
From Specialized Syntax to General Logic:
The Case of Comparatives

Ruiting Lian1,2, Rodas Solomon3, Amen Belayneh2,3, Ben Goertzel4, Gino Yu2, and
Changle Zhou1,5

1 Cognitive Science Department, Xiamen University 2 School of Design, Hong Kong Poly U
3 iCog Labs, Addis Ababa4 OpenCog Foundation 5 corresponding author

Abstract. General-purpose reasoning based on knowledge encoded in natural
language, requires mapping this knowledge out of its syntax-dependent form into
a more general representation that can be more flexibly applied and manipulated.
We have created a system that accomplishes this in a variety of cases via mapping
English syntactic expressions into predicate and term logic expressions, which
can then be cognitively manipulated by tools such as a probabilistic logic engine,
an information-theoretic pattern miner and others. Here we illustrate the func-
tionality of this system in the particular case of comparative constructions.

1 Introduction

In order for an AI system to reason in a general-purpose way about knowledge that
comes to it in natural language form, the system must somehow transform the knowl-
edge into a more flexible representation that is not tied to the specific linguistic syntax
in which it was originally expressed. There is no consensus in the AI or computational
linguistics fields on the best way to do this; various approaches are being pursued in
a spirit of experimental exploration [8]. We describe here the approach we have been
exploring, in which a sequence of transformations maps syntactic expressions into ab-
stract logic expressions, in a logical language mixing predicate and term logic as speci-
fied in Probabilistic Logic Networks [2] [3]. This language comprehension pipeline has
been constructed as part of a broader project aimed at Artificial General Intelligence,
the open-source OpenCog initiative [4] [5]; it has been described previously in a 2012
overview paper [11], but has advanced considerably in capabilities since that time.

To illustrate the properties of this comprehension pipeline, we focus here on the case
of comparative sentences. We have chosen comparatives for this purpose because they
are an important yet difficult case for any NLP system to deal with, and hence a more
interesting illustration of our NLP concepts and system than a standard case like SVO
constructs, which essentially any reasonably sensible language processing framework
can deal with acceptably in most cases. Comparatives present a diversity of surface
forms, which are yet ultimately mappable into relatively simple logical structures. They
are somewhat confusing from the perspective of modern theoretical linguistics, and also
tend to be handled poorly by existing statistical language processing systems.

The language comprehension pipeline reviewed here is broadly similar in concept to
systems such as Fluid Construction Grammar [14] [13]and Cycorp’s 1 proprietary NLP

1 http:\\cyc.com



2 R. Lian, R. Solomon, A. Belayneh, B. Goertzel, G. Yu and C. Zhou

system. However, it differs from these in important aspects. The approach given here
utilizes a dependency grammar (the link grammar [12]) rather than a phrase structure
grammar, and at the other end involves a customized logic system combining aspects
of term logic and predicate logic. As reviewed in [11], this combination of dependency
grammar and term logic allows a large amount of ambiguity to be passed through from
the surface level to the logic level, which is valuable if one has a powerful logic engine
with a substantial knowledge base, able to resolve ambiguities based on context in a
way that earlier-stage linguistic processes could not.

2 A Deep Linguistics and Logical Inference Oriented
Comprehension Pipeline

We now briefly review the language comprehension pipeline utilized in the work pre-
sented here.

2.1 Link Grammar

The initial, syntactic phase of our pipeline consists of the link grammar [12]. The essen-
tial idea of link grammar is that each word comes with a feature structure consisting of
a set of typed connectors . Parsing consists of matching up connectors from one word
with connectors from another. Consider the sentence:

The cat chased a snake

The link grammar parse structure for this sentence is shown in Figure 1.

Fig. 1. Example link parse.

