
C-tests revisited: back and forth with complexity

José Hernández-Orallo

DSIC, Universitat Politècnica de València, Spain
jorallo@dsic.upv.es

Abstract. We explore the aggregation of tasks by weighting them using
a difficulty function that depends on the complexity of the (acceptable)
policy for the task (instead of a universal distribution over tasks or an
adaptive test). The resulting aggregations and decompositions are (now
retrospectively) seen as the natural (and trivial) interactive generalisa-
tion of the C-tests.

Keywords: intelligence evaluation, artificial intelligence, C-tests, al-
gorithmic information theory, universal psychometrics, agent response
curve

1 Introduction

A first test using algorithmic information theory (AIT) was the C-test [9,2],
where the goal was to find a continuation of a sequence of letters, as in some IQ
tasks , and in the spirit of Solomonoff’s inductive inference problems: “given an
initial segment of a sequence, predict its continuation” (as quoted in [12, p.332]).
Levin’s Kt complexity (see, e.g., [12, sec.7.5]) was used to calculate the difficulty
of a sequence of letters. The performance was measured as an aggregated value
over a range of difficulties:

I(π) ,
H∑

h=1

he
N∑
i=1

1

N
Hit(π, xi,h) (1)

where π is the subject, the difficulties range from h = 1 to H and there are N
sequences xi,k per difficulty h. The function hit returns 1 if π is right with the
continuation and 0 otherwise. If e = 0 we have that all difficulties have the same
weight. The N sequences per difficulty were chosen (uniformly) randomly.

This contrasts with a more common evaluation in artificial intelligence based
on average-case performance according to a probability of problems or tasks:

Ψ(π) ,
∑
µ∈M

p(µ) · E[R(π, µ)] (2)

where p is a probability distribution on the set of tasks M , and R is a result
function of agent π on task µ. Actually, eq. 2 can also be combined with AIT,
in a different way, by using a universal distribution [14,12], i.e., p(µ) = 2−K(µ),
where K(µ) is the Kolmogorov complexity of µ, as first chosen by [11].

2 J. Hernández-Orallo

The work in [11] has been considered a generalisation of [9,2], from static
sequences (predicting a continuation of a sequence correctly) to dynamic envi-
ronments. In this paper we challenge this interpretation and look for a proper
generalisation of [9,2] using the notion of difficulty in the outer sum, as originally
conceived and seen in eq. 1. The key idea is the realisation that for the C-test
the task and the solution were the same thing. This meant that the difficulty
was calculated as the size of the simplest program that generates the sequence,
which is both the task and the solution. Even if the complexity of the task and
the solution coincide here, it is the complexity of the solution what determines
the difficulty of the problem.

However, when we move from sequences to environments or other kind of in-
teractive tasks, the complexity of the policy that solves the task and the complex-
ity of the environment are no longer the same. In fact, this is discussed in [7,6]:
the complexity of the environment is roughly an upper bound of the complex-
ity of the acceptable policies (any agent that reach an acceptable performance
value), but very complex environments can have very simple acceptable policies.
In fact, the choice of p(µ) = 2−K(µ) has been criticised for giving too much
weight to a few environments. Also, it is important to note that the invariance
theorem is more meaningful for Kolmogorov Complexity than for Algorithmic
Probability, as for the former it gives some stability for values of K that are not
very small, but for a probablity it is precisely the small cases that determine
most of the distribution mass. In fact, for any computable distribution p there
is a choice of a reference UTM that leads to a particular universal distribution
that approximates p (to whatever required precision.This means that the choice
of p(µ) = 2−K(µ) for Eq. 2 is actually a metadefinition, which leads to virtually
any performance measure, depending on the Universal Turing Machine (UTM)
that is chosen as reference.

By decoupling the complexity of task and policy we can go back to eq. 1 and
work out a notion of difficulty of environments that depends on the complexity of
the policy. While this may look retrospectively trivial, and the natural extension
in hindsight, we need to solve and clarify some issues, and properly analyse the
relation of the two different philosophies given by eq. 2 and eq. 1.

Section 2 discusses some previous work, introduces some notation and re-
covers the difficulty-based decomposition of aggregated performance. Section 3
introduces several properties about difficulty functions and the view of difficulty
as policy complexity. Section 4 discusses the choices for the difficulty-dependent
probability. Section 5 briefly deals with the role of computational steps for dif-
ficulty. Section 6 closes the paper with a discussion.

