
Speculative Scientific Inference via Synergetic
Combination of Probabilistic Logic and

Evolutionary Pattern Recognition

Ben Goertzel1,2, Nil Geisweiller1, Eddie Monroe2, Mike Duncan2, Selamawit
Yilma3, Meseret Dastaw3, Misgana Bayetta4, Amen Belayneh4, Matthew

Ikle’4,5, and Gino Yu4

1OpenCog Foundation, 2 SciCog Systems, 3 iCog Labs, 4 School of Design, Hong
Kong Poly U, 5 Adams State College

Abstract. The OpenCogPrime cognitive architecture is founded on a
principle of “cognitive synergy” – judicious combination of different cog-
nitive algorithms, acting on different types of memory, in a way that helps
overcome the combinatorial explosions each of the algorithms would suf-
fer if used on its own. Here one manifestation of the cognitive synergy
principle is explored – the use of probabilistic logical reasoning (based
on declarative knowledge) to generalize procedural knowledge gained by
evolutionary program learning. The use of this synergy is illustrated via
an example drawn from a practical application of the OpenCog system
to the analysis of gene expression data, wherein the MOSES program
learning algorithm is used to recognize data patterns and the PLN in-
ference engine is used to generalize these patterns via cross-referencing
them with a biological ontology. This is a case study of both automated
scientific inference, and synergetic cognitive processing.

1 Introduction

Conceptually founded on the “patternist” systems theory of intelligence out-
lined in [4] and implemented in the OpenCog open-source software platform, the
OpenCogPrime (OCP) cognitive architecture combines multiple AI paradigms
such as uncertain logic, computational linguistics, evolutionary program learning
and connectionist attention allocation in a unified architecture [7] [8]. Cognitive
processes embodying these different paradigms, and generating different kinds of
knowledge (e.g. declarative, procedural, episodic, sensory) interoperate together
on a common neural-symbolic knowledge store called the Atomspace. The inter-
action of these processes is designed to encourage the self-organizing emergence
of high-level network structures in the Atomspace, including superposed hierar-
chical and heterarchical knowledge networks, and a self-model network enabling
meta-knowledge and meta-learning.

This overall architecture can be used as a tool within practical applications
in areas such as data analysis or natural language processing. For instance, the
OpenCog system, leveraging elements of the OpenCogPrime design, has been

2 B. Goertzel et al.

used for commercial applications in the area of natural language processing and
data mining; e.g. see [9] where OpenCog’s PLN reasoning and RelEx language
processing are combined to do automated biological hypothesis generation based
on information gathered from PubMed abstracts. The same system can also be
used to control an intelligent embodied agent (e.g. a game character [6] or robot
[11]). In this case the focus of the system’s cognition is to find and execute the
procedures that it believes have the best probability of working toward its goals
in its current context.

Memory Types in OpenOCP OCP’s main memory types are the declarative,
procedural, sensory, and episodic memory types that are widely discussed in
cognitive neuroscience [14], plus attentional memory for allocating system re-
sources generically, and intentional memory for allocating system resources in a
goal-directed way. Table 1 overviews these memory types, giving key references
and indicating the corresponding cognitive processes, and which of the generic
patternist cognitive dynamics each cognitive process corresponds to (pattern
creation, association, etc.).

The essence of the OCP design lies in the way the structures and processes
associated with each type of memory are designed to work together in a closely
coupled way, the operative hypothesis being that this will yield cooperative in-
telligence going beyond what could be achieved by an architecture merely con-
taining the same structures and processes in separate “black boxes.” This sort
of cooperative emergence has been labeled “cognitive synergy.” In this spirit,
the inter-cognitive-process interactions in OpenCog are designed so that conver-
sion between different types of memory is possible, though sometimes computa-
tionally costly (e.g. an item of declarative knowledge may with some effort be
interpreted procedurally or episodically, etc.)

