
Stochastic Tasks: Difficulty and Levin Search

José Hernández-Orallo

DSIC, Universitat Politècnica de València, Spain
jorallo@dsic.upv.es

Abstract. We establish a setting for asynchronous stochastic tasks that
account for episodes, rewards and responses, and, most especially, the
computational complexity of the algorithm behind an agent solving a
task. This is used to determine the difficulty of a task as the (logarithm
of the) number of computational steps required to acquire an acceptable
policy for the task, which includes the exploration of policies and their
verification. We also analyse instance difficulty, task compositions and
decompositions.

Keywords: task difficulty, task breadth, Levin’s search, universal psy-
chometrics

1 Introduction

The evaluation of cognitive features of humans, non-human animals, computers,
hybrids and collectives thereof relies on a proper notion of ‘cognitive task’ and
associated concepts of task difficulty and task breadth (or alternative concepts
such as composition and decomposition). The use of formalisms based on transi-
tion functions such as (PO)MDP (for discrete or continuous cases) is simple, but
have some inconveniences. For instance, the notion of computational cost must
be derived from the algorithm behind the transition function, which may have
a very high variability of computational steps depending on the moment: at idle
moments it may do just very few operations, whereas at other iterations it may
require an exponential number of operations (or even not halt). The maximum,
minimum or average for all time instants show problems (such as dependency
on the time resolution). Also, the use of transition functions differs significantly
in the way animals (including humans) and many agent languages in AI work,
with algorithms that can use signals and have a control of time through threads
(using, e.g., “sleep” instructions where computation stops momentarily).

The other important thing is the notion of response, score or return R for an
episode. Apart from relaxing its functional dependency with the rewards during
an episode, to account with a goal-oriented task, we consider the problem of
commensurability of different tasks by using a level of tolerance, and deriving
the notion of acceptable policy from it. While this seems a cosmetic change, it
paves the way to the notion of difficulty —as difficulty does not make sense if we
do not set a threshold or tolerance— and also to the analysis of task instances.

After these instrumental accommodations, the straightforward idea of diffi-
culty as search effort is used. Difficulty is just the logarithm of the computational

2 J. Hernández-Orallo

steps that are required to find an acceptable policy, including the execution of
several possible policies and verifying them. This is in accordance with Levin’s
universal search [10,11], the notion of information gain [4] and the interpretation
of the “minimal process for creating [something] from nothing” [12].

The notion of task instance difficulty is more controversial, as it usually
assumes that it is relative to the task (e.g., ‘30+0’ is an easy instance of the
addition task) or even to the policy (e.g., ‘sort gabcdef” is a very easy case for a
particular sorting algorithm). Note that average-case complexity in complexity
theory refers to how many computational steps are employed to solve a set
of instances (with a distribution) given a particular algorithm —or for every
possible conceivable algorithm. But one question that is not usually made is:
How can we say that ‘sort gabcdef’ is easier than ‘sort gdaefcb’ without setting
an algorithm or the distribution of algorithms?

The paper is organised as follows. Section 2 gives a setting for stochastic
tasks, responses, difficulty and acceptability (using a tolerance level). Section
3 discusses whether the notion of task difficulty can be inherited for instances.
Then we move to the notions of task composition and decomposition and their
implications. Section 4 introduces a variant of Levin search that includes a new
term into Kt, which is based on the number of repetitions that are needed to
verify that a policy is ϵ-acceptable with some given confidence 1 − δ, à la PAC
(Probabilistic Approximate Correct). Section 5 closes the paper.

2 Stochastic tasks, trials, responses and difficulty

Let us give the definition of asynchronous-time interactive systems. In an asyn-
chronous-time interactive system, there is a common shared time (which can be
discrete or continuous, and can be virtual or real). An interactive system is a
machine with a program code, a finite internal discrete memory, one or more
finite read-only discrete input tapes and one or more finite write-only discrete
output tapes. The inputs of agents are called observations and the outputs are
called actions. For tasks, it is the other way round. As special features, these ma-
chines have access to a read-only time measurement and a source of randomness
(either by an additional random instruction or a random tape). The programs
for tasks and agents are constructed with a Turing-complete set of instructions.
The programs can be coded over a reference universal prefix Turing machine U .
This makes this definition very close to probabilistic Turing machines. For the
purpose of the analysis of computational steps, we consider an instruction or
special state sleep(t), which sets the machine to sleep until time t.

