
A New View on Grid Cells
Beyond the Cognitive Map Hypothesis

Jochen Kerdels and Gabriele Peters

University of Hagen - Chair of Human-Computer Interaction
Jochen.Kerdels@FernUni-Hagen.de,

WWW home page: http://mci.fernuni-hagen.de
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Abstract. Grid cells in the entorhinal cortex are generally considered
to be a central part of a path integration system supporting the con-
struction of a cognitive map of the environment in the brain. Guided
by this hypothesis existing computational models of grid cells provide a
wide range of possible mechanisms to explain grid cell activity in this
specific context. Here we present a complementary grid cell model that
treats the observed grid cell behavior as an instance of a more abstract,
general principle by which neurons in the higher-order parts of the cortex
process information.

Keywords: grid cell model, higher-order information processing

1 Introduction

In 1948 Edward Tolman [36] reported on a series of behavioral experiments with
rats that led him to hypothesize that the animals had to make use of an in-
ternal, map-like representation of the environment. This idea, which came to
be known as the cognitive map hypothesis, was highly controversial at the time.
Accordingly, the discovery of hippocampal place cells by O’Keefe and Dostro-
vsky [25, 27] in the 1970s was met with much excitement as place cells were the
first possible direct evidence for such a representation of the environment in the
brain [26]. Since then a variety of neurons that exhibit spatially correlated ac-
tivity were found in the parahippocampal-hippocampal region [35, 15, 11, 13, 32].
In particular the recent discovery of grid cells [11, 13] in the entorhinal cortex
of rat strengthened the idea that the involved neuronal structures constitute a
kind of metric for space [23]. Grid cells are neurons that exhibit spatially corre-
lated activity similar to that of place cells with the distinct difference that grid
cells possess not just one but multiple, discrete firing fields that are arranged in
a regular, hexagonal grid that spans the entire environment (Fig. 1a). Located
just one synapse upstream of the hippocampus grid cells are assumed to be an
important source of spatial information to place cells [33, 29]. In particular, grid
cells are generally considered to be a central part of a path integration system
as pointed out by Burgess [5]: “There has been a surprising rapid and general
agreement that the computational problem to which grid cells provide a solution
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is “path integration” within an allocentric reference frame.” This consensus is
reflected by the fact that all computational models of grid cells proposed so far
(except [19]) incorporate mechanisms of path integration as integral parts to ex-
plain the hexagonal firing patterns of grid cells. Although existing computational
models cover a wide range of possible mechanisms and focus on different aspects
of grid cell activity [23, 38, 12, 2, 4, 24], the models share the common approach
of explaining grid cells and their behavior as functional components within the
cognitive map hypothesis.

Complementary to this common approach this paper presents an alternative
grid cell model that treats the observed grid cell behavior as an instance of a
more abstract, general principle by which neurons in the higher-order parts of
the cortex process information.

2 Model Description

To describe the behavior of grid cells at a more abstract level a computational
model is needed that is agnostic to the semantic interpretation of its own state
and its respective input space such that the model can provide an explanation
of the cell’s behavior that does not rely on assumptions based on the putative
purpose of that cell, e.g., performing path integration or representing a coor-
dinate system. This way, the observed behavior of grid cells can be treated as
just one instance of a more general information processing scheme. To this end
we propose to interpret the input signals that a grid cell receives within a small
time window as a single sample from a high-dimensional input space. This input
space represents all possible inputs to the grid cell and for a certain subset of
these inputs, i.e., for inputs from certain regions of that input space the grid cell
will fire. The problem of modeling grid cell behavior can then be split into two
independent sub-problems. The first problem addresses the question how a cell,
given an arbitrary input space, chooses the regions of input space for which it
will fire. The second problem addresses the question how a specific input space
has to be structured in order to evoke the actual firing pattern observed in, e.g,
grid cells. This paper focuses on the first problem and will touch upon the second
problem just briefly.