A Practical Example of Procedural/Declarative Synergy . We describe here some
currently ongoing work using OpenCog, and elements of the OCP design, to
analyze genomic data using a combination of two different OpenCog cognitive
processes: the MOSES procedure learning algorithm, and the PLN probabilistic
logic engine. This work is a practical illustration of the cognitive synergy princi-
ple: PLN helps MOSES overcome its difficulty with generalization, and MOSES
helps PLN overcome its difficulty scanning large datasets for patterns. The two
together can find abstract patterns in datasets, via MOSES first finding con-
crete patterns and PLN then abstracting them. The result is a novel form of
automated speculative scientific inference that is potentially quite powerful.

While this particular genomics application is “narrow AI”, the fact that it
is being carried out in a software framework and cognitive architecture oriented
toward general intelligence means that development and conceptual refinement
done in the context of this application can be used for any OpenCog application.
Further, many of the lessons learned in the context of this work are quite gen-
erally applicable, e.g. the highlighting of the “rule choice” problem as the key
issue in PLN inference control (as will be discussed at the end).

Science Inference via Probabilistic Logic & Evolutionary Pattern Recognition 3

Memory Type Specific Cognitive Processes
General Cognitive

Functions

Declarative
Probabilistic Logic Networks (PLN) [3];

concept blending [2]
pattern creation

Procedural
MOSES (a novel probabilistic

evolutionary program learning algorithm)
[12]

pattern creation

Episodic internal simulation engine [6]
association, pattern

creation

Attentional
Economic Attention Networks (ECAN)

[10]
association, credit

assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured according to
MicroPsi [1]

credit assignment,
pattern creation

Sensory
In OpenCogBot, this will be supplied by

the DeSTIN component

association,
attention allocation,

pattern creation,
credit assignment

Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

2 Cognitive Synergy for Procedural and Declarative
Learning

The specific work to be discussed here involves combined use of OpenCog’s
MOSES and PLN cognitive algorithms; we now briefly indicate what each of
these does, pointing to prior references for details.

MOSES for Automated Program Learning . MOSES, OCP’s primary algorithm
for learning procedural knowledge, has been tested on a variety of application
problems including standard GP test problems, virtual agent control, biological
data analysis and text classification [12]. It represents procedures internally as
program trees. Each node in a MOSES program tree is supplied with a “knob,”
comprising a set of values that may potentially be chosen to replace the data
item or operator at that node. So e.g. a node containing the number 7 may be
supplied with a knob that can take on any integer value. A node containing
a while loop may be supplied with a knob that can take on various possible
control flow operators including conditionals or the identity. A node containing
a procedure representing a particular robot movement, may be supplied with
a knob that can take on values corresponding to multiple possible movements.
The metaphor is that MOSES learning covers both “knob twiddling” (setting
the values of knobs) and “knob creation.”

One common application of MOSES is to the supervised or unsupervised
analysis of datasets. In this case MOSES is learning procedures that take in a
dataset, and output a prediction of what category that dataset belongs to, or

4 B. Goertzel et al.

what properties that dataset has. For example, consider the following MOSES
model learned in the context of supervised-classification analysis of a gene expres-
sion dataset comprising 50 human nonagenarians and 50 middle-aged controls
[13]:

or(and(or(! $TTC3 !$ZNF542P)

or(! $LOC285484 !$RAI2 $CCNA1)

or($SERPING1 !$NLRC3))

and(! $SEMA7A !$LOC285484 !$LOC100996246)

and($SEMA7A $TJP2 !$ARMC10)

and($LOC100996246 $PSRC1 $SLC7A5P1))

==> nonagenarian

The semantics here is that:

– The variable containing the name of a gene, e.g. “$RAI2”, denotes the predi-
cate “Gene $RAI2 was overexpressed, i.e. expressed greater than the median
across all genes, in the gene expression dataset corresponding to a particular
person.”

– if this Boolean combination of variables is true, then the odds are higher
than average that the person is a nonagenarian rather than a control

This particular model has moderate but not outstanding statistics on the dataset
in question (precision = .6, recall = .92, accuracy = .77), and was chosen for
discussion here because of its relatively simple form.

PLN for Probabilistic Logical Inference . OCP’s primary tool for handling declar-
ative knowledge is an uncertain inference framework called Probabilistic Logic
Networks (PLN). The complexities of PLN are the topic of two lengthy technical
monographs [3] [5], and here we will eschew most details and focus mainly on
pointing out how PLN seeks to achieve efficient inference control via integration
with other cognitive processes.