Some tasks will also have intermediate rewards. Rewards are just given
through another extra tape, and are interpreted as a natural number. Rewards
are optional. In case they exist, the result of an episode may depend on the
rewards or not. This is important, as the general use of rewards in reinforce-
ment learning, especially with discounted reward or through averaging, gives
the impression that the final result or response of an episode must always be
an aggregation of rewards. For instance, in a maze, an agent may go directly
to the exit and may require no reward. On the contrary, a more sluggish agent

Stochastic Tasks: Difficulty and Levin Search 3

may require more positive indications and even with them cannot find the exit.
Rewards can be just given to help in the finding of the solution. Finally, the
agent is able to see the result or score of an episode at the end through another
special tape. A final reward can be given instead of or jointly with the result.

The expected value of the response, return or result of agent π for task µ for
a time limit τ is denoted by R[τ](π, µ). The value of τ will be usually omitted as
it is understood that it is part of the description of the task µ. The R function
always gives values between 0 and 1 and we assume it is always defined. If the
agent goes into a non-halting loop and stops reacting, this is not perceivable
externally and may even lead to some non-zero R.

Now we need to extend the notation of R(π, µ) to consider several instances
of the same task. Each attempt of a subject on one of the task instances is a
trial or episode. R[7→ν](π, µ) returns the expected response of µ per trial with
ν consecutive episodes or trials by the same agent π without reinitialisation. So
actually it is not the same π each time, if the agent has memory. According to
the task, the same instance can appear more than once, as in a sample with
replacement. As the task can have memory, we can also have some tasks that
are really working as if a no-replacement sampling were taking place. In order
to do that, the task itself must keep track of the instances that have appeared
or must use some kind of randomised enumeration. Also, tasks can be adaptive.

With R[7→1](π, µ), or simply R(π, µ), we denote that there is only one episode
or trial. For instance, many tests are of this kind if items are completely unre-
lated, with no influence on the following ones, although it is more applicable
when we consider that the agent has no memory (or is reinitialised between tri-
als). In general, especially if the items are related, for every ν > 1, we have that
R[7→ν](π, µ) ̸= R[7→1](π, µ) unless the agent has no memory between episodes.

Our view of difficulty is “algorithmic”, which is basically the computational
steps required to build the policy algorithm, which depends on the tolerance level
of the task, the interaction and hints given by the task, the algorithm length, its
computation cost and its verification cost. The first thing we will require is the
length of a policy or object x, denoted by L(x). The second thing we will require
is the computation steps taken by a policy. In synchronous environments, the sum
or average of steps of all time cycles is not very meaningful. Another option is to
calculate the maximum, as done in [7] with the so-called Ktmax. This is a very
rough approximation, as one single peak can make this very large. Fortunately,
here tasks are defined as asynchronous. When the agent needs to wait until a
situation or time is met, if the instruction sleep(t) is used, these ‘waiting’ times
are not considered for the computational steps. With this interpretation, the
expected1 execution steps of π per trial when performing task µ are denoted
by S[7→ν](π, µ) with a time limit (τ) given by the task for each trial. If at any
moment π enters an infinite loop, then S[7→ν](π, µ) is infinite. The third thing
is about memory requirements (space). In this paper we will not consider space
because (1) the use of n bits of memory requires at least n computational steps,
so the latter are going to be considered anyway and (2) steps and bits are different