The most salient feature of grid cells is their firing pattern. The triangu-
lar structure resembles the outcome of a number of processes that typically
perform some form of error minimization, e.g., the hexagonal packing of cir-
cles [37], the Delaunay triangulation [7, 3], or certain kinds of topology represent-
ing networks [20]. The latter are artificial neural networks that employ forms
of unsupervised competitive learning to discover the structure of an underlying
input space. Among those networks the growing neural gas (GNG) introduced
by Fritzke [10, 9] stands out as it does not use a predetermined and fixed net-
work topology like, e.g., the well-known self-organizing map (SOM) [18] does.
Instead, the GNG uses a data-driven growth process to approximate the topol-
ogy of the underlying input space resulting in an induced Delaunay triangulation
of that space. Figure 1b shows an example of a GNG network approximating
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(a) (b)

Fig. 1. Comparison of a grid cell firing pattern with a growing neural gas (GNG)
network. (a) Typical visualization of a grid cell’s firing pattern as introduced by Hafting
et al. [13]. Left: trajoctory (black lines) of a rat in a circular environment with marked
locations (red dots) where the observed grid cell fired. Middle: color-coded firing rate
map of the observed grid cell ranging from dark blue (no activity) to red (maximum
activity). Right: color-coded spatial autocorrelation of the firing rate map ranging
from blue (negativ correlation, -1) to red (positive correlation, +1) highlighting the
hexagonal structure of the firing pattern. Figure from Moser et al. [23]. (b) Example of a
GNG network with 25 units that was fed with inputs from a uniformly distributed, two-
dimensional, circular input space. The resulting network forms an induced Delaunay
triangulation of the input space.

a uniformly distributed, two-dimensional, circular input space. Each GNG unit
marks the center of a convex polyhedron representing a local region of this input
space. The relative size of this region is inversely proportional to the probability
of an input originating from that region, i.e., the local density of the input space.
In addition, the absolute size of each local region is determined by the overall
number of GNG units that are available to cover the whole input space. The
network structure of the GNG, which relates the respective local regions to one
another, represents the input space topology.

Given the resemblance between the structure of grid cell firing patterns and
the structure of GNG networks for certain input spaces we propose that a single
grid cell performs an operation that is similar to that of a whole GNG, i.e., it is
proposed that the objective of a grid cell lies in the approximation of its entire
input space. This hypothesis differs strongly from the common interpretation of
GNGs where the GNG units correspond to individual neurons that each spe-
cialize to represent a single, specific region of input space. In contrast, this new
hypothesis implies that a single neuron represents not only one but several, dis-
tinct regions of input space. To accomplish this a single neuron would have to
recognize several different input patterns. Recent advances in imaging neuronal
activity [14, 6] indicate that this is indeed the case.

In addition to their peculiar firing pattern, grid cells exhibit a modular or-
ganization in which the firing patterns of neighboring grid cells share a common
orientation, spacing, and field size [34]. Furthermore, the distribution of relative
grid phases is uniform within each module. To account for these properties we
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Fig. 2. Illustration of the proposed two-layer model. (a) The top layer is represented
by three units (red, green, blue) connected by dashed lines. The associated sets of
connected nodes in the bottom layer are illustrated by corresponding colors. (b) Top
view on the input space partition induced by the bottom layer sets of nodes.

propose to describe a group of grid cells by a two-layer model1. The top layer
contains a set of connected units that each represent an individual grid cell. As-
sociated with each top layer unit is a set of connected nodes in the bottom layer
representing the set of input patterns that are recognized by the dendritic tree of
the grid cell (Fig. 2a). To this end, each node in the bottom layer possesses a pro-
totype vector that represents the center of a local input space region. Applying a
form of competitive hebbian learning within each set of bottom layer nodes (bot-
tom layer competition) arranges the nodes in a triangular pattern that covers
the entire input space. In addition, competition across the sets of bottom layer
nodes (top layer competition) arranges the different triangular patterns in such
a way that they share a common orientation and spacing. Furthermore, the top
layer competition will also spread the individual triangular patterns uniformly
across the input space (Fig. 2b).