There is a database called the “link grammar dictionary” which contains connec-
tors associated with all common English words. The notation used to describe feature
structures in this dictionary is quite simple. Different kinds of connectors are denoted
by letters or pairs of letters like S or SX. Then if a word W1 has the connector S+, this
means that the word can have an S link coming out to the right side. If a word W2 has
the connector S-, this means that the word can have an S link coming out to the left
side. In this case, if W1 occurs to the left of W2 in a sentence, then the two words can
be joined together with an S link.



From Specialized Syntax to General Logic: The Case of Comparatives 3

The rules of link grammar impose additional constraints beyond the matching of
connectors – e.g. the planarity and connectivity metarules.. Planarity means that links
don’t cross. Connectivity means that the links and words of a sentence must form a
connected graph – all the words must be linked into the other words in the sentence via
some path.

2.2 RelEx

The next phase in the pipeline under discussion is RelEx, an English-language semantic
relationship extractor, designed to postprocess the output of the link parser [self-citation
removed, to be inserted in the final version]. It can identify subject, object, indirect ob-
ject and many other dependency relationships between words in a sentence; it generates
dependency trees, resembling those of dependency grammars. The output of the current
version of RelEx on the example sentence given above is:

singular(cat)
singular(snake)
_subj(chase, cat)
_obj(chase, snake)
past(chase)

Internally, RelEx works via creating a tree with a FeatureNode corresponding to
each word in the sentence, and then applying a series of rules to update the entries in
this FeatureNode. The rules transform combinations of link parser links into RelEx de-
pendency relations, sometimes acting indirectly via dynamics wherein one rule changes
a feature in a word’s FeatureNode, and another rule then takes an action based on the
changes the former rule made. Figure ?? gives a high level overview of RelEx’s internal
process.

The output of RelEx is not unlike that of the Stanford parser, and indeed RelEx
has a Stanford parser mode that causes it to output relations in Stanford parser com-
patible format. However, in our tests RelEx + link parser proved around 4x as fast as
the 2012 Stanford parser [9], and qualitatively appeared to give better performance on
complex constructs such as conjunctions and comparatives (which makes sense as such
constructs are probably not that diversely represented in the Stanford parser’s training
data).

2.3 OpenCog

The next phase of the pipeline, RelEx2Logic, has the purpose of translating the output of
RelEx into a format compatible with the logical reasoning component of the OpenCog
AI engine. OpenCog is a high level cognitive architecture aimed at exploration of ideas
regarding human-level Artificial General Intelligence, in particular the CogPrime AGI
design [4] [5]. OpenCog has been used for commercial applications in the area of natu-
ral language processing and data mining , and has also been used for research involving
controlling virtual agents in virtual worlds, controlling humanoid robots, genomics data
analysis, and many other areas.



4 R. Lian, R. Solomon, A. Belayneh, B. Goertzel, G. Yu and C. Zhou

The centerpiece of the OpenCog system is a weighted, labeled hypergraph knowl-
edge store called the Atomspace, which represents information using a combination of
predicate and term logic formalism with neural net like weightings. The NLP compre-
hension pipeline described here is centrally concerned with mapping English language
text into logical representations within the Atomspace.

The primary component within OpenCog that acts on the output of RelEx2Logic
is Probabilistic Logic Networks (PLN) [2], a framework for uncertain inference in-
tended to enable the combination of probabilistic truth values with general logical rea-
soning rules. PLN involves a particular approach to estimating the confidence values
with which these probability values are held (weight of evidence, or second-order un-
certainty). The implementation of PLN in software requires important choices regarding
the structural representation of inference rules, and also regarding “inference control” –
the strategies required to decide what inferences to do in what order, in each particular
practical situation.

PLN is divided into first-order and higher-order sub-theories (FOPLN and HOPLN).
FOPLN is a term logic, involving terms and relationships (links) between terms. It is
an uncertain logic, in the sense that both terms and relationships are associated with
truth value objects, which may come in multiple varieties. “Core FOPLN” involves
relationships drawn from the set: negation; Inheritance and probabilistic conjunction
and disjunction; Member and fuzzy conjunction and disjunction. Higher-order PLN
(HOPLN) is defined as the subset of PLN that applies to predicates (considered as
functions mapping arguments into truth values). It includes mechanisms for dealing
with variable-bearing expressions and higher-order functions. We will see some simple
examples of the kinds of inference PLN draws below.