2 Background

AI evaluation has been performed in many different ways (for a recent account
of AI evaluation, see [5]), but a common approach is based on averaging perfor-
mance on a range of tasks, as in eq. 2.

C-tests revisited: back and forth with complexity 3

h = 9 : a, d, g, j, ... Answer: m
h = 12 : a, a, z, c, y, e, x, ... Answer: g
h = 14 : c, a, b, d, b, c, c, e, c, d, ... Answer: d

Fig. 1. Several series of different difficulties 9, 12, and 14 used in the C-test [2].

In what follows, we will focus on the approaches that are based on AIT. As
mentioned above, the first intelligence test using AIT was the so-called C-test
[9,2]. Figure 1 shows examples of sequences that appear in this test. The diffi-
culty of each sequence was calculated as Levin’s Kt, a time-weighted version of
Kolmogorov complexity K. Some preliminary experimental results showed that
human performance correlated with the absolute difficulty (h) of each exercise
and also with IQ test results for the same subjects ([9,2]). They also show a clear
inverse correlation of results with difficulty (see Figure 2). HitRatio is defined as
the inner sum of eq. 1:

HitRatio(π, h) ,
N∑
i=1

1

N
Hit(π, xi,h) (3)

An interesting observation is that by arranging problems by difficulty we see that
HitRatio seems to be very small from a given difficulty value (in the figure this
is 8, but it can be any other, usually small, value). This makes the estimation
of the measure much easier, as we only need to focus on (the area of) a small
interval of difficulties. In fact, this use of difficulty is common in psychometrics.

7 8 9 10 11 12 13 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

H
itR

at
io

Fig. 2. Results obtained by humans on task of different difficulty in the C-test [2].

Several generalisations of the C-test were suggested (for “cognitive agents
[...] with input/output devices for a complex environment” [9] where “rewards
and penalties could be used instead” [4]) or extending them for other cognitive
abilities [3], but not fully developed.

AIT and reinforcement learning were finally combined in [11], where all pos-
sible environments were considered in eq. 2, instantiated with a universal distri-
bution for p, i.e., p(µ) = 2−K(µ), with K(µ) being the Kolmogorov complexity of

4 J. Hernández-Orallo

each environment µ. Some problems (computability, discriminating power, over-
weight for small environments, time, ...) were discussed with the aim of making
a more applicable version of this appraoch by [10] and [7, secs. 3.3 and 4].

While the aim of all these proposals was to measure intelligence, many in-
teresting things can happen if AIT is applied to cognitive abilities other than
intelligence, as suggested in [3] for the passive case and hinted in [7, secs. 6.5
and 7.2] for the dynamic cases, which proposes the use of different kinds of
videogames as environments (two of the most recently introduced benchmarks
and competitions in AI are in this direction [1,13]).

We consider tests that are composed of tasks (also called environments or
items) and are performed by agents (also called policies or subjects). The set
of tasks is denoted by M . Its elements are usually denoted by µ. The set of
agents is denoted by Π. Its elements are usually denoted by π. Both can be
stochastic, i.e., they can use a probabilistic instruction or transition function.
The length in bits of a string is denoted by L(x). We can think of a proper
encoding of tasks and agents as strings. Given a UTM U we define Kolmogorov
complexity as KU (y) = minx : U(x)=y L(x). We will usually drop the subindex
U . Finally, we have the expected value of the response, score or result of π in
µ for a time limit τ as E[R(π, µ, τ)]. The value of τ will be usually omitted.
The R function always gives values between 0 and 1 and we assume it is always
defined (a value of R = 0 is assumed for non-halting situations) We also define
E[LS(π, µ, τ)] , L(π) + logE[S(π, µ, τ)]. Logarithms are always binary.

It is actually in [8], where we can find a first connection between the schemas
of eq. 1 and eq. 2. We adapt definition 14 in [8], which is a generalisation of
eq. 2, by making the set M and the task probability p explicit as a parameters.