Formally, the proposed model consists of a set of units u ∈ U and a set of
connections c ∈ C located in the top layer, as well as a set of parameters θ. Each
connection c is described by a tuple:

c := (P, t) ∈ C, P ⊆ U ∧ |P | = 2, t ∈ N,

with units p ∈ P linked by the connection and the connection’s age t. Each
unit u is described by a tuple:

u := (V,E) ∈ U,

containing a set of nodes v ∈ V and a set of edges e ∈ E located in the bottom
layer. Each node v is described by a tuple:

v := (w, aerr, εref) ∈ V, w ∈ Rn, aerr ∈ R, εref ∈ R,
1 A preliminary version of this idea was presented by Kerdels and Peters [16].
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with the prototype w, the accumulated error aerr, and a refractory factor εref.
Each edge e is described by a tuple:

e := (S, t) ∈ E, S ⊆ V ∧ |S| = 2, t ∈ N,

with nodes s ∈ S linked by the edge and the edge’s age t. The set of parameters θ
consists of:

θ := {εb, εn, εr, τt,Mt, εb.start, εb.end, εn.start, εn.end, τb,Mb, λ, α, β, γ, tr} .

The model is initialized with Mt fully connected top level units u each starting
with two nodes v that have random prototype vectors as well as accumulated
errors and refractory factors set to zero. An input ξ ∈ Rn at time t is processed
as follows:

– For each top layer unit u ∈ U :

• Find the two nodes s1 and s2 in u�V whose prototypes w have the small-
est Euclidian distance to the input ξ. Node s1 is called the best matching
unit (BMU) of u.

• Increment the age t of all edges connected to s1 by one.
• If no edge between s1 and s2 exists, create one.
• Reset the age t of the edge between s1 and s2 to zero.
• Add the squared distance between ξ and the prototype w of s1 to the

accumulated error aerr of s1.
• Adapt the prototype of s1 and all prototypes of its direct neighbors:

st+1
1 �w := st1�w + εtb (1− st1�εref) (ξ − st1�w) ,

st+1
n �w := stn�w + εtn (1− st1�εref) (ξ − stn�w) ,

with

εtb := εb.start

(
εb.end
εb.start

) t
tr
, εtn := εn.start

(
εn.end
εn.start

) t
tr
,

sn ∈ {k|∃ (S, t) ∈ E, S = {s1, k} , t ∈ N} .

• Set the refractory factor εref of s1 to one.
• Remove all edges with an age above threshold τb and remove all nodes

that no longer have any edges connected to them.
• If an integer-multiple of λ inputs has been processed and |u�V | < Mb,

add a new node v. The new node is inserted “between” the node j with
the largest accumulated error aerr and the node k with the largest accu-
mulated error among the direct neighbors of j. Thus, the prototype w
of the new node is initialized as:

v�w := (j�w + k�w) /2.

The existing edge between nodes j and k is removed and edges between
nodes j and v as well as nodes v and k are added. The accumulated
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errors of nodes j and k are decreased and the accumulated error of the
new node v is set to the decreased accumulated error of node j:

∆j�aerr = −αj�aerr, ∆k�aerr = −αk�aerr,
v�aerr := j�aerr .

• Finally, decrease the accumulated error of all nodes as well as their re-
fractory factors:

∆v�aerr = −β v�aerr,
∆v�εref = −γ v�εref, ∀v ∈ V.

– Identify the two units u1 and u2 whose BMUs were closest to input ξ.
– Increment the age t of all connections to u1 by one.
– If no connection between u1 and u2 exists, create one.
– Reset the age t of the connection between u1 and u2 to zero.
– Adapt the BMUs of u1 and u2 as well as their neighbors:

u1�s
t+1
1 �w := u1�st1�w + εb (ξ − u1�st1�w) ,

u1�st+1
n �w := u1�stn�w + εbεr (ξ − u1�stn�w) ,

u2�s
t+1
1 �w := u2�st1�w + εn (ξ − u2�st1�w) ,

u2�st+1
n �w := u2�stn�w + εnεr (ξ − u2�stn�w) .

– Remove all edges with an age above threshold τt.

In the present model each set of bottom layer nodes behaves essentially like
a growing neural gas. To accommodate sequential input, e.g., a sequence of
animal positions, the original GNG algorithm [10, 9] is extended by a successive
reduction of the learning rates εb and εn to capture a more uniform distribution
of inputs, as well as a refractory factor εref that reduces the impact of equal or
similar consecutive inputs. The connected top layer units track the neighborhood
relations of the corresponding bottom layer node sets. The additional adaption
step of the top layer establishes a competition across the bottom layer node sets
resulting in an even distribution and alignment of these sets.

