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Abstract. What is happiness for reinforcement learning agents? We
seek a formal definition satisfying a list of desiderata. Our proposed
definition of happiness is the temporal difference error, i.e. the difference
between the value of the obtained reward and observation and the agent’s
expectation of this value. This definition satisfies most of our desiderata
and is compatible with empirical research on humans. We state several
implications and discuss examples.
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1 Introduction

People are constantly in search of better ways to be happy. However, philosophers
and psychologists have not yet agreed on a notion of human happiness. In this
paper, we pursue the more general goal of defining happiness for intelligent
agents. We focus on the reinforcement learning (RL) setting [11] because it is
an intensively studied formal framework which makes it easier to make precise
statements. Moreover, reinforcement learning has been used to model behaviour
in both human and non-human animals [7].

Here, we decouple the discussion of happiness from the discussion of con-
sciousness, experience, or qualia. We completely disregard whether happiness is
actually consciously experienced or what this means. The problem of conscious-
ness has to be solved separately; but its answer might matter insofar that it
could tell us which agents’ happiness we should care about.

Desiderata. We can simply ask a human how happy they are. But artificial
reinforcement learning agents cannot yet speak. Therefore we use our human
“common sense” intuitions about happiness to come up with a definition. We
arrive at the following desired properties.
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– Scaling. Happiness should be invariant under scaling of the rewards. Replac-
ing every reward rt by crt + d for some c, d ∈ R with c > 0 (independent of
t) does not change the reinforcement learning problem in any relevant way.
Therefore we desire a happiness measure to be independent under rescaling
of the rewards.

– Subjectivity. Happiness is a subjective property of the agent depending only
on information available to the agent. For example, it cannot depend on the
true environment.

– Commensurability. The happiness of different agents should be comparable.
If at some time step an agent A has happiness x, and another agent B has
happiness y, then it should be possible to tell whether A is happier than
B by computing x− y. This could be relaxed by instead asking that A can
calculate the happiness of B according to A’s subjective beliefs.

– Agreement. The happiness function should match experimental data about
human happiness.

It has to be emphasised that in humans, happiness cannot be equated with
pleasure [8]. In the reinforcement learning setting, pleasure corresponds to the
reward. Therefore happiness and reward have to be distinguished. We crudely
summarise this as follows; for a more detailed discussion see Section 3.

pleasure = reward 6= happiness

The happiness measure that we propose is the following. An agent’s happiness
in a time step t is the difference between the value of the obtained reward
and observation and the agent’s expectation of this value at time step t. In
the Markov setting, this is also known as the temporal difference error (TD
error) [10]. However, we do not limit ourselves to the Markov setting in this
paper. In parts of the mammalian brain, the neuromodulator dopamine has a
strong connection to the TD error [7]. Note that while our definition of happiness
is not equal to reward it remains highly correlated to the reward, especially if
the expectation of the reward is close to 0.

Our definition of happiness coincides with the definition for joy given by
Jacobs et al. [6], except that the latter is weighted by 1 minus the (objective)
probability of taking the transition which violates subjectivity. Schmidhuber’s
work on ‘intrinsic motivation’ adds a related component to the reward in order
to motivate the agent to explore in interesting directions [9].

Our definition of happiness can be split into two parts. (1) The difference
between the instantaneous reward and its expectation, which we call payout,
and (2) how the latest observation and reward changes the agent’s estimate of
future rewards, which we call good news. Moreover, we identify two sources of
happiness: luck, favourable chance outcomes (e.g. rolling a six on a fair die), and
pessimism, having low expectations of the environment (e.g. expecting a fair die
to be biased against you). We show that agents that know the world perfectly
have zero expected happiness.

In the rest of the paper, we use our definition as a starting point to investigate
the following questions. Is an off-policy agent happier than an on-policy one? Do
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monotonically increasing rewards necessarily imply a happy agent? How does
value function initialisation affect the happiness of an agent? Can we construct
an agent that maximises its own happiness?

2 Reinforcement Learning

In reinforcement learning (RL) an agent interacts with an environment in cycles:
at time step t the agent chooses an action at ∈ A and receives an observation
ot ∈ O and a real-valued reward rt ∈ R; the cycle then repeats for time step
t+ 1 [11]. The list of interactions a1o1r1a2o2r2 . . . is called a history. We use ht
to denote a history of length t, and we use the shorthand notation h := ht−1 and
h′ := ht−1atotrt. The agent’s goal is to choose actions to maximise cumulative
rewards. To avoid infinite sums, we use a discount factor γ with 0 < γ < 1 and
maximise the discounted sum

∑∞
t=1 γ

trt. A policy is a function π mapping every
history to the action taken after seeing this history, and an environment µ is a
stochastic mapping from histories to observation-reward-tuples.