1 This has to be ‘expected’ if we consider stochastic environments or agents.

4 J. Hernández-Orallo

units. The fourth thing is verification. When we discuss the effort about finding a
policy, there must be some degree of certainty that the policy is reasonably good.
As tasks and agents are stochastic, this verification is more cumbersome than in
a non-stochastic case. We will discuss about this later on in the paper. For the
moment, we will just combine the length of the policy and the computational
steps, by defining LS[7→ν](π, µ) , L(π) + log S[7→ν](π, µ). Logarithms are always
binary. We will explain later on why we apply a logarithm over S. The fifth thing
is the tolerance level of the task. In many cases, we cannot talk about difficulty
if there is no threshold or limit for which we consider a policy acceptable. It
is true that some tasks have a response function R that can only be 0 or 1,
and difficulty is just defined in terms of this goal. But many other tasks are not
binary (goal-oriented), and we need to establish a threshold for them. In our
case, we can take 1 as the best response and set the threshold on 1− ϵ.

We now define acceptability in a straightforward way. The set of acceptable
policies for task µ given a tolerance ϵ is given by

A[ϵ, 7→ν](µ) , {π : R[7→ν](π, µ) ≥ 1− ϵ} (1)

Note that with a tolerance greater than 0 the agent can do terribly wrong in a
few instances, provided it does well on many others.

And now we are ready to link difficulty to resources. This is usual in algo-
rithmic information theory, but here we need to calculate the complexities of
the policies (the agents) and not the problems (the tasks). A common solution,
inspired by Levin’s Kt (see, e.g., [10] or [11]), is to define:

Kt[ϵ, 7→ν](µ) , min
π∈A[ϵ, 7→ν](µ)

LS[7→ν](π, µ) (2)

Note that the above has two expectations: one in LS and another one inside A.
The interpretation of the above expression is a measure of effort, as used with
the concept of computational information gain with Kt in [4].

An option as an upper-bound measure of difficulty would be ~(µ) , Kt[ϵ,7→ν](µ),
for a finite ν and given ϵ. In general, if ν is very large, then the last evaluations
will prevail and any initial effort to find the policies and start applying them
will not have enough weight. On the contrary, if ν is small, then those policies
that invest in analysing the environment will be penalised. It also requires a
good assessment of the metasearch procedure to verify the policy so it can go to
exploitation. In any case, the notion of difficulty depends, in some tasks, on ν.
We will come back to the ‘verification cost’ later on.

3 Task instances, task composition and decomposition

Up to this point we have dealt with a first approach to task difficulty. A task
includes (infinitely) many task instances. What about instance difficulty? Does it
make sense? In case it does, instance difficulty would be very useful for adaptive
tests, as we could start with simple instances and adapt their difficulty to the
ability of the subject (as in adaptive testing in psychometrics).

Stochastic Tasks: Difficulty and Levin Search 5

The key issue is that instance difficulty must be defined relative to a task. At
first sight, the difference in difficulty between 6/3 and 1252/626 is just a question
of computational steps, as the latter usually requires more computational steps
if a general division algorithm is used. But what about 13528/13528? It looks
an easy instance. Using a general division algorithm, it may be the case that it
takes more computational steps than 1522/626. If we see it easy is because there
are some shortcuts in our algorithm to make divisions. Of course, we can think
about algorithms with many shortcuts, but then the notion of difficulty depends
on how many shortcuts it has. In the end, this would make instance difficulty
depend on a given algorithm for the task (and not the task itself). This would
boil down to the steps taken by the algorithm, as in computational complexity.

We can of course take a structuralist approach, by linking the difficulty of an
instance to a series of characteristics of the instance, such as its size, the similar-
ities of their ingredients, etc. This is one of the usual approaches in psychology
and many other areas, including evolutionary computation, but does not lead to
a general view of what instance difficulty really is. For the divisions above, one
can argue that 13528/13528 is more regular than 1252/626, and that is why the
first is easier than the second. However, this is false in general, as 1352813528 is
by no means easier than any other exponentiation.