2.4 RelEx2Logic

OpenCog also contains a system called RelEx2Logic, that translates RelEx output into
logical relationships, utilizing the mix of predicate and term logic codified in Proba-
bilistic Logic Networks [2]. RelEx2Logic operates via a set of rules roughly illustrated
by the following example:

_subj(y, x)
_obj(y, z)
==>
Evaluation y x z

which indicates, in OpenCog/PLN syntax, that y is mapped into a PredicateNode with
argument list (x, z). The above rule format is highly simplified and for illustration pur-
poses only; the actual rule used by the system is more complex and may be found
along with the rest of the current rule-base at https://github.com/opencog/
opencog/tree/master/opencog/nlp/relex2logic.

So for example, for the sentence ”The pig ate the tofu”, the RelEx relations

_subj(eat, pig)
_obj(eat, tofu)

would result (after some simple, automated cleanup operations) in output such as



From Specialized Syntax to General Logic: The Case of Comparatives 5

InheritanceLink pig_55 pig
InheritanceLink tofu_1 tofu
EvaluationLink eat pig_55 tofu_1

where the subscripts indicate particular definite instances of the concepts involved. On
the other hand, the sentence ”Pigs eat tofu” would result (after some simple, automated
cleanup operations) in simply

EvaluationLink eat pig tofu

3 Handling Comparatives

Comparatives provide more interesting examples of this sort of mapping from surface
form into logical expressions. Theoretical linguistics is nowhere near a consensus re-
garding the proper handling of comparatives in English and other languages. Some
theorists posit an ellipsis theory, suggesting that comparative syntax results from the
surface structure of a sentence leaving out certain words that are present in the deep
structure [10] [1]. Others posit a movement theory [6] [7], more inspired by traditional
generative grammar, hypothesizing that comparative syntax involves a surface structure
that rearranges the deep structure.

The link grammar framework essentially bypasses this sort of issue: either ellipsis
or movement would be represented by certain symmetries in the link grammar dictio-
nary, but these symmetries don’t need to be explicitly recognized or utilized by the link
parser itself, though they may guide the human being (or AI system) creating the link
grammar dictionary. Currently, on an empirical basis, the link parser handles compar-
atives reasonably well, but the relevant dictionary entries are somewhat heterogeneous
and not entirely symmetrical in nature. This suggests that either

1. the syntax of English comparatives is ”messy” and heterogeneous, not fitting neatly
into any of the available theories; and/or

2. the link grammar dictionary can be made significantly more elegant regarding com-
paratives

We suspect that the truth is “a little of both”, but note that this issue need not be resolved
in order to deploy the link grammar as part of a practical pipeline for comprehending
complex sentences, including comparatives.

As an example of how our framework, described here, deals with comparatives, one
of the RelEx2Logic rules for comparatives is in compact form

than(w1, w2)
_comparative(ad, w)
==>
TruthValueGreaterThanLink

InheritanceLink w1 ad
InheritanceLink w2 ad

A simple example using this rule would be:



6 R. Lian, R. Solomon, A. Belayneh, B. Goertzel, G. Yu and C. Zhou

Pumpkin is cuter than the white dog.
==>
_predadj(cute, Pumpkin)
than(Pumpkin, dog)
_comparative(cute, Pumpkin)
_amod(dog, white)
==>
AndLink

InheritanceLink dog_11 white
InheritanceLink dog_11 dog
TruthValueGreaterThanLink

InheritanceLink Pumpkin cute
InheritanceLink dog_11 cute

On the other hand, to deal with a sentence like ”Amen is more intelligent than
insane” we use a different rule, which in simplified form is