A policy π together with an environment µ yields a probability distribution
over histories. Given a random variable X over histories, we write the π-µ-
expectation of X conditional on the history h as Eπµ[X | h].

The (true) value function V πµ of a policy π in environment µ maps a history
ht to the expected total future reward when interacting with environment µ and
taking actions according to the policy π:

V πµ (ht) := Eπµ
[∑∞

k=t+1 γ
k−t−1rk | ht

]
. (1)

It is important to emphasise that Eπµ denotes the objective expectation that can
be calculated only by knowing the environment µ. The optimal value function
V ∗µ is defined as the value function of the optimal policy, V ∗µ (h) := supπ V

π
µ (h).

Typically, reinforcement learners do not know the environment and are trying
to learn it. We model this by assuming that at every time step the agent has
(explicitly or implicitly) an estimate V̂ of the value function V πµ . Formally, a

value function estimator maps a history h to a value function estimate V̂ . Finally,
we define an agent to be a policy together with a value function estimator. If
the history is clear from context, we refer to the output of the value function
estimator as the agent’s estimated value.

If µ only depends on the last observation and action, µ is called Markov de-
cision process (MDP). In this case, µ(otrt | ht−1at) = µ(otrt | ot−1at) and the
observations are called states (st = ot). In MDPs we use theQ-value function, the
value of a state-action pair, defined asQπµ(st, at) := Eπµ

[∑∞
k=t+1 γ

k−t−1rk | stat
]
.

Assuming that the environment is an MDP is very common in the RL literature,
but here we will not make this assumption.

3 A Formal Definition of Happiness

The goal of a reinforcement learning agent is to maximise rewards, so it seems
natural to suppose an agent is happier the more rewards it gets. But this does
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not conform to our intuition: sometimes enjoying pleasures just fails to provide
happiness, and reversely, enduring suffering does not necessarily entail unhap-
piness (see Example 3 and Example 7). In fact, it has been shown empirically
that rewards and happiness cannot be equated [8] (p-value < 0.0001).

There is also a formal problem with defining happiness in terms of reward: we
can add a constant c ∈ R to every reward. No matter how the agent-environment
interaction plays out, the agent will have received additional cumulative rewards
C :=

∑t
i=1 c. However, this did not change the structure of the reinforcement

learning problem in any way. Actions that were optimal before are still optimal
and actions that are slightly suboptimal are still slightly suboptimal to the same
degree. For the agent, no essential difference between the original reinforcement
learning problem and the new problem can be detected: in a sense the two
problems are isomorphic. If we were to define an agent’s happiness as received
reward, then an agent’s happiness would vary wildly when we add a constant to
the reward while the problem stays structurally exactly the same.

We propose the following definition of happiness.

Definition 1 (Happiness). The happiness of a reinforcement learning agent
with estimated value V̂ at time step t with history hat while receiving observation
ot and reward rt is

,(hatotrt, V̂ ) := rt + γV̂ (hatotrt)− V̂ (h). (2)

If ,(h′, V̂ ) is positive, we say the agent is happy, and if ,(h′, V̂ ) is negative,
we say the agent is unhappy.

It is important to emphasise that V̂ represents the agent’s subjective estimate
of the value function. If the agent is good at learning, this might converge to
something close to the true value function V πµ . In an MDP (2) is also known as
the temporal difference error [10]. This number is used used to update the value
function, and thus plays an integral part in learning.

If there exists a probability distribution ρ on histories such that the value
function estimate V̂ is given by the expected future discounted rewards according
to the probability distribution ρ,

V̂ (h) = Eπρ
[∑∞

k=t+1 γ
k−t−1rk | h

]
, (3)

then we call E := Eπρ the agent’s subjective expectation. Note that we can always
find such a probability distribution, but this notion only really makes sense for
model-based agents (agents that learn a model of their environment). Using the
agent’s subjective expectation, we can rewrite Definition 1 as follows.

Proposition 2 (Happiness as Subjective Expectation). Let E denote an
agent’s subjective expectation. Then

,(h′, V̂ ) = rt − E[rt | h] + γ
(
V̂ (h′)− E[V̂ (haor) | h]

)
. (4)
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Proposition 2 states that happiness is given by the difference of how good
the agent thought it was doing and what it learns about how well it actually
does. We distinguish the following two components in (4):

– Payout: the difference of the obtained reward rt and the agent’s expectation
of that reward E[rt | h].

– Good News: the change in opinion of the expected future rewards after re-
ceiving the new information otrt.

,(h′, V̂ ) = rt − E[rt | h]︸ ︷︷ ︸
payout

+γ
(
V̂ (h′)− E[V̂ (haor) | h]︸ ︷︷ ︸

good news

)
Example 3. Mary is travelling on an air plane. She knows that air planes crash
very rarely, and so is completely at ease. Unfortunately she is flying on a budget
airline, so she has to pay for her food and drink. A flight attendant comes to her
seat and gives her a free beverage. Just as she starts drinking it, the intercom
informs everyone that the engines have failed. Mary feels some happiness from
the free drink (payout), but her expected future reward is much lower than in
the state before learning the bad news. Thus overall, Mary is unhappy.

