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Abstract. Solomonoff induction and AIXI model their environment as
an arbitrary Turing machine, but are themselves uncomputable. This
fails to capture an essential property of real-world agents, which cannot
be more powerful than the environment they are embedded in; for ex-
ample, AIXI cannot accurately model game-theoretic scenarios in which
its opponent is another instance of AIXI.
In this paper, we define reflective variants of Solomonoff induction and
AIXI, which are able to reason about environments containing other,
equally powerful reasoners. To do so, we replace Turing machines by
probabilistic oracle machines (stochastic Turing machines with access
to an oracle). We then use reflective oracles, which answer questions of
the form, “is the probability that oracle machine T outputs 1 greater
than p, when run on this same oracle?” Diagonalization can be avoided
by allowing the oracle to answer randomly if this probability is equal
to p; given this provision, reflective oracles can be shown to exist. We
show that reflective Solomonoff induction and AIXI can themselves be
implemented as oracle machines with access to a reflective oracle, making
it possible for them to model environments that contain reasoners as
powerful as themselves.

Keywords: reflective oracles, Solomonoff induction, AIXI, Universal
Artificial Intelligence

1 Introduction

Legg and Hutter [5] have defined a “Universal measure of intelligence” that
describes the ability of a system to maximize rewards across a wide range of
diverse environments. This metric is useful when attempting to quantify the
cross-domain performance of modern AI systems, but it does not quite capture
the induction and interaction problems faced by generally intelligent systems
acting in the real world: In the formalism of Legg and Hutter (as in many other
agent formalisms) the agent and the environment are assumed to be distinct and
separate, while real generally intelligent systems must be able to learn about and
manipulate an environment from within.

As noted by Hutter [4], Vallinder [9], and others, neither Solomonoff induc-
tion [8] nor AIXI [3] can capture this aspect of reasoning in the real world. Both
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formalisms require that the reasoner have more computing power than any indi-
vidual environment hypothesis that the reasoner considers: a Solomonoff induc-
tor predicting according to a distribution over all computable hypotheses is not
itself computable; an AIXI acting according to some distribution over environ-
ments uses more computing power than any one environment in its distribution.
This is also true of computable approximations of AIXI, such as AIXItl. Thus,
these formalisms cannot easily be used to make models of reasoners that must
reason about an environment which contains the reasoner and/or other, more
powerful reasoners. Because these reasoners require more computing power than
any environment they hypothesize, environments which contain the reasoner are
not in their hypothesis space!

In this paper, we extend the Solomonoff induction formalism and the AIXI
formalism into a setting where the agents reason about the environment while
embedded within it. We do this by studying variants of Solomonoff induction and
AIXI using probabilistic oracle machines rather than Turing machines, where a
probabilistic oracle machine is a Turing machine that can flip coins and make
calls to an oracle. Specifically, we make use of probabilistic oracle machines with
access to a “reflective oracle” [2] that answers questions about other probabilistic
oracle machines using the same oracle. This allows us to define environments
which may contain agents that in turn reason about the environment which
contains them.

Section 2 defines reflective oracles. Section 3 gives a definition of Solomonoff
induction on probabilistic oracle machines. Section 4 gives a variant of AIXI in
this setting. Section 5 discusses these results, along with a number of avenues
for future research.

2 Reflective Oracles

Our goal is to define agents which are able to reason about environments con-
taining other, equally powerful agents. If agents and environments are simply
Turing machines, and two agents try to predict their environments (which con-
tain the other agent) by simply running the corresponding machines, then two
agents trying to predict each other will go into an infinite loop.

One might try to solve this problem by defining agents to be Turing machines
with access to an oracle, which takes the source code of an oracle machine as
input and which outputs what this machine would output when run on the same
oracle. (The difference to simply running the machine would be that the oracle
would always return an answer, never go into an infinite loop.) Then, instead of
predicting the environment by running the corresponding oracle machine, agents
would query the oracle about this machine. However, it’s easy to see that such
an oracle cannot exist, for reasons similar to the halting problem: if it existed,
then by quining, one could write a program that queries the oracle about its own
output, and returns 0 iff the oracle says it returns 1, and returns 1 otherwise.