_predadj(adj1, W)
than(adj1, adj2)
_comparative(adj1, W)
==>
TruthValueGreaterThanLink

InheritanceLink W adj1
InheritanceLink W adj2

resulting in output

_predadj(intelligent, Amen)
than(intelligent, insane)
_comparative(intelligent, Amen)
==>
TruthValueGreaterThanLink

InheritanceLink Amen intelligent
InheritanceLink Amen insane

In cases where the link parser gives multiple parse options, the RelEx2Logic rules
will provide a logic interpretation for each one. Statistical heuristics have been im-
plemented to rank the multiple parses for plausibility based on a corpus, but these of
course are not perfect. In some cases, multiple logical output options will be presented
to OpenCog, and must be chosen between based on higher level contextual inference,
which is a difficult topic and the subject of current research.

4 Reasoning About Comparatives

To illustrate the simplicity of reasoning about comparatives once the syntactic com-
plexities are removed and a normalized logical form is achieved, we consider how our
integrated system can take the inputs

– Bob likes Hendrix more than the Beatles
– Bob is American



From Specialized Syntax to General Logic: The Case of Comparatives 7

– Menudo is liked less by Americans than the Beatles

and derive the conclusion that Bob likes Hendrix more than Menudo.
For the first sentence we obtain

_subj(like, Bob)
_obj(like, Hendrix)
than(Hendrix, Beatles)
_comparative(like, Hendrix)
==>
TruthValueGreaterThanLink

EvaluationLink like Bob Hendrix
EvaluationLink like Bob Beatles

and for the second, correspondingly

_subj(like, Americans)
_obj(like, Menudo)
than(Beatles, Menudo)
_comparative(like, Beatles)
==>
TruthValueGreaterThanLink

EvaluationLink like Americans Beatles
EvaluationLink like Americans Menudo

The logical format obtained from these sentences is quite transparent. Simply via
deploying its knowledge that the TruthValueGreaterThan relationship is transitive, and
that Bob is American, the PLN logic system can in two steps derive the conclusion that

TruthValueGreaterThanLink
EvaluationLink like Bob Hendrix
EvaluationLink like Bob Menudo

Now that we are dealing with knowledge in logical rather than syntactic form, all
sorts of manipulations can be carried out. For instance, suppose we also know that Bob
likes Sinatra more than Menudo,

TruthValueGreaterThanLink
EvaluationLink like Bob Hendrix
EvaluationLink like Bob Menudo

PLN’s abduction rule then concludes that

SimilarityLink
Hendrix
Sinatra

This sort of reasoning is very simple in PLN, and that’s as it should be – it is also
commonsensically simple for humans. A major design objective of PLN was that in-
ferences that are simple for humans, should be relatively compact and simple in PLN.
The task of the language comprehension pipeline we have designed for OpenCog is to
unravel the complexity of natural language syntax to unveil the logical simplicity of
the semantics underneath, which can then oftentimes be reasoned on in a very simple,
straightforward way.



8 R. Lian, R. Solomon, A. Belayneh, B. Goertzel, G. Yu and C. Zhou

5 Conclusion

We have summarized the operation of a natural language comprehension system that
maps English sentences into sets of logical relationships, in the logic format utilized by
a probabilistic inference engine implemented within a general purpose cognitive archi-
tecture. This comprehension system is being utilized within prototype applications in
multiple areas including a non-player character in a video game, a humanoid robot oper-
ating in an indoor environment, and a chat system running on a smartphone interacting
with a user regarding music and media consumption.

We have focused here on the processing of comparatives, as this is a nontrivial
case that is currently confusing for linguistic theory and handled suboptimally by many
parsing systems. For practical cases of comparatives, as for most other cases, our system
qualitatively appears to give adequate performance.

However, significant work remains before we have a generally robust comprehen-
sion system capable for use in a wide variety fo dialogue systems. Handling of conjunc-
tions and quantifiers is one of the primary subjects of our current work, along with the
use of PLN to handle commonsense inferences more subtle than the simple inference
case summarized here.

