
Programming languages and artificial general
intelligence

Vitaly Khudobakhshov1,2, Andrey Pitko2, and Denis Zotov2

1 St.-Petersburg State University, Russia
2 ITMO University, Russia

Abstract. Despite the fact that there are thousands of programming
languages existing there is a huge controversy about what language is
better to solve a particular problem. In this paper we discuss require-
ments for programming language with respect to AGI research. In this ar-
ticle new language will be presented. Unconventional features (e.g. prob-
abilistic programming and partial evaluation) are discussed as important
parts of language design and implementation. Besides, we consider pos-
sible applications to particular problems related to AGI. Language inter-
preter for Lisp-like probabilistic mixed paradigm programming language
is implemented in Haskell.

1 Introduction

For many years researches tried to create programming languages for specific
areas of research. In the history of AI there were many attempts to create lan-
guage that would be the best for artificial intelligence. The two main examples
are Lisp and Prolog. First one is particularly interesting, because some code can
be considered as data in very natural way. Second one contains powerful inference
engine based on Horn logic as part of the language. Since that time significant
progress have been made in theory of programming languages and many bril-
liant languages like Haskell were created. Unfortunately, many of achievements
in this field are not yet widely used neither artificial intelligence, nor mainstream
software development. This paper is related to two advanced techniques: proba-
bilistic programming and partial evaluation. Importance of this techniques will
be briefly discussed in this paper. These ideas can be considered as unconven-
tional and not widely used outside of particular areas of research. Incorporation
of such techniques to programming language may have considerable impact on
artificial general intelligence.

The next section is about core language design, programming paradigm and
basic features like pattern matching. Choice between domain-specific embedded
language and full-featured general purpose language is also discussed.

One of the main issue need to be discussed is application of probabilistic
programming to AGI. Generative models can be very useful in knowledge repre-
sentation, as well as some other aspects of cognitive architectures. Probabilistic
programming is discussed in Section 3.



2 V. Khudobakhshov, A. Pitko and D. Zotov

Section 4 is focused on a deep relationship between theory of programming
languages and artificial general intelligence.

Last sections contain some implementation notes and future work road map.
Language interpreter and tools are implemented in Haskell. Therefore, many
issues about implementation of mixed paradigm languages in pure functional
language are discussed. Related programming languages like Church are also
discussed.

2 Language requirements and design

In this section we discuss main choices and tradeoffs one faces during program-
ming language design. Our goal is to create programming languages with best
capabilities for artificial general intelligence. We started from the following:

1. Turing-completeness
2. General purpose
3. Ease of use for automatic program transformation, generation and search
4. Mixed-paradigm (the language must support functional and imperative style)
5. Based on existent language to effectively adopt user experience and legacy

code with minimum changes
6. Easily extendible syntax
7. Simplicity

The language should be powerful enough to make it possible to develop AGI
systems (e.g. cognitive architecture). In other hand the language should be good
enough not only for human beings, but for programs which use other programs
(probably itself) as data.

Last requirement is to push us toward Lisp language family because it has a
very natural quote syntax.

Another problem we should start to discuss is typing. Languages with static
typing is a good choice for enterprise software development because many errors
can be found during compilation. Many modern languages like Haskell and Scala
have very difficult type system and it makes programming very tricky in some
cases. If we want to satisfy simplicity requirement, we should choose dynamic
typing. Mixed-paradigm in our case supposes that language should not be pure.

Scheme and Church are good examples of programming languages with sim-
ple and extendible syntax. In real world applications some additional syntactic
sugar may significantly improve usability of language (see Clojure for example).

One of the most controversial choice has been made between general pur-
pose and domain-specific (embedded) language. DSL can be Turing-complete
and may have many extensions, like probabilistic programming or metacompu-
tations. On the other hand, general purpose language needs to have a parser,
interactive interpreter, and IDE. The problem of language embedding is ambiva-
lent because pros and limitations are the same things. One can use DSL in his or
her own favorite language and provide very high level of extensibility. Neverthe-
less, embedded language obliges to use this particular general purpose language



Programming languages and artificial general intelligence 3

in which DSL is embedded. Presented language is implemented in Haskell as
general purpose.

