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Marc Halbrügge1, Michael Quade2, and Klaus-Peter Engelbrecht1

1 Quality & Usability Lab, Telekom Innovation Laboratories,
Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin

marc.halbruegge@tu-berlin.de, klaus-peter.engelbrecht@telekom.de
2 DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin

michael.quade@dai-labor.de

Abstract. Cognitive modeling as a method has proven successful at
reproducing and explaining human intelligent behavior in specific labo-
ratory situations, but still struggles to produce more general intelligent
capabilities. A promising strategy to address this weakness is the addi-
tion of large semantic resources to cognitive architectures. We are inves-
tigating the usefulness of this approach in the context of human behavior
during software use. By adding world knowledge from a Wikipedia-based
ontology to a model of human sequential behavior, we achieve quanti-
tatively and qualitatively better fits to human data.The combination of
model and ontology yields additional insights that cannot be explained
by the model or the ontology alone.
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error, memory for goals

1 Introduction

Cognitive architectures like Soar [13] and ACT-R [2] have enabled researchers
to create sophisticated cognitive models of intelligent human behavior in lab-
oratory situations. One major drawback of cognitive modeling, especially from
the artificial general intelligence perspective, is that those models tend to be
very problem-specific. While a cognitive model of air traffic control may show
human-like intelligence in exactly that task, it is completely unable to perform
anything else, like solving a basic algebra problem. One major cause of the the-
matic narrowness of cognitive models is the restricted amount of knowledge that
those models have access to. In most cases, every single piece of information has
to be coded into the model by a researcher. This has been critized before, as
a human cognitive architecture should be able to maintain and integrate large
amounts of knowledge [3].

One recent approach to overcome this issue is the combination of existing
cognitive architectures with large knowledge databases like WordNet [8, 7, 6, 16]
or DBpedia [14], a Wikipedia-based ontology [19]. Common to all those ap-
proaches is that they focus on feasibility and the technical implementation of
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their knowledge system, while the validity of the resulting architectures is still
an open question.

This is the starting point for the research project presented here. Instead of
describing how vast knowledge bases can be added to a cognitive architecture,
we combine an existing solution with an existing cognitive model of sequential
behavior and analyze how the predictions of the model change and whether this
adds to our unterstanding of the model, its task, and the underlying knowledge
base.

Our research is situated in the human-computer interaction (HCI) domain.
We are analyzing how long human users need to perform simple tasks with a
home assistance application, how often they make errors, and which user inter-
face (UI) elements are tied to these errors. Our cognitive model receives knowl-
edge about the world based on Wikipedia content, following Salvucci’s work on
the integration of DBpedia into ACT-R [19]. The modeling effort presented in
this paper relies mainly on the general relevance of different Wikipedia articles.
The higher the number of links inside Wikipedia that point towards an article,
the higher the relevance of the article and the entity or concept that it explains.
Our data suggests that UI elements that correspond to highly relevant concepts
are handled differently than elements that correspond to less relevant concepts.

1.1 Human Action Control and Error

The link from human error research to artificial intelligence is not an obvious one.
We think of error as “window to the mind” [15]. Understanding why and when
humans err helps identifying the building blocks of intelligent human behavior.
Of special interest are errors of trained users. Using software systems after having
received some training is characterized by rule-based behavior [17]. Goals are
reached by using stored rules and procedures that have been learned during
training or earlier encounters with similar systems. While errors are not very
frequent on this level of action control, they are also pervasive and cannot be
eliminated through training [18].

Our focus on rule-based behavior allows a straightforward definition of error:
Procedural error means that the (optimal) path to the current goal is violated
by a non-optimal action. This can either be the addition of an unnecessary or
even hindering action, which is called an intrusion. Or a necessary step can be
left out, constituting an omission.

1.2 Memory for Goals

A promising theory of rule-based sequential action is the Memory for Goals
(MFG) model [1]. The MFG proposes that subgoals, i.e., atomic steps towards
a goal, are underlying memory effects, namely time-dependent activation, in-
terference, and associative priming. Higher activation leads to faster recall and
thereby shorter execution times. If the activation is too low, the retrieval of the
subgoal may fail, resulting in an omission. Interference with other subgoals may
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lead to intrusions. Priming is the most important concept in the context of this
paper as it provides the link to the ontology in the background.

Our basic assumption is that subgoals receive priming from the general con-
cepts that they represent. Hitting a button labeled “Search” is connected to the
concept of search; choosing an option called “Landscape” in a printing dialog is
related to the concept of landscape. If the general concept that is semantically
linked to a subgoal is highly activated in the knowledge base, the respective
subgoal should receive more priming, resulting in a higher overall activation of
the subgoal. Taken together with the MFG, this results in three high-level pre-
dictions for subgoals, corresponding UI elements, and their respective concepts:

1. Execution time should decrease with concept activation.
2. Omission rate should decrease with concept activation.
3. Intrusion rate should increase with concept activation.