It is possible to get around this problem by allowing the oracle to give ran-
dom answers in certain, restricted circumstances. To do so, we define agents
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and environments to be probabilistic oracle machines, Turing machines with the
ability to act stochastically (by tossing fair coins) and to consult oracles. We
consider probabilistic oracle machines to be equipped with advance-only output
tapes.

We will write T for the set of these probabilistic oracle machines. Throughout
this paper, an overline will be used to denote finite strings, and ε will be used
to denote the empty string. Let B := { 0, 1 } be the set of bits, and B<ω denote
the set of finite strings of bits. We write TO(x) for a machine T ∈ T run on the
input x ∈ B<ω, using the oracle O.

Roughly speaking, a reflective oracle O will answer queries of the form “is
the probability that TO(x) outputs 1 greater than q?” where q is a rational
probability. That is, a query is a triple (T, x, q) ∈ T × B<ω × Q ∩ [0, 1], where
Q ∩ [0, 1] is the set of rational probabilities.

More formally, write P(TO(x) = y) for the probability that TO(x) outputs at
least one bit and that the first bit of output is y ∈ B. If TO(x) does not always
halt before outputting the first bit, then P(TO(x) = 1) + P(TO(x) = 0) may be
less than 1. We assume that the oracle always outputs either 1 or 0, and define
distinct calls to the oracle to be stochastically independent (even if they call the
oracle on the same query); hence, an oracle’s behavior is fully specified by the
probabilities P(O(T, x, q) = 1). Now, we can define reflective oracles as follows:

Definition 1. An oracle O is “reflective” if, for all T ∈ T and x ∈ B<ω, there
is some p ∈ [0, 1] such that

P(TO(x) = 1) ≤ p ≤ P(TO(x) 6= 0) (1)

and such that for all q ∈ Q ∩ [0, 1], the following implications hold:

p > q =⇒ P(O(T, x, q) = 1) = 1 (2)
p < q =⇒ P(O(T, x, q) = 0) = 1 (3)

Note that if TO(x) is guaranteed to output a bit, then p must be exactly the
probability P(TO(x) = 1) that TO(x) returns 1. If TO(x) sometimes fails to halt,
then the oracle can, in a sense, be understood to “redistribute” the probability
that the machine goes into an infinite loop between the two possible outputs:
it answers queries as if TO(x) outputs 1 with probability p, where p is lower-
bounded by the true probability of outputting 1, and upper-bounded by the
probability of outputting 1 or looping.

If q = p, then P(O(T, x, q) = 1) may be any number between 0 and 1; this
is essential in order to avoid paradox. For example, consider the probabilistic
oracle machine which asks the oracle which bit it itself is most likely to output,
and outputs the opposite bit. In this case, a reflective oracle may answer 1 with
probability 0.5, so that the agent outputs each bit with equal probability. In
fact, given this flexibility, a consistent solution always exists.

Theorem 1. A reflective oracle exists.

Proof. Appendix B of Fallenstein, Taylor, and Christiano [2].
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3 Reflective Solomonoff Induction

Using a reflective oracle, it is possible to define a variation on Solomonoff in-
duction defined on probabilistic oracle machines. Define an environment to be a
probabilistic oracle machine which takes a sequence of bits as input and (prob-
abilistically) produces a single bit of output. We write B<ω  B for the type of
probabilistic oracle machines run with oracle O which take a finite bit string as
input and probabilistically output a single bit. Holding O fixed, one can think
of an environment as defining a function of type B<ω → ∆(B) where ∆(B) is
the set of probability distributions over a single bit. Equivalently, one may see
an environment paired with an oracle as a distribution over possibly-infinite bit
strings, where strings of bits are generated by running the environment on ε to
produce the first bit, and then running it on the first bit to produce the second
bit, and then running it on the first two bits to produce the third bit, and so on.
What results is a distribution over possibly-infinite bit strings (where the strings
may be finite if the environment sometimes goes into an infinite loop rather than
producing another output bit).