For each of the two components, payout and good news, we distinguish the
following two sources of happiness.

– Pessimism:1 the agent expects the environment to contain less rewards than
it actually does.

– Luck: the outcome of rt is unusually high due to randomness.

rt − E[rt | h] = rt − Eπµ[rt | h]︸ ︷︷ ︸
luck

+Eπµ[rt | h]− E[rt | h]︸ ︷︷ ︸
pessimism

V̂ (h′)− E[V̂ (haor) | h] = V̂ (h′)− Eπµ[V̂ (haor) | h]︸ ︷︷ ︸
luck

+ Eπµ[V̂ (haor) | h]− E[V̂ (haor) | h]︸ ︷︷ ︸
pessimism

Example 4. Suppose Mary fears flying and expected the plane to crash (pes-
simism). On hearing that the engines failed (bad luck), Mary does not experi-
ence very much change in her future expected reward. Thus she is happy that
she (at least) got a free drink.

The following proposition states that once an agent has learned the envi-
ronment, its expected happiness is zero. In this case, underestimation cannot
contribute to happiness and thus the only source of happiness is luck, which
cancels out in expectation.

1 Optimism is a standard term in the RL literature to denote the opposite phe-
nomenon. However, this notion is somewhat in discord with optimism in humans.
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Proposition 5 (Happiness of Informed Agents). An agent that knows the
world has an expected happiness of zero: for every policy π and every history h,

Eπµ[,(h′, V πµ ) | h] = 0.

Analogously, if the environment is deterministic, then luck cannot be a source
of happiness. In this case, happiness reduces to how much the agent underesti-
mates the environment. By Proposition 5, having learned a deterministic envi-
ronment perfectly, the agent’s happiness is equal to zero.

4 Matching the Desiderata

Here we discuss in which sense our definition of happiness satisfies the desiderata
from Section 1.

Scaling. If we transform the rewards to r′t = crt + d with c > 0, d ∈ R for each
time step t without changing the value function, the value of, will be completely
different. However, a sensible learning algorithm should be able to adapt to
the new reinforcement learning problem with the scaled rewards without too
much problem. At that point, the value function gets scaled as well, Vnew(h) =
cV (h) + d/(1− γ). In this case we get

,(hatotr
′, Vnew) = r′t + γVnew(hatotr

′
t)− Vnew(h)

= crt + d+ γcV (hatotr
′
t) + γ

d

1− γ
− cV (h)− d

1− γ
= c
(
rt + γV (hatotr

′
t)− V (h)

)
,

hence happiness gets scaled by a positive factor and thus its sign remains the
same, which would not hold if we defined happiness just in terms of rewards.

Subjectivity. The definition (4) of , depends only on the current reward and
the agent’s current estimation of the value function, both of which are available
to the agent.

Commensurability. The scaling property as described above means that the
exact value of the happiness is not useful in comparing two agents, but the sign
of the total happiness can at least tell us whether a given agent is happy or
unhappy. Arguably, failing this desideratum is not surprising; in utility theory
the utilities/rewards of different agents are typically not commensurable either.

However, given two agents A and B, A can still calculate the A-subjective
happiness of a history experienced by B as ,(haorB , V̂

A). This corresponds to
the human intuition of “putting yourself in someone else’s shoes”. If both agents
are acting in the same environment, the resulting numbers should be commen-
surable, since the calculation is done using the same value function. It is entirely
possible that A believes B to be happier, i.e. ,(haorB , V̂

A) > ,(haorA, V̂
A),

but also that B believes A to be happier ,(haorA, V̂
B) > ,(haorB , V̂

B), be-
cause they have different expectations of the environment.
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Agreement. Rutledge et al. measure subjective well-being on a smartphone-
based experiment with 18,420 participants [8]. In the experiment, a subject goes
through 30 trials in each of which they can choose between a sure reward and
a gamble that is resolved within a short delay. Every two to three trials the
subjects are asked to indicate their momentary happiness.

Our model based on Proposition 2 with a very simple learning algorithm
and no loss aversion correlates fairly well with reported happiness (mean r =
0.56, median r2 = 0.41, median R2 = 0.27) while fitting individual discount
factors, comparative to Rutledge et al.’s model (mean r = 0.60, median r2 =
0.47, median R2 = 0.36) and a happiness=cumulative reward model (mean r =
0.59, median r2 = 0.46, median R2 = 0.35). This analysis is inconclusive, but
unsurprisingly so: the expected reward is close to 0 and thus our happiness model
correlates well with rewards.