Another perspective is “the likelihood that a randomly chosen program will
fail for any given input value” [2], like the population-based approach in psychol-
ogy. For this, however, we would need a population2. The insight comes when we
see that best policies may change with variable values of ϵ. This leads to the view
of the relative difficulty of an instance with respect to a task as the minimum
LS for any possible tolerance of a policy such that the instance is accepted. We
denote by µσ an instance of µ with seed σ (on the random tape or generator).
The set of all optimal policies for varying tolerances ϵ0 is:

Opt
[7→ν]
LS (µ) ,

{
argmin

π∈A[ϵ0, 7→ν](µ)

LS[7→ν](π, µ)

}
ϵ0∈[0,1]

(3)

And now we define the instance difficulty of µσ with respect to µ as:

~[ϵ, 7→ν](µσ|µ) , min
π∈Opt

[7→ν]
LS (µ)∩A[ϵ, 7→ν](µσ)

LS[7→ν](π, µ) (4)

Note how the order of the minimisation is arranged in equations 3 and 4 such
that for the many policies that only cover µσ but do not solve many of the other
instances, these are not considered because they are not in OptLS.

This notion of relative difficulty is basically a notion of consilience with the
task. If we have an instance whose best policy is unrelated to the best policy for
the rest, then this instance will not be covered until the tolerance becomes very
low. Of course, this will depend on whether the algorithmic content of solving

2 We could assume a universal distribution. This is related to the approach in this
paper as the shortest policies have a great part of the mass of this distribution.

6 J. Hernández-Orallo

the instance can be accommodated into the general policy. This is closely related
to concepts such as consilience, coherence and intensionality [3,5,4].

Now the question is to consider how we can put several tasks together. The
aggregation of several responses that are not commensurate makes no sense This
gives further justification to eq. 1, where A was introduced. Given two tolerance
levels for each task we can see whether this leads to similar or different difficulties
for each task. For instance, if the difficulties are very different, then the task will
be dominated by the easy one. Given two stochastic tasks, the composition
as the union of the tasks is meaningless, so we instead calculate a mixture. In
particular, the composition of tasks µ1 and µ2 with weight α ∈ [0, 1], denoted
by αµ1 ⊕ (1 − α)µ2, is defined by a stochastic choice, using a biased coin (e.g.,
using α), between the two tasks. Note that this choice is made for each trial. It
is easy to see that if both µ1 and µ2 are asyncronous-time stochastic tasks, this
mixture also is. Similar to composition we can talk about decomposition, which
is just understood in a straightforward way. Basically, µ is decomposable into µ1

and µ2 if there is an α and two tasks µ1 and µ2 such that µ = αµ1 ⊕ (1− α)µ2.

Now, it is interesting to have a short look at what happens with difficulty
when two tasks are put together. Given a difficulty function ~, we would like
to see that if ~(αµ1 ⊕ (1 − α)µ2) ≈ α~(µ1) + (1 − α)~(µ2) then both tasks are
related, and there is a common policy that takes advantage of some similarities.
However, in order to make sense of this expression, we need to consider some
values of α and fix a tolerance. With high tolerance the above will always be
true as ~ is close to zero independently of the task. With intermediate tolerances,
if the difficulties are not even, the optimal policies for the composed task will
invest more resources for the easiest ‘subtask’ and will neglect the most difficult
‘subtask’. Finally, using low tolerances (or even 0) for the above expressions may
have more meaning, as the policy must take into account both tasks.

In fact, there are some cases for which some relations can be established.
Assume 0 tolerance, and imagine that for every 1 > α > 0 we have ~(αµ1⊕ (1−
α)µ2) ≈ α~(µ1). If this is the case, it means that we require the same effort to
find a policy for both tasks than for one alone. We can see that task µ1 covers
task µ2. In other words, the optimal policy for µ1 works for µ2. Note that this
does not mean that every policy for µ1 works for µ2. Finally, if µ1 covers µ2 and
vice versa, we can say that both tasks are equivalent.

We can also calculate a distance as d(µ1, µ2) , 2~(0.5µ1 ⊕ 0.5µ2)− ~(µ1)−
~(µ2). Clearly, if µ1 = µ2 then we have 0 distance. For tolerance 0 we also have
that if µ2 has difficulty close to 0 but µ1 has a high difficulty h1, and both tasks
are unrelated but can be distinguished without effort, then the distance is h1.