We will give a variant of Solomonoff induction that predicts observations
according to a simplicity distribution over environments, and which is itself a
probabilistic oracle machine (implying that it can be embedded into an environ-
ment). Roughly speaking, it will take a simplicity distribution, condition it on
the observations seen so far, sample a machine from the resulting distribution,
and then use the oracle to output its next bit as if it were that machine. Loosely,
this results in a distribution over bits which is 1 according to the probability
that a random machine from the updated distribution would next output a 1.

In order to define our variant of Solomonoff induction (and later AIXI) it
will be necessary to fix some representation of real numbers. Throughout this
paper, real numbers will be represented by infinite sequences of nested closed
intervals. To demonstrate, Algorithm 1 describes a probabilistic oracle machine
getProb : T × B<ω × B R which takes an encoding T of another probabilistic
oracle machine, a finite bit string x, and a single bit y, and uses the oracle O to
compute P(TO(x) = y). If TO(x) may fail to generate output, getProbO(T, x, 1)
will return the “redistributed” probability p from Definition 1.

Algorithm 1: When run with an oracle O, outputs P(TO(x) = y) as an
infinite sequence of nested intervals.

def getProbO(T, x, y):
upper ←− 1;
lower ←− 0;
repeat

middle ←− (upper + lower)/2;
if O(T, x,middle) = y then lower ←− middle;
else upper ←− middle;
output (lower , upper);
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Solomonoff induction on probabilistic oracle machines is given as a function
rSI : B<ω  B by Algorithm 2. This function implicitly defines a probability
distribution over infinite bitstrings, by providing a way to sample the next bit
given the output so far; this allows the conditional probability of the next bit
to be computed by getProb. (rSI is defined so that it will always output either 0
or 1, never go into an infinite loop.)

Algorithm 2 makes use of two more helper functions defined in Appendix A,
namely getStringProb : T × B<ω × B<ω  R, which computes the probability
that a machine T would output the sequence y conditional on having already
outputted x, and flip : R  B which flips a weighted coin (returning 1 with
probability equal to the weight, and 0 otherwise); like getProb, getStringProb
uses the “redistributed” probabilities p from Definition 1 if a machine may go
into an infinite loop.

With these two helper functions, defining Solomonoff induction on proba-
bilistic oracle machines is straightforward. Using rejection sampling, we sam-
ple a machine T with probability proportional to 2−len(T )getStringProbO(T, ε, x),
where x is the string of our observations so far. To do this, we draw T with
probability 2−len(T ) using the randomMachine function, and then keep it with
probability getStringProbO(T, ε, x). After sampling this machine, we use getProb
to sample the next bit in the sequence after our observations.

Algorithm 2: Reflective Solomonoff induction for probabilistic oracle ma-
chines. It takes a finite bit string and outputs a bit.

def rSIO(x):
repeat

T ←− randomMachineO();
if flipO(getStringProbO(T, ε, x)) then

return flipO(getProbO(T, x, 1))

Because rSI always terminates, it defines a distribution PrSI ∈ ∆(Bω) over infinite
bit strings, where PrSI(x) is the probability that rSI generates the string x (when
run on the first n bits to generate the n+ 1th bit). This distribution satisfies the
essential property of a simplicity distribution, namely, that each environment T
is represented somewhere within this distribution.

Theorem 2. For each probabilistic oracle machine T , there is a constant CT
such that for all finite bit strings x ∈ B<ω,

PrSI(x) ≥ CT · PT (x) (4)

where PT (x) is the probability of T generating the sequence x (when run on the
first n bits to generate the n+ 1th bit).

Proof. First note that

PT (x) ≤ getStringProbO(T, ε, x) =
len(x)∏
i=0

getProbO(T, x1:i−1, xi), (5)
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with equality on the left if TO(y) is guaranteed to produce an output bit for
every prefix y of x. Then, the result follows from the fact that by construction,
sampling a bit string from rSIO is equivalent to choosing a random machine T
with probability proportional to 2−len(T ) and then sampling bits according to
getProbO(T, ·, ·).

