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Abstract. Since universal induction is a central topic in artificial gen-
eral intelligence (AGI), it is argued that compressing all sequences up
to a complexity threshold should be the main thrust of AGI research.
A measure for partial progress in AGI is suggested along these lines.
By exhaustively executing all two and three state Turing machines a
benchmark for low-complexity universal induction is constructed. Given
the resulting binary sequences, programs are induced by recursively con-
structing a network of functions. The construction is guided by a breadth-
first search departing only from leaves of the lowest entropy programs,
making the detection of low entropy (“short”) programs efficient. This
way, all sequences (80% of the sequences) generated by two (three) state
machines could be compressed back roughly to the size defined by their
Kolmogorov complexity.

1 Introduction

What is intelligence? After compiling a large set of definitions in the literature
Legg and Hutter [8] came up with a definition of intelligence that is consistent
with most other definitions:

“Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.”

Based on that definition Marcus Hutter [5] has developed a mathematical
formulation and theoretical solution to the universal AGI problem, called AIXI.
Although it is not computable, approximations may lead to tractable solutions.
AIXI is in turn essentially based on Solomonoff’s theory of universal induction
[15], that assigns the following universal prior to any sequence x:

M(x) :=
∑

p:U(p)=x∗

2−l(p) (1.1)

where p is a program of length l(p) executed on a universal monotone Turing
machine U . U(p) = x∗ denotes that after executing program p, the machine U
prints the sequence x without necessarily halting. Impressively, it can be shown
[5] that after seeing the first t digits of any computable sequence this universal
prior is able to predict the next digit with a probability converging to certainty:
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limt→∞M(xt|x1, . . . , xt−1) = 1. Since most probability weight is assigned to
short programs (Occam’s razor) this proves that compressed representations lead
to successful predictions of any computable environment. This realization makes
it especially promising to try to construct an efficient algorithm for universal
induction as a milestone, even cornerstone, of AGI.

A general but brute force approach is universal search. For example, Levin
search [10] executes all possible programs, starting with the shortest, until one of
them generates the required data sequence. Although general, it is not surprising
that the approach is computationally costly and rarely applicable in practice.

On the other side of the spectrum, there are non-general but computationally
tractable approaches. Specifically, inductive programming techniques are used to
induce programs from data [6] and there are some approaches within the context
of AGI as well [16, 14, 12, 3]. However, the reason why the generalization of many
algorithms is impeded is the curse of dimensionality faced by all algorithms
at some point. Considering the (algorithmic) complexity and diversity of tasks
solved by today’s typical algorithms, we observe that most if not all will be
highly specific and many will be able to solve quite complex tasks (known as
“narrow AI” [7]). Algorithms from the field of data compression are no exception.
For example, the celebrated Lempel-Ziv compression algorithm (see e.g. [2])
handles stationary sequences but fails at compressing simple but non-stationary
sequences efficiently. AI algorithms undoubtedly exhibit some intelligence, but
when comparing them to humans, a striking difference comes to mind: the tasks
solvable by humans seem to be much less complex albeit very diverse, while
tasks solved by AI algorithms tend to be quite complex but narrowly defined
(Fig. 1.1).

For this reason, we should not try to beat the curse of dimensionality merci-
lessly awaiting us at high complexities, but instead head for general algorithms
at low complexity levels and fill the task cup from the bottom up.

2 A Measure for Partial Progress in AGI

One of the troubles of AGI research is the lack of a measure for partial progress.
While the Turing test is widely accepted as a test for general intelligence, it
is only able to give an all or none signal. In spite of all attempts, we did not
yet have a way to tell whether we are half way or 10% through toward general
intelligence. The reason for that disorientation is the fact that every algorithm
having achieved partially intelligent behavior, has failed to generalize to a wider
range of behaviors. Therefore, it is hard to tell whether research has progressed
in the right direction or has been on the wrong track all along.

However, since making universal induction tractable seems to be a corner-
stone for AGI, we can formalize partial progress toward AGI as the extent to
which universal induction has been efficiently implemented. Additionally, if we
start out with a provably general algorithm that works up to a complexity level,
thereby solving all simple compression problems, the objection about its possible
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Fig. 1.1. Approach to artificial general intelligence. Instead of trying to solve complex
but narrow tasks, AGI research should head for solving all simple tasks and only then
expand toward more complexity.

non-generalizability is countered. The measure for partial progress then simply
becomes the complexity level up to which the algorithm can solve all problems.

2.1 Related Work

This measure is reminiscent of existing intelligence tests based on algorithmic
complexity. Hernandez-Orallo [4] has developed the C-test, that allows only se-
quences with unique induced explanations, of which a prefix leads to the same
explanation and various other restrictions on the sequence set. However, since
the pitfall of building yet another narrow AI system is lurking at every step,
a measure of research progress in AGI (not so much of the intelligence of an
agent) should make sure that all sequences below a complexity level are com-
pressed successfully and can not afford to discard large subsets as is done in the
C-test.