Presented language is based on Scheme language with some useful exten-
sions. Bread and butter of modern functional programming is pattern matching.
In Scheme and Clojure this functionality provided by extended library. In this
language we incorporate some syntactic ideas from Haskell to provide pattern
matching in core language. Symbol : used to match cons and underscore as
wildcard symbol:

(define (count x lst)

(match lst

(() 0)

((x : ys) (+ 1 (count x ys)))

((_ : ys) (count x ys))))

In this example pattern with dynamic properties has been used. Second pat-
tern contains variable x which is used as argument of function count. Which
means that if first element of lst equals to x, then we will have a match. More-
over, repeated variables are allowed (in this case, expression will be evaluated to
2):

(match ’(2 3 2)

((a : b : a : ()) a)

(_ 0))

Although prefix nature of Lisp-like languages is broken here, it is only made
to improve usability of the language. Pattern matching is a good extension to
make programs more readable and compact, but not directly applicable to AGI
problems. In next two sections we introduce probabilistic programming and par-
tial evaluation.

3 Probablistic programming

According to [3], probabilistic programming languages unify technique of clas-
sical models of computation with the representation of uncertain knowledge. In
spite of the fact that the idea of probabilistic programming is quite old (see refer-
ences in [6]), only in last few years researchers in cognitive sciences and artificial
intelligence started to apply this approach. Many concepts in cognitive stud-
ies such as concept learning, causal reasoning, social cognition, and language
understanding can be modeled using language with probabilistic programming
support [4].

As usual, we extend deterministic language of general purpose with random
choice primitives. The main obstacle in using probabilistic programming in large
projects is the efficient implementation of inference. In modern probabilistic
languages used various techniques and algorithms are used to solve this problem,
including partial filtering [3], and Metropolis-Hastings algorithm [5]. In many



4 V. Khudobakhshov, A. Pitko and D. Zotov

cases programs need to be transformed to special form (e.g. continuation of
passing style in WebPPL [3]). But main problem is that these languages are not
ready for production use. If one wants to use such technique in his or her own
project, one needs to embed particular language or extend it. Church is general
enough, but it is not easy to extend; WebPPL is easy to embed or extend,
but it is just a subset of JavaScript. In recent paper [1] genetic programming
and simulated annealing were successfully applied to implementing inference
procedure.There are implementation difficulties for such algorithms because they
involve programming traces. In the section concerning implementation specifics
more details will be covered.

In spite of a mixed paradigm nature of presented language, probabilistic pro-
gramming is now allowed only for pure functional subset as in cases of WebPPL
and Church. It is clear that random function cannot be pure, but we share the
idea that concept of purity can be generalized to concept of exchangeability [5]:
if an expression is evaluated several times in the same environment, the dis-
tribution on return values is invariant to the order of evaluations. In this sense
further softening of such a requirement needs more research and not all language
constructions are allowed for probabilistic programs in our language. Therefore,
we can not use set! function in probabilistic program, but some useful features
such as memoization can be extended to stochastic case [5]. This approach can
be seen as division to pure and monadic code in Haskell. It can be useful in
designing programs, like cognitive architectures, which use wide range of pro-
gramming techniques. All of this can be written in the same language, but for
probabilistic part using only the subset can be enough.

This approach is closely related to DSL mentioned in previous section. One
of the most interesting examples of application probabilistic DSL is presented in
[12].

Here we do not show examples of probabilistic programs, because we tried to
provide compatibility with Church programming language up to minor issues,
such as pattern matching.

Programming language presented here is an effort to create open and extend-
able language with probabilistic programming capabilities. Our implementation
is based on ideas described in [14].The main difference from other implemen-
tations like Church and WebPPL is that inference algorithm is implemented in
host language. Moreover no additional program transformation is needed.

4 Why partial evaluation matters?

In this section one connection between programming languages in general and
artificial intelligence will be discussed. In papers [9, 13] possible application of
partial evaluation was introduced. One should mention that there were some at-
tempts long before this papers to apply partial evaluation to artificial intelligence
(see for example [8]). Here new approach to understanding relations between two
fields will be presented and discussed.



Programming languages and artificial general intelligence 5

Lets start from general idea proposed by Futamura [2]. Let we have program
p with two or more arguments written in language S, such that p(x, y) = d.
Here, d is a result of program execution. Suppose one have a program spec which
can be applied to two arguments a program and the first argument and produce
residual program of one argument spec(p, x0) = p’ specialized for specified
argument x0. Residual program p’ satisfied an equation p’(y) = p(x0, y) = d

for every y. But p’ has possible optimizations according to knowledge of partic-
ular value x0 and therefore work much faster.