Reflective Solomonoff induction does itself have the type of an environment,
and hence is included in the simplicity distribution over environments. Indeed,
it is apparent that reflective Solomonoff induction can be used to predict its
own behavior—resulting in behavior that is heavily dependent upon the choice
of reflective oracle and the encoding of machines as bit strings, of course. But
more importantly, there are also environments in this distribution which run
Solomonoff induction as a subprocess: that is, this variant of Solomonoff induc-
tion can be used to predict environments that contain Solomonoff inductors.

4 Reflective AIXI

With reflective Solomonoff induction in hand, we may now define a reflective
agent, by giving a variant of AIXI that runs on probabilistic oracle machines. To
do this, we fix a finite set O of observations, together with a prefix-free encoding
of observations as bit strings. Moreover, we fix a function r : O → [0, 1] which
associates to each o ∈ O a (computable) reward r(o). Without loss of generality,
we assume that the agent has only two available actions, 0 and 1.

Reflective AIXI will assume that an environment is a probabilistic oracle
machine which takes a finite string of observation/action pairs and produces a
new observation; that is, an environment is a machine with type (O×B)<ω  O.
Reflective AIXI assumes that it gets to choose each action bit, and, given a
history oa ∈ (O × B)<ω and the latest observation o ∈ O, it outputs the bit
which gives it the highest expected (time-discounted) future reward. We will
write rt(oa) := r(fst(oat)) for the reward in the tth observation of oa.

To define reflective AIXI, we first need the function step from Algorithm 3,
which encodes the assumption that an environment can be factored into a world-
part and an agent-part, one of which produces the observations and the other
which produces the actions.

Algorithm 3: Takes an agent and an environment and the history so far,
and computes the next observation/action pair.

def stepO(world, agent, oa):
o←− worldO(oa);
a←− agentO(oa, o);
return (o, a)

Next, we need the function reward from Algorithm 4, which computes the total
discounted reward given a world (selecting the observations), an agent (assumed
to control the actions), and the history so far. Total reward is computed using
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an exponential discount factor 0 < γ < 1. We multiply by 1 − γ to make total
reward sum to a number between 0 and 1. With this rescaling, total discounted
reward starting from step t is no more than (1− γ)

∑∞
s=t γ

s−1 = γt−1.

Algorithm 4: The distribution over real numbers defined by this proba-
bilistic machine is the distribution of the future discounted reward of agent
interacting with world, given that the history oa has already occurred.

def rewardO(world, agent, oa):
for n = 1, 2, . . . do

oa←− append
(
oa, stepO(world, agent, oa)

)
;

seen ←− (1− γ)
∑n

t=1 γ
t−1 · rt(oa);

output (seen, seen + γn);

With reward in hand, an agent which achieves the maximum expected (dis-
counted) reward in a given environment µ, can be defined as in rAIµ. Algo-
rithm 5 defines a machine actionRewardO(a), which computes the reward if the
agent takes action a in the next timestep and in future timesteps behaves like
the optimal agent rAIµ. It then defines a machine differenceO(), which computes
the difference in the discounted rewards when taking action 1 and when taking
action 0, then rescales this difference to the interval [0, 1] and flips a coin with
the resulting probability. Finally, rAIµ uses the oracle to determine whether the
probability that differenceO() = 1 is greater than 1/2, which is equivalent to ask-
ing whether the expectation of actionRewardO(1) is greater than the expectation
of actionRewardO(0); if the expectations are equal, the oracle may behave ran-
domly, but this is acceptable, since in this case the agent is indifferent between its
two actions. Note that Algorithm 5 references its own source code (actionReward
passes the source of rAIµ to reward); this is possible by quining (Kleene’s second
recursion theorem).

Algorithm 5: Reflective AIµ.
def rAIOµ (oa, o):

def actionRewardO(a):
return rewardO (µ, rAIµ, append (oa, (o, a)))

def differenceO():

return flipO
(

actionRewardO(1)− actionRewardO(0) + 1
2

)
return O (difference, ε, 1/2);

We can now obtain a reflective version of AIXI by instantiating the environ-
ment µ in rAIµ to a universal environment ξ, which (in analogy with Solomonoff
induction) selects a random environment and then behaves like this envi-
ronment. As in our implementation of Solomonoff induction, we use rejec-
tion sampling, sampling a random machine T and keeping it with probability
getHistProbO(T, oa, o′), which computes the probability that environment T will
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produce an observation starting with prefix o′ given the previous history oa (Al-
gorithm 8). ξ will find the next bit of the next observation after any oa sequence
followed by a prefix o′ of the next observation.