Nonetheless, there are many questions we can analyse with this conceptual-
isation. For instance, how far can we decompose? There are some decomposi-
tions that will lead to tasks with very similar instances or even with just one
instance. Let us consider the addition task µadd with a soft geometrical distri-
bution p on the numbers to be added. With tolerance 0, the optimal policy is
given by a short and efficient policy to addition. We can decompose addition
into µadd1 and µadd2, where µadd1 contains all the summations 0 + x, and µadd2

Stochastic Tasks: Difficulty and Levin Search 7

incorporates all the rest. Given the distribution p, we can find the α such that
µadd = αµadd1 ⊕ (1 − α)µadd2. From this decomposition, we see that µadd2 will
have the same difficulty, as the removal of summations 0 + x does not simplify
the problem. However, µadd1 is simple now. But, interestingly, µadd2 still covers
µadd1. We can figure out many decompositions, such as additions with and with-
out carrying. Also, as the task gives more relevance to short additions because of
the geometrical distribution, we may decompose the task in many one-instance
tasks and a few general tasks. In the one-instance tasks we would put simple
additions such as 1 + 5 that we would just rote learn. In fact, it is quite likely
that in order to improve the efficiency of the general policy for µadd the policy
includes some tricks to treat some particular cases or easy subsets.

The opposite direction is if we think about how far we can reach by com-
posing tasks. Again, we can compose tasks ad eternum without reaching more
general tasks necessarily. The big question is whether we can analyse abilities
with the use of compositions and difficulties. In other words, are there some tasks
such that the policies solving these tasks are frequently useful for many other
tasks? That could be evaluated by looking what happens to a task µ1 with a
given difficulty h1 if it is composed with any other task µ2 of some task class. If
the difficulty of the composed task remains constant (or increases very slightly),
we can say that µ1 covers µ2. Are there tasks that cover many other tasks? This
is actually what psychometrics and artificial intelligence are trying to unveil. For
instance, in psychometrics, we can define a task µ1 with some selection of arith-
metic operations and see that those who perform well on these operations have
a good arithmetic ability. In our perspective, we could extrapolate (theoretically
and not experimentally) that this task µ1 covers a range of arithmetic tasks.

4 Difficulty as Levin search with stochastic verification

In previous sections we considered the length of the policy and the logarithm of
its computational time through their combination LS, which finally led to the
function Kt[ϵ,7→ν](µ). As we argued, this is given by the realisation that in order
to find a policy of length L(π) we have to try approximately 2L(π) algorithms if
we enumerate programs from small to large (this is basically what Levin search
does, see [11, pp. 577–580]). Considering that we can also gradually increase
the computational steps that we devote for each of them, we get 2L(π) · S(π, µ),
whose logarithm is represented by Kt. This is why we say that the unit of Kt is
logarithm of computational steps.

If we try to extend this notion to tasks, the first, and perhaps most obvious
and important difference with traditional Levin’s universal search is that tasks
are stochastic. Consequently, several trials may be needed for discarding a bad
policy and the verification of a good one. Intuitively, a pair of problem and policy
with low variability in the response (results) will be easier to be verified than
another where results behave more stochastically.

Another difference is that we can think about a Levin search with memory
(i.e., non-blind), as some of the observations on previous trials may be crucial.
We need that the policies that are tried could also be search procedures over

8 J. Hernández-Orallo

several trials. That means that Levin search actually becomes a metasearch,
which considers all possible search procedures, ordered by size and resources,
similar to other adaptations of Levin search for interactive scenarios [9,13].

As tasks are stochastic, we can never have complete certainty that a good
policy has been found. An option is to consider a confidence level, such that
the search invests as fewer computational steps as possible to have a degree of
confidence 1 − δ of having found an ϵ-acceptable policy. This clearly resembles
a PAC (probably approximate correct) scenario [14].