This approach is very useful for automatic compiler construction. Suppose
we have an interpreter of (source) language S written in (target) language T

defined by int(p, args) = d (for more formal description see book [7]). One
can apply specializer spec to interpreter int with respect to program p. It is
easy to check that this will be the result of compilation from S to T.

In the context of artificial general intelligence this makes a connection be-
tween AGI and classical AI [9]. Here we need some philosophical remarks. Al-
most everybody knows a very famous proposition about general intelligence and
specialization:

A human being should be able to change a diaper, plan an invasion,
butcher a hog, conn a ship, design a building, write a sonnet, balance
accounts, build a wall, set a bone, comfort the dying, take orders, give or-
ders, cooperate, act alone, solve equations, analyze a new problem, pitch
manure, program a computer, cook a tasty meal, fight efficiently, die gal-
lantly. Specialization is for insects.
– Robert A. Heinlein

It sounds reasonable, but in reality, the situation is different. Nobody asks
painter to solve equations in mathematical physics. Moreover, we need to be
precise and fast. If one needs to do accounting, then he or she definitely will use
calculator to make job done. In this sense, ability to specialize by making tools
is a crucial ability of general intelligence.

Is research in artificial general intelligence a replacement of good old-fashioned
artificial intelligence? Suppose to be not. Imagine for a second that we have an
AGI program which can solve almost all problems, but very slow. If we need to
have effective solution of one particular problem, we have to develop optimized
solution for the problem. But if we have ability to specialize our general program,
we do not need to solve certain problem again anymore.

Is it possible to view AGI problems in terms of programming language theory
and partial evaluation? Lets restrict ourselves to quasi-general example: general
game playing. This example can be easily extended to AGI with some additional
assumptions.

General game player is a program that must be able to play arbitrary logic
game (sometimes only full information games considered) for one or more players.
It can be either a 15-puzzle, or chess, or another game. The main point is that
player gets the game rules seconds before the game starts. Handlers for five
requests must be implemented: info, start, play, stop and abort. Function



6 V. Khudobakhshov, A. Pitko and D. Zotov

start receives the game rules described as open logic program written in Game
Description Language [11]. After that player is involved into a request-response
cycle with game server and play handler makes choices and realizes strategy of
the game.

This interaction can be seen as classical Read–Evaluate–Print Loop of inter-
active interpreter. In such a way one can apply partial evaluation principles to
artificial general intelligence. In the case of general game playing we will deduce
specialized program which can play certain game by partially evaluating general
program according to game rules.

Many players use advanced techniques to optimize program for particular
games up to code generation and compilation [10]. We believe that it can be done
by partial evaluation. It is clear that partial evaluation can not be very useful
in search and do not provide heuristics for search optimization. It is proven that
in many cases only linear speedup is possible [7]. But manipulating with GDL
for computing legal moves and state has huge overhead and it can be removed
by specialization.

Applying the idea to more general case including learning is also possible,
independently of knowledge representation. In the case of procedural or sym-
bolic representation, it is pretty straightforward. Possible applications of partial
evaluation to neural networks are described in [7].

5 Implementation issues

This section is about implementation details of the project. Besides the decision
to implement general purpose language, choosing of implementation language
is always coupled with some trade-offs. In our case, it was speed, development
difficulty and extensibility. Only two candidates will be considered OCaml and
Haskell. OCaml is good for catching imperative programming with full power
of functional language, including pattern matching and algebraic data types.
Haskell provides a more compact code with very good support of external li-
braries via foreign function interface, but it has some drawbacks connected with
imperative issues, such as monads, lifting, and error handling. Choosing Haskell
as implementation language is probably controversial in this case, but compiler
quality and larger community were conclusive issues during the process of the
decision making.

Language tools consist of following parts: interpreter, partial evaluator, and
probabilistic programming support including tracer. All parts share some code
according to language specification.

Interpreter uses Parsec library and support REPL mode. Double precision
floating-point and arbitrary precision integers are supported. Strings are also
supported as built-in type.

The crucial aspect of probablistic programming langauge is implementa-
tion of probablisic inference algorithm. As in many other probablistic languages
Metropolis-Hastings is one of the most important sampling strategies. The im-
plementation is based on a method carefully described in [14]. There are different



Programming languages and artificial general intelligence 7

ways to implement ERPs (elementary random primitives) - basic blocks of prob-
ablistic programs. To keep things simple we just maintain any key-value stuc-
ture for every random function where value is a tuple consisting of likelihood,
sample and proposal_kernel functions for particular ERP.