Definition 1. The expected average result for a task class M , a distribution p
and an agent π is:

Ψ(π,M, p) ,
∑
µ∈M

p(µ) · E[R(π, µ)] (4)

And now we use proposition 4 in [8] that decomposes it. First, we define partial
results for a given difficulty h as follows:

Ψh(π,M, p) ,
∑

µ∈M,~(µ)=h

p(µ|h) · E[R(π, µ)] (5)

Where ~ is a difficulty function ~ : M → R+ ∪ 0. Note that this parametrises
the result of eq. 4 for different difficulties. For instance, for two agents πA and
πB we might have that Ψ3(πA) < Ψ3(πB) but Ψ7(πA) > Ψ7(πB). If we repre-
sent Ψh(π,M, p) on the y-axis versus h on the x-axis we have a so-called agent
response curve, much like Fig. 2.

If we want to get a single number from an agent response curve we can
aggregate performance for a range of difficulties, e.g., as follows:

C-tests revisited: back and forth with complexity 5

Proposition 1. ([8, prop. 4]) The expected average result Ψ(π,M, p) can be
rewritten as follows: in the particular case when ~ only gives discrete values:

Ψ(π,M, p) =

∞∑
h=0

p(h)Ψh(π,M, p) (6)

where p(h) is a discrete probability function for eq. 6. Note that equations 4, 5
and 6 are generalisations, respectively, of equations 2, 3 and 1.

3 Difficulty functions

Before setting an appropriate measure of difficulty based on the policy, in this
section we will analyse which properties a difficulty function may have.

The decomposition in previous section suggests that we could try to fix a
proper measure of difficulty first and then think about a meaningful distribution
p(h). Once this is settled, we could try to find a distribution for all environ-
ments of that difficulty p(µ|h). In other words, once we determine how relevant
a difficulty is we ask which tasks to take for that difficulty. This is the spirit
of the C-test [9,2] as seen in eq. 1. In fact, we perhaps we do not need a p(h)
that decays dramatically, as it is expectable to see performance to decrease for
increasing difficulty, as in Figure 2.

To distinguish p(h) and p(µ|h) we will denote the former with w and the
latter with pM . We will use any distribution or even a measure (not sum-
ming up to one, for reasons that we will see later on) as a subscript for Ψ .
For instance, we will use the following notation ΨU(hmin,hmax)(π,M, pM), where
U(a, b) represents a uniform distribution between a and b. For instance, we
can have two agents πA and πB such that ΨU(1,10)(πA) > ΨU(1,10)(πB) but
ΨU(11,20)(πA) < ΨU(11,20)(πB). We will use the notation Ψ⊕(π,M, pM) when
w(h) = 1 (note that this is not the uniform distribution for discrete h), which
means that the partial aggregations for each difficulty are just added. In other
words, Ψ⊕(π,M, pM) ,

∑∞
h=0 Ψh(π,M, pM) for discrete difficulty functions . We

will explore whether this (area under the agent response curve) is bounded.
Figure 3 shows approach A, which has already been mentioned, while ap-

proaches B and C will be seen in sections 4.1 and 4.2 respectively.
When we aggregate environments with different scales on R and different

difficulties, we may have that an agent focusses on a few environments with
high difficulty while another focusses on many more environments with small
responses. Agent response curves in [8], which are inspired by item response
curves in psychometrics (but inverting the view between agents and items), allow
us to see how each agent performs for different degrees of difficulty. Looking at
Figure 2 and similar agent response curves in psychometrics, we see that the
notion of difficulty must be linked to R, i.e., how well the agents perform, and
not about the complexity of the task, as in the previous section.

Another option is what is done in [6], as ~(µ) , minπ:E[R(π,µ)]=Rmax(µ) L(π)
where Rmax(µ) = maxπ E[R(π, µ)]. However, Rmax may be hard to calculate

6 J. Hernández-Orallo

μ
p

M
(μ)

μ
p

M
(μ|h)

h
w(h)

μ
p

M
(μ|π')

π'
p

M
(π'|h)

h
w(h)

B) Task probability
from difficulty (e.g.

solution complexity)

C) Task probability from
solutions, solutions from
difficulty (e.g., solution

complexity)

[uniform]

[uniform]

[universal]

[universal]

[uniform] [universal]

A) Task probability
directly from the task
(e.g., task complexity)

Fig. 3. Three approaches to aggregate the results for a set of tasks. Top (A) shows the
classical approach of choosing a probability for the task, according to the properties
of the task. Middle (B) shows the approach where we arrange tasks by difficulty, and
the notion of difficulty is derived from the properties of the policy. Bottom (C) shows
a variation of B where we derive acceptable policies for a given difficulty and then
generate tasks for each policy. Between square brackets some choices we examine in
this paper.

and even if it can be effectively calculated, any minor mistake or inefficiency in a
very good agent will prevent the agent from reaching the optimal result, leading
to a notion of difficulty linked to the complexity of the ‘perfect’ policy. In [6], a
‘tolerance value’ is considered and, instead of one policy, difficulty is linked to
the probability of finding a policy under this tolerance.