The search must find a policy with a confidence level δ, i.e., Pr(π solvesµ) ≥
1 − δ. If we denote the best possible average result (for an infinite number of
runs) as r∗, we consider that a series of runs is a sufficient verification for a
probably approximate correct (PAC) policy π for µ when:

Pr(r∗ − r̂ ≤ ϵ) ≥ 1− δ (5)

with r̂ being the average of the results of the trials (runs) so far.
First, we are going to assume that all runs take the same number of steps

(a strong assumption, but let us remind that this is an upper limit), so the
verification cost could be approximated by

Ŵ[ϵ,δ](π, µ) , S(π, µ) · B[ϵ,δ](π, µ) (6)

i.e., the expected number of steps times the expected number of verification bids.
The number of bids can be estimated if we have the mean and the standard

deviation of the response for a series of runs. Assuming a normal distribution:

n ≥
|zδ/2|2σ2

(r̂ + ϵ− r∗)2
(7)

In order to apply the above expression we need the variance σ2. Many ap-
proaches to the estimation of a population mean with unknown σ2 are based on
a pilot or prior study (let us say we try 30 repetitions) and then derive n using
the normal distribution and then use this for a Student’s t distribution. Instead
of this, we are going to take an iterative approach where we update the mean
and standard deviation after each repetition. We consider the maximum stan-
dard deviation as a start (as a kind of Laplace correction) with two fabricated
repetitions with responses 0 and 1.

Algorithm 1 is used in a modified Levin search:

Definition 1. Levin’s universal search for stochastic tasks and policies with tol-
erance ϵ, confidence level 1 − δ, and maximum response reference r∗. Given a
task µ policies are enumerated in several phases, starting from phase 1. For phase
i, we execute all possible policies π with L(π) ≤ i for si = 2i−L(π) steps each.
We call function VerifyNorm(π, µ, ϵ, δ, smax) in Algorithm 1 with smax = si.
While an acceptable policy is not found we continue until we complete the phase
and then to a next stage i+1. If an acceptable policy is found, some extra trials
are performed before stopping the search for confirmation.

Stochastic Tasks: Difficulty and Levin Search 9

Algorithm 1 Verification algorithm (normality)

1: function VerifyNorm(π, µ,ϵ, δ, smax) ◃ smax is the number of allowed steps
2: j ← 3 ◃ We consider two first response with high variance
3: r ← 0 + 1 ◃ One with value 0 and the other with value 1
4: s← 0
5: mπ ← ∅ ◃ The algorithm π can keep memory between trials. Initially empty.
6: repeat
7: ⟨rj , sj ,mπ⟩ ← Run(π,mπ, µ, smax − s) ◃ One trial with remaining steps
8: s← s+ sj ◃ Accumulate steps
9: r ← r + rj ◃ Accumulate response
10: r̂ ← r

j
◃ Average response

11: σ̂2 ← Var[r1 . . . rj] ◃ Variance estimation

12: n0 ←
|zδ/2|

2σ̂2

(r̂+ϵ−r∗)2

13: if j ≥ n0 then
14: if r̂ > r∗ − ϵ then return ⟨TRUE, s⟩ ◃ Stop because it is verified
15: else return ⟨FALSE, s⟩ ◃ Stop because it is rejected
16: end if
17: end if
18: j ← j + 1
19: until s ≥ smax

20: return ⟨FALSE, s⟩
21: end function

Theorem 1. For every µ and ϵ, δ > 0, if a maximum r∗ exists achievable by a
computable policy and it is given, then definition 1 conducts a finite search.

Proof. As r∗ is defined as the highest expected response for a resource-bounded
policy, then there is a number of phases where the optimal policy is found and
there are enough steps such that r̂ is becoming as closer to r∗ so that r̂+ ϵ− r∗

approaches ϵ such that is verified Pr(r∗ − r̂ ≤ ϵ) ≥ 1 − δ. Note that as results

are bounded and the highest variability is σ2 = 1/4, so n ∼ |zδ/2|2σ2

(ϵ)2 is bounded.