Legg and Veness [9] developed a measure that takes into account the perfor-
mance of an agent in a reinforcement learning setting which includes an Occam
bias decreasing exponentially with the complexity of the environment. They
are correct to note that the solution to the important exploration-exploitation
dilemma is neglected in a purely complexity-based measure. In that sense, uni-
versal induction is a necessary albeit not sufficient condition for intelligence. For
our purposes, it is important to set up a measure for universal induction alone,
as it seems to be a simpler problem than one of building complete intelligent
agents.
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Text based measures of intelligence follow the rationale that an agent can
be considered intelligent if it is able to compress the information content of a
text, like humanity’s knowledge in the form of Wikipedia [1, 13]. However, this
kind of compression requires large amounts of information not present in the
text itself, like real world experience through the agent’s senses. Therefore, the
task is either ill-defined for agents not disposing of such external information or
the agent has to be provided with such information extending texts to arbitrary
data, which is equivalent to the compression of arbitrary sequences as proposed
here.

2.2 Formalization

Suppose, we run binary programs on a universal monotone Turing machine U .
U ’s possible input programs pi can be ordered in a length-increasing lexico-
graphic way: “” (empty program), “0”, “1”, “00”, “01”, “10”, “11”, “000”, etc. up
to a maximal complexity level L. We run all those programs until they halt
or for a maximum of t time steps and read off their outputs xi on the output
tape. In contrast to Kolmogorov complexity1, we use the time-bounded version
– the Levin complexity – which is computable and includes a penalty term on
computation time [11]:

Kt(x) = min
p
{|p|+ log t : U(p) = x in t steps} (2.1)

Saving all the generated strings paired with their optimal programs (xi, poi ) with
poi (xi) = argminp{|p| + log t : U(p) = xi in t steps, |p| ≤ L}, we have all we
need for the progress measure. The goal of universal induction is to find all such
optimal programs poi for each of the xi. If pi is the actually found program, its
performance can be measured by

ri(L) =
|poi |
|pi|
∈ (0, 1] (2.2)

If not, there is no time-bounded solution to the compression problem. The overall
performance R at complexity level L could be used as a measure for partial
progress in universal induction and be given by averaging:

R(L) = 〈ri(L)〉 (2.3)

One may object that the number of programs increases exponentially with
their length such that an enumeration quickly becomes intractable. This is a
weighty argument if the task is universal search – a general procedure for in-
version problems. However, we suggest this procedure to play the mere role of
a benchmark for an efficient universal induction algorithm, which will use com-
pletely different methods than universal search and will be described in Section
1 The Kolmogorov complexity of a string is defined as the length of the shortest
program able to generate that string on a Turing machine.
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3. Therefore, using the set of simple programs as a benchmark may be enough
to set the universal induction algorithm on the right track.

Note that only a small fraction of possible sequences can be generated this
way. After all, it is well known that only exponentially few, O(2n−m), sequences
of length n can be compressed by m bits [11].

2.3 Implementation

Implementing this test does not require coding of a universal Turing machine
(TM) since computers are already universal TMs. Instead, enumerating all tran-
sition functions of an n-state machine is sufficient. The machine used here has
one bidirectional, two way infinite work tape and a unidirectional, one way infi-
nite, write only output tape. Two symbols are used, B = {0, 1}, the states taken
from Q = {0, . . . , n− 1}. The transition map is then:

Q× B→ Q× {0, 1, L,R,N} × {0, 1, N} (2.4)

where L, R, and N denote left, right and no motion of the head, respectively.
The work tape can move in any direction while the output tape either writes 0
or 1 and moves to the right, or does not move at all (N). No halting or accepting
states were utilized. The machine starts with both tapes filled with zeros. A finite
sequence x is considered as generated by machine T given transition function
(program) p, if it is at the left of the output head at some point: we write
T (p) = x∗. The transition table enumerated all possible combinations of state
and work tape content, which amounts to |Q| · |B| = 2n. Therefore, there exist
|Q|·5·3 = 15n different instructions and consequently (15n)2n different machines
with n states. For n = 2, 3 this amounts to around 106 and 1010 machines. All
those machines (n = 1 machines are trivial) were executed until 50 symbols
were written on the output tape or the maximum number of 400 time steps
was reached. All unique outputs were stored, amounting to 210 and 43295, for
n = 2, 3, respectively, and paired with their respective programs.