We are going to consider this tolerance ϵ of acceptability.

A[ϵ](π, µ) , 1(E[R(π, µ)] ≥ 1− ϵ) (7)

This returns 1 if the expected response is above 1 − ϵ and 0 otherwise. If
A[ϵ](π, µ) = 1 we say that π is ϵ-acceptable. With this, we binarise responses.
One can argue that we could have just defined a binary R, but it is important to
clarify that it is not the same to have tolerance for each single R (or a binarised
R) than to have a tolerance for the expected value E[R]. The tolerance on the
expected value allows the agent to have variability in their results (e.g., stochas-
tic agents) provided the expected value is higher than the tolerance. Finally,
even if we will be very explicty about the value of ϵ, and changing it will change
the difficulty value of any environment, it is important to say that this value is
not so relevant. The reason is that for any environment we can build any other
environment where the responses are transformed by any function. In fact, we
could actually consider one fixed threshold, such as 0.5, always.

And now we can just define a new version of eq. 5 using this new function:

Ψ
[ϵ]
h (π,M, pM) ,

∑
µ∈M,~(µ)=h

pM (µ|h) · A[ϵ](π, µ) (8)

We can just rewrite equations 6 accordingly:

Ψ [ϵ]
w (π,M, pM) =

∞∑
h=0

w(h)Ψ
[ϵ]
h (π,M, pM) (9)

Given the above, we are now ready for a few properties about difficulty functions.

C-tests revisited: back and forth with complexity 7

Definition 2. A difficulty function ~ is strongly bounded in M if for every π
there is a difficulty h such that for every µ ∈ M : ~(µ) ≥ h we have A[ϵ](π, µ) = 0.

Now we choose the difficulty function in terms of ϵ-acceptability, i.e.:

~[ϵ](µ) , min{L(π) : E[R(π, µ)] ≥ 1− ϵ} = min{L(π) : A[ϵ](π, µ) = 1} (10)

We can say a few words about the cases where a truly random agent (choosing
actions at random) gives an acceptable policy for an environment. If this is the
case, we intuitively consider the environment easy. So, in terms, of L, we consider
random agents to be simple, and goes well with our consideration of stochastic
agents and environments having access to some true source of randomness.

Figure 4 (left) shows the distribution of response according to L(π), but
setting ϵ = 0.9. We see that the simplest ϵ-acceptable policy has L = 12.

●●

●

●●

●
●

●

●●

●
●

●

●
●●●

●

●●●●
●●

●●
●●

●●

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

h

ψ
h

80

Fig. 4. Left: an illustrative distribution of responses of a population of agents for a
single environment. If we set the threshold at 0.9 = 1 − ϵ, the simplest policy above
this threshold is of ‘complexity’ h = 12. Right: an illustrative distribution of the result
of Ψh considering a population of environments for a single agent, an agent response
curve. There is no task π of difficulty above 80 for which E[R(π, µ)] ≥ 1− ϵ, i.e., there
is no task for which π is ϵ-acceptable, so Ψh is 0 from 80 on. If we were using the
definition of ~ as for Eq. 10, this 80 would be L(π). Also note on the right plot that all
‘heaven’ tasks (good results independently of what the agent does) are at h = 1, while
all ‘hell’ tasks (bad response independently of what the agent does) are at h = ∞.

With the difficulty function in eq. 10 we have:

Proposition 2. The difficulty function ~[ϵ] in eq. 10 is strongly bounded.

Proof. For every policy π, if a task µ has a difficulty ~[ϵ](µ) > L(π), it means
that π is not ϵ-acceptable, because otherwise the difficulty would be L(π) and
not h. Consequently, A[ϵ](π, µ) = 0 for all µ of difficulty ~[ϵ](µ) > L(π). It is
sufficient to take h > L(π) for every π to see that ~ is strongly bounded.