In the end, what we want is to account for the variability of computational
steps given by the variance of the response and its proximity to the threshold,
as both things make verification more difficult. This is finally calculated as:

B[ϵ,δ](π, µ) ,
|zδ/2|2Var[R(π, µ)]

(R(π, µ) + ϵ− r∗)2
(8)

For both Var[R(π, µ)] and R(π, µ) we consider that we include two extra re-
sponses as a start, as done in Algorithm 1. And now the effort is rewritten as:

logF[ϵ,δ](π, µ) , log(2L(π) · Ŵ[ϵ,δ](π, µ)) = L(π) + log Ŵ[ϵ,δ](π, µ) (9)

For clarity, we can expand what F is by using eq. 6 and eq. 8:

logF[ϵ,δ](π, µ) = L(π)+log S(π, µ)·B[ϵ,δ](π, µ) = L(π)+log S(π, µ)+logB[ϵ,δ](π, µ)

10 J. Hernández-Orallo

From here, we can finally define a measure of difficulty that accounts for all the
issues that affect the search of the policy for a stochastic task:

~[ϵ,δ](µ) , minπ logF[ϵ,δ](π, µ) (10)

5 Conclusions

As we have mentioned during this paper, the notion of task is common in AI
evaluation, in animal cognition and also in human evaluation. We set tasks and
agents as asynchronous interactive systems, where difficulty is seen as compu-
tational steps of a Levin search, but this search has to be modified to cover
stochastic behaviours. These ideas are an evolution and continuation of early
notions of task and difficulty in [8] and [6] respectively. The relevance of verifi-
cation in difficulty has usually been associated with deduction. However, some
works have incorporated it as well in other inference problems, such as induction
and optimisation, using Levin’s Kt [4,12,1]. From the setting described in this
paper, many other things could be explored, especially around the notions of
composition and decomposition, task instance and agent response curves.

Acknowledgements: This work has been partially supported by the EU (FEDER)
and the Spanish MINECO under grants TIN 2010-21062-C02-02, PCIN-2013-037 and
TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII2015/013.

References

1. Alpcan, T., Everitt, T., Hutter, M.: Can we measure the difficulty of an optimiza-
tion problem? IEEE Information Theory Workshop (ITW) (2014)

2. Bentley, J.G.W., Bishop, P.G., van der Meulen, M.: An empirical exploration of
the difficulty function. In: CSRS, pp. 60–71. Springer (2004)

3. Hernández-Orallo, J.: A computational definition of ‘consilience’. Philosophica 61,
901–920 (2000)

4. Hernández-Orallo, J.: Computational measures of information gain and reinforce-
ment in inference processes. AI Communications 13(1), 49–50 (2000)

5. Hernández-Orallo, J.: Constructive reinforcement learning. International Journal
of Intelligent Systems 15(3), 241–264 (2000)

6. Hernández-Orallo, J.: On environment difficulty and discriminating power. Au-
tonomous Agents and Multi-Agent Systems pp. 1–53 (2014), http://dx.doi.org/
10.1007/s10458-014-9257-1

7. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence 174(18), 1508 – 1539 (2010)

8. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psycho-
metrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems
Research 27, 5074 (2014)

9. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer (2005)

10. Levin, L.A.: Universal sequential search problems. Problems of Information Trans-
mission 9(3), 265–266 (1973)

11. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications
(3rd ed.). Springer-Verlag (2008)

http://dx.doi.org/10.1007/s10458-014-9257-1
http://dx.doi.org/10.1007/s10458-014-9257-1

Stochastic Tasks: Difficulty and Levin Search 11

12. Mayfield, J.E.: Minimal history, a theory of plausible explanation. Complexity
12(4), 48–53 (2007)

13. Schmidhuber, J.: Gödel machines: Fully self-referential optimal universal self-
improvers. In: Artificial general intelligence, pp. 199–226. Springer (2007)

14. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

	 Stochastic Tasks: Difficulty and Levin Search