As a logic, PLN is broadly integrative: it combines certain term logic rules
with more standard predicate logic rules, and utilizes both fuzzy truth values
and a variant of imprecise probabilities called indefinite probabilities. PLN math-
ematics tells how these uncertain truth values propagate through its logic rules,
so that uncertain premises give rise to conclusions with reasonably accurately
estimated uncertainty values.

PLN can be used in either forward or backward chaining mode. In backward
chaining mode, for example,

1. Given an implication L ≡ A → B whose truth value must be estimated,
create a list (A1, ..., An) of (inference rule, stored knowledge) pairs that might
be used to produce L

2. Using analogical reasoning to prior inferences, assign each Ai a probability
of success
– If some of the Ai are estimated to have reasonable probability of success

at generating reasonably confident estimates of L’s truth value, then

Science Inference via Probabilistic Logic & Evolutionary Pattern Recognition 5

invoke Step 1 with Ai in place of L (at this point the inference process
becomes recursive)

– If none of the Ai looks sufficiently likely to succeed, then inference has
“gotten stuck” and may be abandoned; or, another cognitive process may
optionally be invoked, e.g. various options (not all currently implemented
and tested) include:
• Concept creation may be used to infer new concepts related to A

and B, and then Step 1 may be revisited, in the hope of finding a
new, more promising Ai involving one of the new concepts

• MOSES may be invoked with one of several special goals, e.g. the
goal of finding a procedure P so that P (X) predicts whether X → B.
If MOSES finds such a procedure P then this can be converted to
declarative knowledge understandable by PLN and Step 1 may be
revisited....

• Simulations may be run in OCP’s internal simulation engine, so as
to observe the truth value of A → B in the simulations; and then
Step 1 may be revisited....

3 Example of PLN Inference on MOSES Output

Now we give a specific example of how PLN and MOSES can be used to-
gether, via applying PLN to generalize program trees learned by MOSES. We
will use the MOSES model given above, learned via analysis of nonagenar-
ian gene expression data, as an example. Further details on the specific infer-
ences described here can be found in online supplementary material at http:

//goertzel.org/BioInference.pdf.
As the MOSES model in question is at the top level a disjunction, it’s easy

to see that, if we express the left hand side in OpenCog’s Atomese language 1

using ANDLinks, ORLinks and NOTLinks, a single application of the PLN rule

Implication

AND

OR

ListLink: $L

MemberLink

$X

$L

$X

will yield corresponding implications for each clause, such as

and($SEMA7A $TJP2 !$ARMC10) ==> nonagenarian

for the third second-level clause. For the rest of our discussion here we will focus
on this clause due to its relatively small size. Of course, similar inferences to
the ones we describe here can be carried out for larger clauses and for Boolean

1 see e.g. [7] for a review of this notation

6 B. Goertzel et al.

combinations with different structures. The PLN software deals roughly equally
well with Boolean structures of different shapes and size.

This latter implication, in the OpenCog Atomspace, actually takes the form

ImplicationLink

ANDLink

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode "SEMA7A"

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode "TJP2"

NotLink

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode "ARMC10"

PredicateNode "Nonagenarian"

where

EquivalenceLink

EvaluationLink

ExecutionOutputLink

SchemaNode "makeOverexpressionPredicate"

GeneNode $G

ConceptNode $H

EvaluationLink

GroundedPredicateNode "scm:above -median"

ListLink

ExecutionOutputLink

SchemaNode "makeExpressionLevelPredicate"

GeneNode $G

ConceptNode $H

ConceptNode $P

EquivalenceLink

EvaluationLink

ExecutionOutputLink

SchemaNode "makeExpressionLevelPredicate"

GeneNode $G

ConceptNode $H

EvaluationLink

PredicateNode "Expression level"

ListLink

GeneNode $G

ConceptNode $H

where

– “scm:above-median” is a helper function that evaluates if a certain predicate
(arg1) evaluated at arg2 is above the median of the set of values obtained
by applying arg1 to every member of the category arg3.