8 J. Hernández-Orallo

This is what we see in Fig. 4 (right), where L(π) = 80. With ~[ϵ] in eq. 10,
we can ensure that the values are going to be 0 from h = 80 on.

This may not be the case for other difficulty functions. We can imagine a
situation where the curve never converges to zero. For instance, if the difficulty
function is decoupled from resources (length and/or steps) of the acceptable
policies or we do not use the notion of ϵ-acceptability then we cannot avoid that
a very simple policy could eventually score well in a problem with very high
difficulty. This would be counter-intuitive, as if there is a simple policy for a
difficult problem, the latter should not be considered difficult any more.

4 Difficulty-conditional task probabilities

In the previous sections we have focussed on w(h) and whether it is necessary or
not. We have seen difficulty functions where just aggregating Ψh without w(h)
(or w(h) = 1) leads to a Ψ⊕(π,M, pM) that is bounded. The question now is
how to choose the conditional probability pM (µ|h). In the C-test, eq. 1, this was
chosen as a uniform distribution. However, this is not possible in an interactive
scenario if we consider all possible tasks, as the number of tasks for which there
is an acceptable policy π of L(π) = n can be infinite. Even if we cannot set a
uniform distribution, we want a choice of pM (µ|h) that keeps the task diversity
(unless there is any special bias to choose the tasks).

4.1 Task probability depends on difficulty

The first thing we can do is to assume p(µ|h) in eq. 8 as p(µ|h) = 2−K(µ)

ν(h)

if ~[ϵ](µ) = h and 0 otherwise, where ν(h) is a normalisation term to make
the mass of the distribution equal to 1, which can be formulated as ν(h) =∑

µ:~[ϵ](µ)=h 2
−K(µ).

And now we have:

Ψ
[ϵ]
h (π,M, pM) =

∑
µ∈M,~[ϵ](µ)=h

pM (µ|h) · A[ϵ](π, µ) =
1

ν(h)

∑
µ∈M,~[ϵ](µ)=h

2−K(µ) · A[ϵ](π, µ)

From here, we can plug it into eq. 9 for the discrete case:

Ψ [ϵ]
w (π,M, pM) =

∞∑
h=0

w(h)
1

ν(h)

∑
µ∈M,~[ϵ](µ)=h

2−K(µ) · A[ϵ](π, µ) (11)

Note that the above is going to be bounded independently of the difficulty func-
tion if w is a probability distribution. Also notice that 1

ν(h) is on the outer sum,

and that ν(h) is lower than 1, so the normalisation term is actually greater than
1.

And if we use any of the difficulty functions in equations 10 we can choose

w(h) = 1 and Ψ
[ϵ]
⊕ (π,M, pM) is bounded.

C-tests revisited: back and forth with complexity 9

4.2 Task probability depends on the policy probability

One of things of the use of equation 10 is that the number of acceptable policies
per difficulty is finite. This is what happened in the C-test and that is the reason
why a uniform distribution could be used for the inner sum. We could try to
decompose the inner sum by using the policy and get the probability of the task
given the policy.

The interpretation would be as follows: for each difficulty value we aggregate
all the acceptable policies with size equal to that difficulty uniformly and for
each of these policies all the environments where each policy is acceptable with
a universal distribution. This extra complication with respect to eq. 11 can only
be justified if we generate environments and agents and we check them as we
populate Pairs, as a way of constructing a test more easily.

5 Using computational steps

As we mentioned in the introduction, the C-test [9,2] used Levin’s Kt instead of
K. We explore the use of Kt here. However, when working with interactive tasks
and with stochastic tasks and agents, the number of steps must be in expected
value. We extend the definition of LS given in section 2 for a tolerance ϵ:

LS[ϵ](π, µ) , E[LS(π, µ)] if A[ϵ](π, µ) = 1 and∞ otherwise

and we define a new difficulty function that considers computational steps:

~[ϵ](µ) , min
π

LS[ϵ](π, µ)

This difficulty function is not bounded, as LS depends on µ, and we can always
find a very short policy that takes an enormous amount of steps for a task
with very high difficulty. This is an acceptable policy, but does not reduce the
difficulty of the task, so it can always score non-zero beyond any limit. This
means that for this difficulty function we would need to use equation eq. 9 with
an appropriate w(h) (e.g., a small decay or a uniform interval of difficulties).