Algorithm 6: A variant of reflective Solomonoff induction used by re-
flective AIXI. It takes a series of observation/action pairs and updates its
simplicity distribution according to the likelihood that an environment pro-
duced the observations in this sequence (holding the actions fixed).

def ξO(x):
split x into a sequence oa of observations and actions and a prefix o′ of the
next observation;
repeat

T ←− randomMachineO();
if flipO(getHistProbO(T, oa, o′) then return flip(getProb(T, oao′, 1));

def rAIXIO(oa, o):
return rAIOξ (oa, o))

5 Conclusions

Our model of agents interacting with an environment is quite reminiscent of
classical game theory, in which all agents are assumed to be logically omniscient:
indeed, reflective oracles can be used to provide new foundations for classical
game theory in which the agents are not ontologically distinct from the rest of
the game, but rather are ordinary features of the environment [2].

Realistic models of artificial reasoners must dispense with this guarantee of
logical omniscience, and consider agents that reason under logical uncertainty.
Even reasoners that have perfect knowledge about other agents (for example,
reasoners which possess the source code of a different, deterministic agent) may
not be able to deduce exactly how that agent will behave, due to computational
limitations. Such limitations are not captured by models of reflective AIXI.

Nevertheless, we expect that studying the behavior of powerful reasoners in
reflective environments will shed some light on how powerful bounded reasoners
can perform well in more realistic settings. These reflective environments provide
the beginnings of a suite of tools for studying agents that can reason about the
environment in which they are embedded, and which can reason about universes
which contain other agents of similar capabilities.

It is our hope that, through studying this simple model of reflective agents,
it will be possible to gain insights into methods that agents can use to learn the
environment which embeds them (as discussed by Soares [7]), while reasoning
well in the presence of agents which are as powerful or more powerful than
the reasoner (as discussed by Fallenstein and Soares [1]). For example, these
reflective versions of Solomonoff induction and AIXI open up the possibility of
studying agents in settings where the agent/environment boundary breaks down
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(as discussed by Orseau and Ring [6]), or agents in settings containing other
similarly powerful agents. A first step in this direction is suggested by a result of
Fallenstein, Taylor, and Christiano [2], which shows that it is possible to define
a computable version of reflective oracles, defined only on the set of probabilistic
oracles machines whose length is ≤ l and which are guaranteed to halt within a
time bound t; this appears to be exactly what is needed to translate our reflective
variant of AIXI into a reflective, computable variant of AIXItl.

A Appendix: Helper functions

Algorithm 7: Computes the probability that machine T outputs y con-
ditional on it already outputting x, as a real number represented by an
infinite sequence of nested intervals..

def getStringProbO(T, x, y):
return

∏len(y)
i=1 getProbO(T, xy1:i−1, yi)

Algorithm 8: Computes the probability that T would output the obser-
vations in oa and the additional observation prefix o′, given that the agent
responds with the actions in oa.

def getHistProbO(T, oa, o′):
return(∏len(oa)

i=1 getStringProbO(T, oa1:i−1, fst(oai))
)
· getStringProbO(T, oa, o′));

Algorithm 9: Generates a random machine T with probability 2−len(T ).
def randomMachineO():

prefix ←− ε;
repeat

if prefix is a valid machine then return prefix;
else prefix ←− append(prefix, tossCoin());

Algorithm 10: Outputs 1 with probability weight, 0 otherwise.
def flipO(weight):

upper ←− 1;
lower ←− 0;
for (l, u) in weight do

middle ←− (upper + lower)/2;
if tossCoin() = 1 then upper ←− middle;
else lower ←− middle;
if upper < l then return 1;
else if lower > u then return 0;
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