Science Inference via Probabilistic Logic & Evolutionary Pattern Recognition 7

– “makeExpressionLevelPredicate level” is a schema that outputs, for an ar-
gument $G, a predicate that is evaluated for an argument that represents
an organism, and outputs the expression of $G in that organism.

– “Expression level” is a predicate that outputs, for arguments $G and $H,
the level of expression of $G in organism $H.

Being a nonagenarian in itself is not that interesting, but if you know the
entity in question is a human (instead of, say, a bristlecone pine tree), then it
becomes interesting indeed. This knowledge is represented via

ImplicationLink

AND

PredicateNode "Human"

PredicateNode "Nonagenarian"

PredicateNode "LongLived"

from which PLN can conclude

ImplicationLink

ANDLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "SEMA7A"

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "TJP2"

NotLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

GeneNode "ARMC10"

PredicateNode "LongLived"

Next, how can PLN generalize this MOSES model? One route is to recog-
nize patterns spanning this model and other MOSES models in the Atomspace.
Another route, the one to be elaborated here, is cross-reference it with exter-
nal knowledge resources, such as the Gene Ontology (GO). The GO is one of
several bio knowledge resources we have imported into a bio-oriented OpenCog
Atomspace that we call the Biospace.

Each of these three genes in our example belongs to multiple GO categories,
so there are many GO-related inferences to be done regarding these genes. But
for sake of tractable exemplification, let’s just look at a few of the many GO
categories involved:

– SEMA7A is a GO:0045773 (positive regulation of axon extension)
– TJP2 is a GO:0006915 (apoptotic process)
– ARMC10 is a GO:0040008 (regulation of growth)

Let us also note a relationship between the first and third of these GO categories,
drawn from the GO hierarchy:

– GO:0045773 is a GO:0048639 (positive regulation of developmental growth)

8 B. Goertzel et al.

– GO:0048639 is a GO:0045927 (positive regulation of growth)
– GO:0045927 is a GO:0040008 (regulation of growth)

As well as these relationships between genes and GO categories, the Biospace
also contains knowledge

AssociativeLink

ConceptNode "GO :0006915"

PredicateNode "LongLived"

which is derived from the known association of multiple genes in the category
GO:0006915 with longevity. From this, PLN can derive that

ImplicationLink

MemberLink

$G

ConceptNode "GO :0006915"

ImplicationLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

$G

PredicateNode "LongLived"

, i.e. that overexpression of genes in this GO category is likely to imply longevity.
Since this GO categories contains one of the genes (TJP2) in the MOSES model
under study, after a few PLN steps, this background knowledge, combined with
the MOSES model, increases the estimated odds that the other two genes in the
MOSES model are related to longevity, e.g. that

ImplicationLink

MemberLink

$G

ConceptNode "ARMC10"

ImplicationLink

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

$G

PredicateNode "LongLived"

Further, the membership of these other two genes in the GO category “GO:0040008”
allows PLN to derive the abstraction

ImplicationLink

AssociativeLink

ConceptNode "GO :0040008"

$L

ImplicationLink

ANDLink

AppendLink

ListLink: $L

ExecutionOutputLink

PredicateNode "makeOverexpressionPredicate"

Science Inference via Probabilistic Logic & Evolutionary Pattern Recognition 9

GeneNode "TJP2"

PredicateNode "LongLived"

What this means, intuitively, is that combinations of TJP2 with growth-regulation
genes tends to promote longevity. This is interesting, among other reasons, be-
cause it’s exactly the kind of abstraction a human mind might form when looking
at this kind of data.

In the above examples we have omitted quantitative truth values, which are
attached to each link, and depend on the specific parameters associated with the
PLN inference formulas. The probability associated with the final Implication-
Link above is going to be quite low, below 0.1 for any sensible parameter values.
However, this is still significantly above what one would expect for a linkage
of the same form with a random GO and gene inside it. We are not aiming to
derive definite conclusions here, only educated speculative hypotheses, able to
meaningfully guide further biological experimentation.