2 Experiment

The empirical basis for our model is provided by a usability study targeting a
kitchen assistant from an ambient assisted living context. The kitchen assistant
provides basic help during the preparation of meals by proposing recipes, calcu-
lating ingredients quantities, and by presenting interactive cooking instructions.

In order to assess the three ontology-based predictions stated above, we per-
formed a reanalysis of previously published data [12]. We are concentrating on
a single screen of the kitchen assistant that allows searching for recipes based
on predefined attributes. A screenshot of the search attribute form translated
to English is given in Fig. 1. The search attributes are grouped into national-
ity (French, German, Italian, Chinese) and type-of-dish (Main Course, Pastry,
Dessert, Appetizer). We excluded three health-related search options as they
were neither well represented in the experimental design, nor in the ontology.
For the eight remaining buttons, we identified the best matching concept from
the DBpedia ontology and use the number of links to it as measure of relevance
of the concept. As can be seen in Table 2, the buttons in the nationality group
are two to three magnitudes more relevant than the buttons in the type-of-dish
group. Our empirical analysis therefore unfolds around the differences between
those two groups.

2.1 Method

Twenty participants recruited on and off campus (15 women, 5 men, Mage=32.3,
SDage=11.9) took part in the experiment. Amongst other things, each participant
completed 34 recipe search tasks using the attribute selection screen (see Fig. 1).
One half of the tasks was done using a tablet computer, a large touch screen was
used for the other half. Instructions were given verbally by the experimenter.
All user actions were logged and videotaped for subsequent task execution time
and error analysis.
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Fig. 1. Screenshot of the English version of the recipe search screen

2.2 Results

We observed a total of 1607 clicks on the eight search attribute buttons under
investigation. The results for our three ontology-based predictions are as follows.

Execution Time We exluded all clicks with substantial wait time (due to task
instruction or system response) from the analysis. The remaining 822 clicks still
differ in the necessary accuracy of the finger movement which is strongly related
to the time needed to perform the movement as formulated in Fitts’ law [9].
Individual differences in motor performance were large, and the device used also
had an effect on the click time. We therefore added subjects as random factor
with device and Fitts-slope within subject to the analysis. The click time was
analyzed using a linear mixed model [4], fixed effects were tested for significance
using the Satterthwaite approximation for degrees of freedom. Results are given
in Table 1. Besides the expected effects of Fitts’ law and device, we observed a
significant difference between the buttons for type-of-dish and nationality, with
type-of-dish needing approximately 100 ms longer.

Omissions and Intrusions If those 100 ms are caused by lack of activation (as
predicted by the MFG), then this lack of activation should cause more omissions
for the type-of-dish group and more intrusions for the nationality group. We
observed 14 intrusions and 19 omissions during the handling of the search at-
tribute page (error rate 2.0%). Mixed logit models with subject as random factor
showed no significant influence of the attribute group, but at least for omissions,
the effect points into the expected direction (omissions: z = 1.50, p = .133; intru-
sions: z = −.05, p = .964). The omission rates for nationality and type-of-dish
are 0.8% and 1.6%, respectively.
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Table 1. Linear mixed model results for the click time analysis

Factor Estimate t df p

Fitts’ Index of Difficulty in bit 173 ms
bit

4.95 22.4 < .001
Device (Tablet vs. Screen) 213 ms 4.38 24.3 < .001
Attr. Group (Dish vs. Nationality) 112 ms 2.47 611.3 .014

Discussion We investigated the difference between frequently vs. less frequently
used concepts (nationality vs. type-of-dish) on a home assistance UI with regards
to three dependent variables. The MFG predicts faster execution, less omission
errors, and more intrusion errors for the higher used concept.

The empirical results are mixed. Buttons in the nationality group are clicked
faster and weakly tend to be less prone to omissions. We did not find an intrusion
effect, but this does not necessarily contradict the theory. The MFG explains
intrusions by interference with earlier subgoals that are still present in memory.
In the context of the experiment presented here, those intruding subgoals are
memory clutter from already completed trials. In experimental design terms, this
is called a carry-over effect. Due to the order of trials being randomized between
subjects, intrusions should not happen on a general, but a subject-specific level.

3 Cognitive Model

The cognitive model presented here has been created using ACT-R 6 [2]. It
has been shown to reproduce omission and intrusion errors for task-oriented vs.
device-oriented UI elements well [12]. A comparison of the model’s predictions
for the different search attribute buttons has not been done before.