Table 1 depicts a small sample of the outputs. It may be interjected that se-
quences generated by 2 and 3 state machines are not very “interesting”. However,
the present work is the just initial step. Moreover, it is interesting to note that
even the 2 state machine shows non-repetitive patterns with an ever increasing
number of 1’s. In the 3 state machine patterns become quickly more involved

states sample outputs
2 10101010101010101010101010101010101010101010101010
2 11011011011011011011011011011011011011011011011011
2 00010011001110011110011111001111110011111110011111
3 00101101001010001011010010100010110100101000101101
3 10111111001110111101001110101111010100111010101111
3 01011010110101110101101101011110101101101101011111
Table 1. Sample outputs of 2 and 3 state Turing machines
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and require “intelligence” to detect the regularities in the patterns (try the last
one!). Consistently with the reasoning in the introduction, could it be that the
threshold complexity level of human intelligence is not far off from the sequence
complexity of 3 state machines, especially when the data presentation is not
comfortably tuned according to natural image statistics?

We suggest that these patterns paired with their respective programs con-
stitute a benchmark for partial progress in artificial general intelligence. If an
efficient algorithm can compress these patterns to small programs then it can be
claimed to be moderately intelligent. Modern compression algorithms, such as
Lempel-Ziv (on which the famous Zip compression is based), fail at compressing
those sequences, since the packed file size increases with sequence length (ergo
ri gets arbitrary small) while the size of the TM transition table is always the
same independently of sequence length.

3 Universal Induction of Low-Complexity Sequences

3.1 Methods

Having generated all strings printed by two and three state programs the task
is to build an efficient algorithm compressing those strings back into a short
representation, not necessarily the original one though, but having a similar size
in terms of entropy.

As exemplified in Fig. 3.1 the present algorithm induces a recursive network
of function primitives using a sequence generated by a three state Turing ma-
chine. Four function primitives were used that generate constant, alternating or
incremental sequences or a single number:

C(s, n) = s, s, . . . , s (n times), s ∈ Z ∪ S, n ∈ N (3.1)

A(a, b, n) = a, b, a, b, . . . a, b (n times) a, b ∈ Z ∪ S, n ∈ N (3.2)

I(s, d, n) = s+ 0 · d, s+ 1 · d, . . . , s+ (n− 1) · d s, d ∈ Z, n ∈ N (3.3)

R(s) = s s ∈ Z ∪ S (3.4)

where Z is the set of integers, N the set of non-negative integers and S =
{C,A, I,R} is the set of arbitrary symbols (here function names).

The entropy of a given function network is computed as follows. Let xi ∈ Z∪S
denote the inputs to those functions without parent functions. The distribution
p(n) = 2−|n|/3 is imposed on integers n ∈ Z. If xi ∈ Z then its information
content is given by H(xi) = − log2 p(xi) = |xi|+ log2(3) bits2 which we simplify
to |xi| + 1 bits. If xi ∈ S then H(xi) = log2 |S| = 2 bits. The overall entropy
of the network is the sum Htot =

∑
iH(xi). It may be objected that according

2 This coding is linear in the integer value. We could use Elias gamma or delta coding,
which is logarithmic, however the algorithm has turned out to perform better with
linear coding. This is work in progress and this issue shall be investigated in future
work.
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Fig. 3.1. Exemplifying recursive compression. A sequence is recursively transformed by
a network of functions to an increasingly smaller representation. The original sequence
takes up 220 bits of information, 129 bits for encoding the 0’s and 1’s plus the length
of the sequence (91 bits). At the zeroth recursion level the sequence is parsed using a
constant function (C) that prints n times the number s. At level 1 the sequences of
function inputs are shown that recreate the original sequence. The original sequence is
thereby transformed to two sequences of function inputs. Subsequently, an alternating
function (A) explains the first sequence and an incremental function (I) explains the
second one. This is done recursively, until the entropy can not be reduced any more.
The bold inputs remain unexplained and amount to 96 bits. Note that the final number
of inputs does not depend on the sequence length any more. If we remove those inputs
that change with sequence length (bold and underlined) then the entropy decoding
sequence structure is only 27 bits (only bold).
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to the Minimum Description Length principle, the information contained in the
algorithm itself has to be taken into account as well. After all, for any sequence
x it is possible to define a universal Turing machine U ′ such that KtU ′(x) = 0
thereby encoding all information about x in the design of U ′, making U ′ highly
dependent on x. However, since both the present algorithm and the benchmark
do not depend on x, their description length is a mere constant and can be
neglected.