The “cognitive synergy” in the above may not be glaringly obvious but is
critical nonetheless. MOSES is good at learning specific data patterns, but not so
good at learning abstractions. To get MOSES to learn abstractions of this nature
would be possible but lead to significant scalability problems. On the other
hand, PLN is good at abstracting from particular data patterns, but doesn’t
have control mechanisms scalable enough to enable it to scan large datasets
and pick out the weak but meaningful patterns among the noise. MOSES is
good at this. The two algorithms working together can, empirically speaking,
create generalizations from large, complex datasets, significantly better than
either algorithm can alone.

4 Conclusions and Next Steps

The work described here has its specialized aspects, but also leads to various
general ideas and lessons. Conceptual interplay between practical applications
to complex real-world data and more abstract AGI R&D, helps to push both
pursuits forward.

The workflow described above uses MOSES to analyze data and produce
classification models, and PLN to draw conclusions from these models via cross-
referencing them with external knowledge or (not elaborated above) one another.
The loop may be closed by taking the genes highlighted as most relevant by
PLN (in the above case, the genes found to imply longevity most strongly via
combination of PLN) and using them as a restricted input feature set for MOSES.
MOSES can then learn more models based on this feature set, which can then
be exported to the Atomspace and used by PLN, etc. In this way PLN is being
used to enable a kind of MOSES recursive feature selection.

One of the main lessons learned in experimenting with inferences like the ones
mentioned above, is that the primary AI difficulty involved is telling PLN which
rules to choose in what order. Choosing which nodes (e.g. GeneNodes) to include
is challenging as well but is addressed via OpenCog’s activation-spreading-like
ECAN component. Choosing which rules to apply when is not currently handled

10 B. Goertzel et al.

effectively; but in [7] it is proposed to do this via assigning probabilities to se-
quences of rule-choices (conditional on the context), thus allowing “rule macros”
(i.e. sequences of rules) to be applied in a fairly habitual way in a given domain
of inference. But of course that is a high-level description and there will be some
devils in the details. It has been previously proposed to use pattern mining to
learn macros of this nature, and it’s clear this will be a good approach and nec-
essary in the medium term. However, a simpler approach might be to simply run
a bunch of inferences and store Markov probabilities indicating which chains of
rule-applications tended to be useful and which did not; this might provide suf-
ficient rule-choice guidance for “relatively simple” inferences like the ones given
here.

References

1. Bach, J.: Principles of Synthetic Intelligence. Oxford University Press (2009)
2. Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the

Mind’s Hidden Complexities. Basic (2002)
3. Goertzel, B., Ikle, M., Goertzel, I., Heljakka, A.: Probabilistic Logic Networks.

Springer (2008)
4. Goertzel, B.: The Hidden Pattern. Brown Walker (2006)
5. Goertzel, B., Coelho, L., Geisweiller, N., Janicic, P., Pennachin, C.: Real World

Reasoning. Atlantis Press (2011)
6. Goertzel, B., Et Al, C.P.: An integrative methodology for teaching embodied non-

linguistic agents, applied to virtual animals in second life. In: Proc.of the First
Conf. on AGI. IOS Press (2008)

7. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Synergy.
Springer: Atlantis Thinking Machines (2013)

8. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part
2: The CogPrime Architecture for Integrative, Embodied AGI. Springer: Atlantis
Thinking Machines (2013)

9. Goertzel, B., Pinto, H., Pennachin, C., Goertzel, I.F.: Using dependency parsing
and probabilistic inference to extract relationships between genes, proteins and
malignancies implicit among multiple biomedical research abstracts. In: Proc. of
Bio-NLP 2006 (2006)

10. Goertzel, B., Pitt, J., Ikle, M., Pennachin, C., Liu, R.: Glocal memory: a design
principle for artificial brains and minds. Neurocomputing (Apr 2010)

11. Goertzel, B.e.a.: Opencogbot: An integrative architecture for embodied agi. Proc.
of ICAI-10, Beijing (2010)

12. Looks, M.: Competent Program Evolution. PhD Thesis, Computer Science De-
partment, Washington University (2006)

13. Passtoors, W., JM, B., Goeman, J., Akker, E.: Transcriptional profiling of human
familial longevity indicates a role for asf1a and il7r. PLoS One (2012)

14. Tulving, E., Craik, R.: The Oxford Handbook of Memory. Oxford U. Press (2005)