Following the MFG, the model creates and memorizes a chain of subgoal
chunks when it receives task instructions through ACT-R’s auditory system. It
follows this chain of subgoals until either the goal is reached or memory gets
weak. In case of retrieval failure, the model reverts to a knowledge-in-the-world
strategy and randomly searches the UI for suitable elements. If it can retrieve
a subgoal chunk that corresponds to the currently attended UI element, this
subgoal is carried out and the cycle begins again.

The only declarative knowledge that is hard-coded into the model is that
some UI elements need to be toggled, while others need to be pushed. The
model interacts directly with the HTML interface of the kitchen assistant by the
means of ACT-CV [11].3

3.1 Adding World Knowledge to the Model

In order to assess how cognitive modeling can benefit from ontologies, we took
the barely knowledgeable model and added applicable pieces of information from

3 See [12] for a more detailed description. The source code of the model is available
for download at http://www.tu-berlin.de/?id=135088
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Table 2. Semantic mapping between UI and ontology. Inlink count obtained from
DBpedia 3.9 [14]. Subtitle-based word frequency (per 106 words) from [5]

Concept UI label DBpedia entry Inlink count per 106 links Word freq.

German Deutsch Deutschland 113621 2474.3 10.2
Italian Italienisch Italien 56105 1221.8 6.2
Chinese Chinesisch China 10115 220.3 8.2
French Französisch Frankreich 79488 1731.0 17.4

Main Course Hauptgericht Hauptgericht 35 0.8 0.8
Appetizer Vorspeise Vorspeise 72 1.6 1.5
Dessert Nachtisch Dessert 193 4.2 6.5
Pastry Backwaren Gebäck 165 3.6 0.3

Wikipedia to its declarative memory. We propose semantic priming from long-
living general concepts to the short-lived subgoal chunks that are created by the
model when it pursues a goal.

How much priming can we expect, based on the information that is available
within DBpedia? We are using the inlink count as measure of the relevance of a
concept. In ACT-R, this needs to be translated into an activation value of the
chunk that represents the concept (i.e., Wikipedia article). Temporal decay of
activation is modeled in ACT-R using the power law of forgetting [2]. Salvucci
[19] has applied this law to the concepts within DBpedia, assuming that they
have been created long ago and the number of inlinks represents the number of
presentations of the corresponding chunk. The base activation B can be deter-
mined from inlink count n as follows

B = ln(2n) (1)

While we agree with Salvucci’s rationale, deriving the activation from raw inlink
counts is a little too straightforward in our eyes. Numerically, it creates very
high activation values. And as the total number of entries varies between the
language variations of DBpedia, switching language (or ontology) would mean
changing the general activation level.4 In the special case of our model, the use
of (1) caused erratic behavior because the high amount of ontology-based activa-
tion overrode all other activation processes (i.e., activation noise and mismatch
penalties for partial matching of chunks). We therefore introduced a small fac-
tor c that scales the inlink count down to usable values. Together with ACT-R’s
minimum activation constant blc, this results in the following equation

B = max(ln(c · n), blc) (2)

How is the semantic priming to subgoal chunks finally achieved? The declar-
ative memory module of ACT-R 6 only allows priming from buffers (“working

4 The English DBpedia is 2.5 to 3 times larger than the German one. “Intelligence”
has 1022 inlinks in the English DBpedia, but “Intelligenz” has only 445 inlinks in
the German one.
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memory”) to declarative (“long term”) memory. We therefore introduced a hook
function that modifies the activation of every subgoal chunk whenever it enters
long term memory according to the general concept that is related to the goal
chunk.

3.2 Goodness of Fit

The model was run 300 times with concept priming disabled (c = 0), and 300
times with priming enabled (c = .005, resulting average base activation of the
eight concepts MB = 2.4, SDB = 3.4). For both conditions, we computed time
and error predictions for each button and compared these to the empirical ob-
servations. The effect of the needed accuracy of the finger move was eliminated
based on Fitts’ law, using a linear mixed model with subject as random factor [4]
for the empirical data and a linear regression for the model data, as the Fitts’
parameters were not varied during the simulation runs. Correlations between
the respective residuals are given in Table 3. Omission and intrusion rates per
button were correlated without further preprocessing.

The results are given alongside R2 and RMSE in Table 3. While the goodness-
of-fit with R2 constantly below .5 and substantial RMSE is not overwhelming,
the difference to the baseline is worth discussion. The model without concept
priming displays no or negative correlations between its predictions and the
empirical values, meaning that the baseline model is even worse than chance. The
corresponding regression lines are displayed on the upper part of Fig. 2. When
concept priming is added, all three dependent variables show substantial positive
correlations between observed and predicted values. The difference between the
correlations is very large, i.e., always above .75.