To implement MCMC inference (in particular Metropolis-Hastings) one need
to maintain a trace of the program. Trace consists of chunks - memoized random
values:

data Chunk = Chunk { value::Value

, name::String

, erp::ERP

, args::[Value] }

where value is generated value wrapped up into language primitive, name is
unique call address (see [14] for more information about structural naming strat-
egy), args are parameters which used for generation.

Partial evaluation is implemented in Haskell. We use code annotation to
describe static-dynamic division which means that original AST (abstract syntax
tree) is transformed to annotated one before specialization [7].

The resulting language inherits some parts of Haskell semantics. It does not
support lazy evaluation of infinite data structures, but it has some issues, for
instance, normal evaluation order instead of applicative one. We do not force
interpreter to evaluate arguments before passing. But final decision will be made
later.

6 Conclusion and future work

Despite early stage of the work, it needs to be mentioned that it is the first
attempt to create language with build-in support of both partial evaluation and
probabilistic programming. At the level of intuition specialization and probabilis-
tic programming are somehow connected and can be used effectively together.
This project joins efforts to research in related fields.

Behind this work there is an idea to create cognitive architecture based on
concepts mentioned above. We believe that probabilistic programming with par-
tial evaluation may be effectively applied to AGI problems.

Many ideas of probabilistic programming will be already successfully applied
to AGI problems [1] and computer vision in the context of AGI [12]. We are
planning to incorporate this ideas to our language.

In this stage of the project probablistic programming and partial evaluation
used independently and relationship between them is not very clear. Definitely
inference algorithm can be considered as interpretation (in fact interpreter and
MCMC query function use large amount of code with very small differences).
In other hand it may be impractical or technically difficult to apply such kind
of program transformation to inference algorithms. This is a important part of
our future work. Moreover real application of this techniques to AGI is still



8 V. Khudobakhshov, A. Pitko and D. Zotov

challenging. In the next stage we are planning to create proof-of-concept intelli-
gent software (e.g. cognitive architecture) which will extensively use probablistic
programming and partial evaluation.

7 Acknowledgements

We would like to thank Alexey Potapov, Vita Batischeva and many others for
very useful discussion which inspired us to make this work.

This work was supported by Ministry of Education and Science of the Russian
Federation.

References

1. Batischeva, V., Potapov, A.: Genetic programming on program traces as an infer-
ence engine for probabilistic. To appear in these AGI-15 proceedings

2. Futamura, Y.: Partial evaluation of computation process an approach to a
compiler-compiler. Systems, Computers, Controls 2, 45–50 (1971)

3. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages. http://dippl.org, retrieved on 2015/3/30

4. Goodman, N.D., Tenenbaum, J.B.: Probabilistic models of cognition. http://

probmods.org, retrieved on 2015/3/30
5. Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., Tarlow, D.: Church: a lan-

guage for generative models. In: Proc. 24th Conf. Uncertainty in Artificial Intelli-
gence (UAI). pp. 220–229 (2008)

6. Jones, C., Plotkin, G.D.: A probablistic powerdomain of evaluations. In: Proceed-
ings of Fourth Annual Symposium on Logic in Computer Science. pp. 186–195.
IEEE Computer Society Press (1989)

7. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1994)

8. Kahn, K.: Partial evaluation, programming methodology, and artificial intelligence.
AI Magazine 5, 53–57 (1984)

9. Khudobakhshov, V.: Metacomputations and program-based knowledge represen-
tation. In: Kühnberger, K.U., Rudolph, S., Wang, P. (eds.) AGI’13, pp. 70–77. No.
7999 in LNAI (2013)

10. Kowalski, J., Szyku l a, M.: Game description language compiler construction. In:
AI 2013: Advances in Artificial Intelligence. No. 8272 in LNCS (2013)

11. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game
playing: Game description language specification. Tech. rep., Stanford Logic Group
Computer Science Department Stanford University, Technical Report LG-2006-01
(2008)

12. Potapov, A., Batischeva, V., Rodionov, S.: Optimization framework with minimum
description length principle for probabilistic programming. To appear in these AGI-
15 proceedings

13. Potapov, A., Rodionov, S.: Making universal induction efficient by specialization.
In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI’14, pp. 133–142. No. 8598 in
LNCS (2014)

14. Wingate, D., Stuhlmüller, A., Goodman, N.D.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Proc.
of the 14th Artificial Intelligence and Statistics (2011)