3 Example of Grid Cell Activity

To generate a grid like firing pattern, the proposed model requires an input
space that is a uniformly distributed, two-dimensional, periodic representation
of possible animal locations. A possible neuronal mechanism that results in a
representation of location with these properties consists of two orthogonal, one-
dimensional attractor networks. Attractor networks were first introduced as a
computational model of head direction cells [39] and later used in models of place
and grid cells [21, 22, 28]. Here we use two orthogonal, one-dimensional attractor
networks as described in a previous work [16]. During an initial learning phase
the model is fed with randomly generated locations. After the model has settled
into a stable configuration, recorded movement data provided by Sargolini et
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(a) (b) (c) (d)

Fig. 3. Exemplary rate and autocorrelation maps of simulated grid cells. (a,b) Simu-
lated grid cell with 20 bottom layer nodes. (c,d) Simulated grid cell with 16 bottom
layer nodes.

al. [31] of a rat foraging for food in a square environment is used. Figure 3 shows
exemplary rate and autocorrelation maps of two top layer units with either 16
or 20 bottom layer nodes exhibiting grid like firing patterns. In this example,
the following set of parameters θ was used:

εb = 0.05, εn = 0.005, εr = 0.001, τt = 1000, Mt = 50,

εb.start = 0.05, εb.end = 0.0005, εn.start = 0.01, εn.end = 0.0001, τb = 300,

Mb = {16, 20} , λ = 1000, α = 0.5, β = 0.0005, γ = 0.2,

tr = 500000.

4 Discussion

The proposed model describes a putative general principle by which neurons in
higher-order parts of the cortex process information of arbitrary input spaces:

Each neuron aspires to represent its input space as well as possible while
being in competition with its peers.

This assumed behavior contrast the behavior of “classic” perceptrons [30] in in-
teresting ways. A perceptron can be interpreted as a linear classifier where the
input weights define a hyperplane that divides the input space into two regions.
The output of the activation function then indicates from which of the two re-
gions the respective input pattern originated. Combining the output of several
perceptrons successively divides the input space into a smaller and smaller sub-
region (Fig. 4a). In contrast, the top layer units of our model compete with each
other and generate a tiled, periodic partition of the input space (Fig. 2b). If the
output of top layer units from separate neuron groups or modules with different
spatial scales and/or orientations is combined, they can collectively identify a
specific, individual subregion of the input space by coinciding only in that region
(Fig. 4b). In case of grid cells, this mechanism was successfully used to explain
the formation of place cells from grid cell activity [29, 33, 8, 1].
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(a) (b)

Fig. 4. Comparison of strategies to identify specific subregions in input space. (a) Mul-
tiple perceptrons successively partition the input space to identify a specific subregion
(the middle triangle). (b) Top layer units from separate grid cell groups with different
spatial scales identify a specific subregion by coinciding in that region.

Both, a population of perceptrons as well as a population of top layer units
in our model represent a form of input space encoding that allows to identify
individual subregions of input space. The use of periodic input space partitions
as basic elements of such an encoding may have a number of advantages over a
linear partition of input space:

– Representing the entire input space in each neuron averages the activity of
all neurons in a group independently of the particular input and may be
metabolically beneficial.

– Sequences of inputs are split into repeating subsequences. For example, if a
rat runs in a given direction, a small number of grid cells will be activated
in sequence repeatedly increasing the probability that this subsequence will
be learned.

– If a set of periodic input space partitions across several spatial scales identi-
fies a specific region of input space, the size of this region depends on which
subset of partitions are choosen.

In particular the latter two points require further investigation, as they may
yield new approaches to the problem of learning complex sequences and to the
problem of learning hierarchical representations.

5 Conclusion and Outlook

We presented a computational model that can explain the behavior of grid cells
in terms of two independent sub-problems: the information processing performed
by the cells and the structure of their input space. We argue that neurons in
higher-order parts of the cortex pursue a general information processing scheme
in which the neurons try to represent their input space as well as possible. In
future research, we will investigate if this general information processing scheme
can be used to explain the behavior of neurons other than grid cells. For example,
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Killian et al. [17] report on entorhinal neurons with grid-like firing patterns in
response to saccadic eye movements.
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