6 Beyond Hand-Coded Rules

The language comprehension architecture described here is, in its current implementa-
tion, largely founded on hand-coded linguistic rules: the link-grammar dictionary, the
RelEx rule-based and the RelEx2Logic rule-base. However, this is not viewed as an
integral aspect of the approach pursued. In fact, research is currently underway aimed
at replacing these hand-coded rules with rules automatically learned via unsupervised
corpus learning; this work is overviewed in [15].

The point of the hand-coded rule-bases used in the current work is not to serve as
a lasting foundation for intelligent English language processing; our view is that this
would be an infeasible approach in the end, as the number of rules required would
likely be infeasible to encode by hand. Rather, the point of the hand-coded rule-bases is
to dissociate the problem of language processing architecture from the problems of lan-
guage learning and linguistic content. Using the hand-coded rule-bases as a “working
prototype” of linguistic content regarding the English language, we are able dissociate
the architecture problem from the learning problem, and present what we propose as
a general and powerful architecture for language comprehension and generation. The
problem of learning more broadly functional linguistic content to operate within this ar-
chitecture, is then viewed as a separate problem, we believe addressable via OpenCog
learning algorithms.

References

1. Bhatt, R., Takahashi, S.: Winfried lechner, ellipsis in comparatives. The Journal of Compar-
ative Germanic Linguistics 14(2), 139–171 (2011), http://dx.doi.org/10.1007/
s10828-011-9042-3



From Specialized Syntax to General Logic: The Case of Comparatives 9

2. Goertzel, B., Ikle, M., Goertzel, I., Heljakka, A.: Probabilistic Logic Networks. Springer
(2008)

3. Goertzel, B., Coelho, L., Geisweiller, N., Janicic, P., Pennachin, C.: Real World Reasoning.
Atlantis Press (2011)

4. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1: A
Path to Advanced AGI via Embodied Learning and Cognitive Synergy. Springer: Atlantis
Thinking Machines (2013)

5. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 2: The
CogPrime Architecture for Integrative, Embodied AGI. Springer: Atlantis Thinking Ma-
chines (2013)

6. Grant, M.: The Parsing and Interpretation of Comparatives: More than Meets the Eye (2013),
http://scholarworks.umass.edu/open_access_dissertations/689/

7. Izvorski, R.: A dp -shell for comparatives. Proceeding of CONSOLE III pp. 99–121 (1995)
8. Jurafsky, D., Martin, J.: Speech and Language Processing. Pearson Prentice Hall (2009)
9. Klein, D., Manning, C.: Accurate unlexicalized parsing. Proceedings of the 41st Meeting of

the Association for Computational Linguistics pp. 423–430 (2003)
10. Lechner, W.: Ellipsis in Comparatives. Studies in generative grammar, Moulton de Gruyter

(2004), http://books.google.com.hk/books?id=JsqUHHYSXCIC
11. Lian, R., Goertzel, B., Ke, S., OÕNeill, J., Sadeghi, K., Shiu, S., Wang, D., Watkins, O., Yu,

G.: Syntax-semantic mapping for general intelligence: Language comprehension as hyper-
graph homomorphism, language generation as constraint satisfaction. In: Artificial General
Intelligence: Lecture Notes in Computer Science Volume 7716. Springer (2012)

12. Sleator, D., Temperley, D.: Parsing english with a link grammar. Third International Work-
shop on Parsing Technologies. (1993)

13. Steels, L.: Design Patterns in Fluid Construction Grammar. John Benjamins (2011)
14. Steels, L.: Modeling The Formation of Language in Embodied Agents: Methods and Open

Challenges, pp. 223–233. Springer Verlag (2010)
15. Vepstas, L., Goertzel, B.: Learning language from a large unannotated corpus: A deep learn-

ing approach. Technical Report (2013)