At each step of the algorithm a set of unexplained sequences is present,
which are sequences of inputs to those functions without parent functions. For
each such input sequence its entropy can be computed and the sequences ordered
after decreasing entropy. Looping through that set starting with the sequence
of highest entropy (requiring most explanation) the algorithm tries to generate
a part of the sequence with one of the function primitives. For example, if the
sequence q = 3, 3, 3, 9, 9, 9, 9, 6, 6, 6, 6, 6 is present, a sequence of inputs to the
constant function is induced: C(s = 3, 9, 6, n = 3, 4, 5). The entropy is reduced,
in this case H(q) = 87 bits and its explanation takes only H(s) + H(n) = 36
bits. For each function primitive, such an entropy change is computed. If the
entropy has been reduced, the function is accepted and added to the network.
Otherwise, it is accepted only if its child (the function that receives its outputs)
has been entropy reducing, allowing to overcome local minima in the entropy
landscape to some extent.

In this fashion a breadth-first search is performed, while pruning away the
least promising tree branches. Those are defined as programs having a higher
total entropy than the 1.05 times the program with lowest entropy.3

3.2 Results

Since our fixed-size Turing machine programs can create sequences of arbitrary
length, successful program induction is defined as induction of a program with
a fixed number of inputs to the function network. Further, to establish a bench-
mark, the entropy of the Turing machine programs is computed as follows. There
are (15n)2n machines with n states, hence the amount of information needed to
specify a TM program with n states is

HTM(n) = 2n log2(15n) (3.5)

which results in a program size of around 20 and 33 bits for two and three state
TMs, respectively. Since the induced programs encode the length l of the target
sequence and the TM programs do not, the information contained in the length
has to be subtracted from the induced program entropy (the bold and underlined
numbers in Fig. 3.1).

All sequences generated by all two state machines could be compressed suc-
cessfully. The average induced program size is µ2 = 22 bits with a standard
deviation of σ2 = 23 bits. Because of the large number of three states sequences,

3 Python code and string/program pairs are available upon request.
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200 sequences were randomly sampled. This way, 80±4% of three state sequences
could be compressed successfully, with µ3 = 27 bits and σ3 = 20 bits. However,
“unsuccessful” sequences could be compressed to some extent as well, although
the resulting program size was not independent of sequence length. With se-
quences of length l = 100 the entropy statistics of “unsuccessful” sequences are
µ′3 = 112 bits and σ′3 = 28 bits. Given an average sequence entropy of 146 bits,
this constitutes an average compression factor of 1.3.

It may seem surprising that the average entropy of the induced programs is
even below the entropy of the TM programs (transition tables). However, since
not all rows of a transition table are guaranteed to be used when executing a
program, the actual shortest representation will not contain unused rows leading
to a smaller program size than 20 or 33 bits. The most important result is that
very short programs, with a size roughly around the Kolmogorov complexity,
have indeed been found for most sequences.

4 Discussion

The present approach has shown that it is possible to both sensibly define a
measure for partial progress toward AGI by measuring the complexity level up to
which all sequences can be induced and to build an algorithm actually performing
universal induction for most low complexity sequences. Our demonstrator has
been able to compress all sequences generated by two state Turing machines and
80% of the sequences generated by three state Turing machines.

The current demonstrator presents work in progress and it is already fairly
clear how to improve the algorithm such that the remaining 20% are also covered.
For example, there is no unique partition of a sequence into a set of concate-
nated primitives. The way, those partitions are selected should also be guided
by compressibility considerations, e.g. partition subsets of equal length should
have a higher prior chance to be analyzed further. Currently, the partition is im-
plemented in a non-principled way, which is one of the reasons for the algorithm
to run into dead ends. Remarkably, all reasons for stagnation seem to be those
aspects of the algorithm that are not yet guided by the compression principle.
This observation leads to the conjecture that the further extension and general-
ization of the algorithm may not require any additional class of measures, but a
“mere” persistent application of the compression principle.

One may object that the function primitives are hard-coded and may there-
fore constitute an obstacle for generalizability. However, those primitives can
also be resolved into a combination of elementary operations, e.g. the incre-
mental function can be constructed by adding a fixed number to the previous
sequence element, hence be itself represented by a function network. Therefore, it
is all a matter of flexible application and organization of the very same function
network and thus lies within the scope of the present approach.

The hope of this approach is that it may lead us on a path finally scaling up
universal induction to practically significant levels. It would be nice to backup
this hope by a time complexity measure of the present algorithm, which not
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available at present unfortunately, since this is work in progress. Further, it can
not be excluded that a narrow algorithm is also able to solve all low-complexity
problems. In fact, the present algorithm is narrow as well since there are nu-
merous implicit assumptions about the composition of the sequence, e.g. the
concatenation of outputs of several functions, no possibility to represent depen-
dencies within a sequence, or regularities between different inputs etc. Neverthe-
less, since we represent general programs without specific a priori restrictions this
setup seems to be general enough to tackle such questions which will hopefully
result in a scalable system.
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