The positive correlation for intrusions is noteworthy as we could not establish
an empirical relationship between concept relevance and the observerd intrusion
rates in the first place (see above). If our hypothesis of intrusions being caused
by leftovers from previous trials with additional priming from ontology-based
concepts holds, then this result underlines the benefits of adding ontologies to
cognitive architectures. A closer look at Fig. 2 reveals that the correlation for
intrusions is highly dependent of two outliers, the results should therefore be
interpreted with care.

Table 3. Correlations between the empirical data and the model predictions.

Dependent Variable rbaseline rpriming ∆r R2
priming RMSEprim.

Execution time (residual) -.218 .684 .758 .468 78 ms
Omission rate -.390 .640 .824 .410 .027
Intrusion rate -.654 .511 .873 .261 .011
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Fig. 2. Click time residuals after Fitts’ law regression, intrusion and omission rates of
the cognitive model with and without priming from the DBpedia concepts. Negative
slopes of the regression line mean worse than chance predictions. Positive slopes mean
better than chance predictions. Squares denote buttons of group “nationality”, triangles
denote “type of dish”.

4 Discussion and Conclusions

We presented a cognitive model of sequential action that has been developed
for the prediction of human error during the use of a home assistance system
[12]. The original model did not have any world knowledge and accordingly was
unable to reproduce effects of concept relevance on task execution time and omis-
sion rate that we found in a reanalysis of our empirical data. Adding concepts
from DBpedia [14] to the declarative knowledge of the model and modulating
the activation of these concepts based on the number of links inside DBpedia
that point to them allowed not only to reproduce the time and omission rate dif-
ferences, but to some extent also the rates of intrusions. While the prediction of
execution time and omissions mainly lies within the ontology, intrusions can only
be explained by the combination of cognitive model and ontology, highlighting
the synergy between both.

To our knowledge, this is the first time that Salvucci’s approach for adding
world knowledge to a cognitive architecture [19] is empirically validated. The
practical development of the model showed that the activation equation proposed
by Salvucci, while being theoretically sound, creates hurdles for the combination
of world knowledge with existing cognitive models. Therefore, we introduced a
constant scaling factor to the ontology-based activation computation. This goes
in line with the common practice in psycholinguistics to use standardized values
that are independent of the corpus in use. The factor chosen here helped to
keep the influence of the ontology on subgoal activation at par with the other
activation sources applied (i.e., activation noise and partial matching).
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It is also informative to compare our approach to research on information
foraging, namely SNIF-ACT [10]. This system uses activation values that are
estimated from word frequencies in online text corpora, which would lead to
general hypotheses similar to the ones given above. But beyond this, a closer
look unveils interesting differences to the DBpedia approach. While word fre-
quency and inlink count are highly correlated (r=.73 in our case, see Table 2),
the word frequency operationalization yields much smaller differences between
the nationality vs. type-of-dish groups. Frequency based-approaches also need to
remove highly frequent, but otherwise irrelevant words beforehand (e.g., “the”,
“and”). In Wikipedia, this relevance filter is already built into the system and
no such kind of preprocessing is necessary. Empirically, we obtained inconclu-
sive results when using word frequency in a large subtitle corpus [5] instead of
Wikipedia inlink count as concept activation estimate.

While the combination of cognitive model and ontology provides some stim-
ulating results, it also has some downsides and limitations. First of all, the small
number of observed errors leads to much uncertainty regarding the computed
intrusion and omission rates. Especially in case of intrusions, the empirical basis
is rather weak. The goodness-of-fit is highly dependent on two outliers. While
one of these matches the high-level predictions given in the introduction (“Ger-
man” being more prone to intrusions), the other one points towards a conceptual
weakness of the model (“Pastry” showing many intrusions in the empirical data
although having just a few inlinks). The “Pastry” intrusions happened during
trials with the target recipes baked apples (“Bratäpfel”) and baked bananas
(“Gebackene Bananen”). One could speculate that those recipes have primed
the type-of-dish attribute that is linked to baking. This kind of semantic prim-
ing is currently not covered by our system. We are planning to integrate more
sophisticated models of long-term memory [20] to allow dynamic priming be-
tween concepts as well.

Besides the conceptual findings, our ontology-backed cognitive model also
provides benefits to applied domains. With its ability to interact with arbitrary
HTML applications, the model could be used for automatic usability evaluation
of user interfaces. Its ability to predict omissions and intrusions could be used
to spot badly labeled UI elements during early development stages.
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