If the testing procedure established a limit on the number of steps (total
or per transition) we would have this new difficulty function would be strongly
bounded. Alternatively, we could reconsider the inclusion the computational
steps in the notion of acceptability. In this case, the approach in section 4.2
could not be used, as the probability of π given h would also depend on µ.

6 Discussion

We have gone from eq. 1 taken from C-test to eq. 9. We have seen that difficulties
allow for a more detailed analysis of what happens for a given agent, depending
on whether it succeeds at easy or difficult tasks. For some difficulty functions, we
do not even need to determine the weight for each difficulty and just calculate

10 J. Hernández-Orallo

the area, as an aggregated performance for all difficulties, and cutting the tail
at some maximum difficulty for practical reasons.

The important thing is that now we do not need to set an a priori distribution
for all tasks p(µ), but just a conditional distribution p(µ|h). Note that if we set
a high h we have the freedom to find simple task that creates that difficulty.
Actually, the choice of p(µ|h) as a universal distribution still depends on the
reference machine and can set most of the probability mass on smaller tasks,
but as it is conditional on h, all trivial, dead or simply meaningless tasks have
usually very extreme values of h (very low or infinite). That means that there is
a range of intersting difficulties, discarding very small values of h and very large
values of h. Figure 2 is a nice example of this, where only difficulties between
1 and 8 were used, and we see also that h = 1 and h > 7 are not really very
discriminating. The bulk of the testing effort must be performed in this range.

Note that the middle (B) and bottom (C) decompositions in Figure 3 can
be done in such a way that the original pM (µ) is preserved, if w(h) is not taken
uniform but slowly decaying. But we can just start with option B or C directly.
This is the alternative in this paper, which we think has several advantages in
terms of agent evaluation, the construction of tests and AGI development, as
we can focus on those tasks of appropriate difficulty and even define adaptive
tests easily. Having said this, we have an infinite set for pM (µ|h) and pM (µ|π′),
and a universal distribution is the appropriate for both, so that Occam’s razor
is still very present. This means that both B and C (using a slowly decaying
w(h)) would lead to a computable aggregated distribution pM (µ), which can be
approximated as a universal distribution, highlighting that universal intelligence
is rather a schema for definitions rather than a specific definition.

Acknowledgements: This work has been partially supported by the EU (FEDER)
and the Spanish MINECO under grants TIN 2010-21062-C02-02, PCIN-2013-037 and
TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII2015/013.

References

1. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 253–279 (06 2013)

2. Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information
9(4), 447–466 (2000)

3. Hernández-Orallo, J.: Computational measures of information gain and reinforce-
ment in inference processes. AI Communications 13(1), 49–50 (2000)

4. Hernández-Orallo, J.: On the computational measurement of intelligence factors.
In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop. pp.
1–8. National Institute of Standards and Technology, Gaithersburg, MD (2000)

5. Hernández-Orallo, J.: AI evaluation: past, present and future. arXiv preprint
arXiv:1408.6908 (2014)

6. Hernández-Orallo, J.: On environment difficulty and discriminating power. Au-
tonomous Agents and Multi-Agent Systems pp. 1–53 (2014), http://dx.doi.org/
10.1007/s10458-014-9257-1

http://dx.doi.org/10.1007/s10458-014-9257-1
http://dx.doi.org/10.1007/s10458-014-9257-1

C-tests revisited: back and forth with complexity 11

7. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

8. Hernández-Orallo, J., Dowe, D.L., Hernández-Lloreda, M.V.: Universal psycho-
metrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems
Research 27, 5074 (2014)

9. Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based
on an intensional variant of Kolmogorov complexity. In: Proc. Intl Symposium of
Engineering of Intelligent Systems (EIS’98). pp. 146–163. ICSC Press (1998)

10. Hibbard, B.: Bias and no free lunch in formal measures of intelligence. Journal of
Artificial General Intelligence 1(1), 54–61 (2009)

11. Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence.
Minds and Machines 17(4), 391–444 (2007)

12. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications
(3rd ed.). Springer-Verlag (2008)

13. Schaul, T.: An extensible description language for video games. Computational
Intelligence and AI in Games, IEEE Transactions on PP(99), 1–1 (2014)

14. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and
control 7(1), 1–22 (1964)

	C-tests revisited: back and forth with complexity

