass of basic semantic analysis.
Other referring expressions that are treated using lexically-recorded procedural
semantic routines are indexicals such as yesterday [9].

1cii. Semantically-informed speech act understanding. The OntoSem
lexicon includes a broad range of phrasal constructions that help to reduce the
ambiguity of compositional semantic analysis [12]. Among these constructions
are conventionalized speech acts. For example, Could you please tell me X is
interpreted as request-info theme [the meaning of X]; I would recommend
X is interpreted as request-action [the meaning of X]; and so on. Rather
than postpone indirect speech-act detection until the downstream module ded-
icated specifically to it, our system analyzes the semantics and the pragmatics
of conventionalized indirect speech acts simultaneously.

This “Semantic Analysis” level of processing will not yet be actionable for
intelligent agent applications since referring expressions have not yet been an-
chored in memory. However, for non-agent-oriented NLP applications, this level
of output could be useful since lexical disambiguation has been carried out, the
semantic dependency structure has been established, many textual coreference
relations have been resolved, and some indirect speech acts have been detected.

1d. Reference resolution. Unlike reference resolution procedures under-
taken up to this point, OntoAgent’s nascent reference module (a) will have access
to full semantic analysis as input, (b) will attempt ontology-based reasoning, if
needed, and (c) will posit as the goal not just detecting textual coreference, but
carrying out concept-level reference resolution, which will result in anchoring
referring expressions to concept instances in agent memory. For example, given
an input like He began operating on the patient at 7 a.m., the system might have
several males in the preceding context that could plausibly be the sponsor for
the referring expression he. However, it is likely that only one of them is listed
in the agent’s fact repository with the property-value pair social-role sur-
geon. The key to selecting the correct sponsor is consulting the ontology and
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determining that the agent of the ontological concept (event) surgery – which
was activated as the contextually appropriate meaning of operate – is typically a
surgeon. This is an example of “reasoning about perception.” Note that if ear-
lier reference processing had resulted in textual coreference links, true reference
resolution to agent memory would still have to be undertaken at this stage. This
would happen, for example, given the input, After the surgeon completed the
surgery, he changed into street clothes. Here, the grammatical structure strongly
suggests the coreference relationship between he and the surgeon, but this chain
of coreference must still be anchored to the right instance of surgeon in agent
memory.

1e. Indirect speech act interpretation. In its current state, our mi-
crotheory of non-lexically-supported speech act interpretation covers exclusively
application-specific cases. For example, in the MVP application, if the input
includes reference to a symptom, but the input overall is not recognized as an
instance of asking whether the patient is experiencing that symptom, the patient
nevertheless responds as if it had been asked that question. Work is underway
to extend this microtheory to cover more generic contexts.

By the time the agent reaches this point in language analysis, it will have
carried out all of its basic analysis processes, constructed a TMR, and grounded
concept instances in memory. Its overall analysis is associated with a cumulative
confidence value that is computed as a function of its confidence about every
component decision it has made: each instance of lexical disambiguation, each
instance of reference resolution, etc. If the agent’s overall confidence is above a
threshold, the analysis is declared to be actionable. If not, the agent must decide
how to proceed.

1f. Reasoning about suboptimal perception processing. If the agent
chose earlier not to carry out syntactic trimming, it can choose to invoke it at
this point, in hopes of being able to generate a higher-confidence TMR from
a less complex input. The sequence syntactic analysis – semantic analysis –
tree trimming – semantic analysis is another example of interleaving modules of
processing beyond the rather simplistic original pipeline. If the trimming strategy
is either not available (e.g., it has been carried out already) or is not favored by
the agent (e.g., this is a high-risk situation with no room for error), the agent
can undertake a recovery action.

1fi. Recovery action. If the agent is collaborating with a human, one recov-
ery option is to ask a clarification question. This is particularly well-motivated in
high-risk and/or time-sensitive situations. There are, however, other options as
well. For example, if the analysis problem was due to “unexpected input” – e.g.,
an unknown word – the system can attempt learning by reading, as described in
[2]. Or, the agent can decide to recover passively, by not responding and waiting
for its interlocutor’s next move which, in some cases, might involve linguistic
clarifications, restatements, etc.

2. Post-perception reasoning & 3. Action. These modules of agent cog-
nition take as input whatever results of language processing the agent considered
an appropriate stopping condition.
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5 Final Thoughts

The recognition that reasoning is needed for language processing is, of course,
not novel. The idea has been addressed and debated from the early days of AI-
NLP and cognitive science in works by Schank [16], Wilks [17], Woods [18], and
many others. Our contribution is an attempt (a) to integrate a larger inventory
of more detailed explanatory models that rely on broader and deeper knowledge
bases, and (b) to arm agents with the ability to reason about their confidence
in language processing and act accordingly. In this regard, it is noteworthy that
a central contributor to the success of the Watson system in the Jeopardy! chal-
lenge was its use of confidence metrics in deciding whether or not to respond to
questions [3].

The idea of interleaving processing stages is also not unknown in computa-
tional linguistics proper. For example, Agirre et al. [1] use semantic information
to help determine prepositional phrase attachment, which is required for produc-
ing the correct output of syntactic analysis. Our work differs from contributions
of this kind in that our ultimate goal is not success of a particular stage of
language processing but, rather, deriving the semantic and discourse/pragmatic
meaning of the input using all available clues.

In this space, we were able to give only a high-level overview of language
understanding in OntoAgent, along with our methods of incorporating reasoning
and decision-making into the process. Naturally, many aspects of this vision of
agent functioning are work in progress. Our practical results, which vary across
microtheories, have been reported in the cited literature. Near-term goals include
both further developing the theoretical substrate of OntoAgent – continuing the
genre of the current contribution – and increasing the breadth of coverage of
all of the microtheories, knowledge bases and processors that contribute to the
functioning of OntoAgents.
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