The hedonic treadmill [2] refers to the idea that humans return to a base-
line level of happiness after significant negative or positive events. Studies have
looked at lottery winners and accident victims [3], and people dealing with paral-
ysis, marriage, divorce, having children and other life changes [5]. In most cases
these studies have observed a return to baseline happiness after some period of
time has passed; people learn to make correct reward predictions again. Hence
their expected happiness returns to zero (Proposition 5). Our definition unfor-
tunately does not explain why people have different baseline levels of happiness
(or hedonic set points), but these may be perhaps explained by biological means
(different humans have different levels of neuromodulators, neurotransmitters,
hormones, etc.) which may move their baseline happiness. Alternatively, people
might simply learn to associate different levels of happiness with “feeling happy”
according to their environment.

5 Discussion and Examples

5.1 Off-policy Agents

In reinforcement learning, we are mostly interested in learning the value function
of the optimal policy. A common difference between RL algorithms is whether
they learn off-policy or on-policy. An on-policy agent evaluates the value of the
policy it is currently following. For example, the policy that the agent is made
to follow could be an ε-greedy policy, where the agent picks arg maxaQ

π(h, a)
a fraction (1 − ε) of the time, and a random action otherwise. If ε is decreased
to zero over time, then the agent’s learned policy tends to the optimal policy
in MDPs. Alternatively, an agent can learn off-policy, that is it can learn about
one policy (say, the optimal one) while following a different behaviour policy.

The behaviour policy (πb) determines how the agent acts while it is learning
the optimal policy. Once an off-policy learning agent has learned the optimal
value function V ∗µ , then it is not happy if it still acts according to some other
(possibly suboptimal) policy.
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Proposition 6 (Happiness of Off-Policy Learning). Let π be some policy
and µ be some environment. Then for any history h

Eπµ[,(h′, V ∗µ ) | h] ≤ 0.

Q-learning is an example of an off-policy algorithm in the MDP setting. If
Q-learning converges, and the agent is still following the sub-optimal behaviour
policy then Proposition 6 tells us that the agent will be unhappy. Moreover, this
means that SARSA (an on-policy RL algorithm) will be happier than Q-learning
on average and in expectation.

5.2 Increasing and Decreasing Rewards

Intuitively, it seems that if things are constantly getting better, this should
increase happiness. However, this is not generally the case: even an agent that
obtains monotonically increasing rewards can be unhappy if it thinks that these
rewards mean even higher negative rewards in the future.

Example 7. Alice has signed up for a questionable drug trial which examines
the effects of a potentially harmful drug. This drug causes temporary pleasure
to the user every time it is used, and increased usage results in increased plea-
sure. However, the drug reduces quality of life in the long term. Alice has been
informed of the potential side-effects of the drug. She can be either part of a
placebo group or the group given the drug. Every morning Alice is given an
injection of an unknown liquid. She finds herself feeling temporary but intense
feelings of pleasure. This is evidence that she is in the non-placebo group, and
thus has a potentially reduced quality of life in the long term. Even though she
experiences pleasure (increasing rewards) it is evidence of very bad news and
thus she is unhappy.

Analogously, decreasing rewards do not generally imply unhappiness. For
example, the pains of hard labour can mean happiness if one expects to harvest
the fruits of this labour in the future.

5.3 Value Function Initialisation

Example 8 (Increasing Pessimism Does Not Increase Happiness). Consider the
deterministic MDP example in Figure 1. Assume that the agent has an initial
value function Q̂0(s0, α) = 0, Q̂0(s0, β) = −ε, Q̂0(s1, α) = ε and Q̂0(s1, β) = 0.
If no forced exploration is carried out by the agent, it has no incentive to
visit s1. The happiness achieved by such an agent for some time step t is
,(s0αs00, V̂0) = 0 where V̂0(s0) := Q̂0(s0, α) = 0. However, suppose the agent
is (more optimistically) initialised with Q̂0(s0, α) = 0, Q̂0(s0, β) = ε. In this
case, the agent would take action β and arrive in state s1. This transition would
have happiness ,(s0βs1−1, V̂0) = −1 + γQ̂0(s1, α) − Q̂0(s0, β) = −1 − 0.5ε.
However, the next transition is s1αs12 which has happiness ,(s1αs12, V̂0) =
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s0 s1

β : −1

β : −1

α : 0 α : 2

Fig. 1: MDP of Example 8 with tran-
sitions labelled with actions α or β
and rewards. We use the discount fac-
tor γ = 0.5. The agent starts in s0.
Define π0(s0) := α, then V π0(s0) = 0.
The optimal policy is π∗(s0) = β, so
V π

∗
(s0) = 1 and V π

∗
(s1) = 4.
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Fig. 2: A plot of happiness for Exam-
ple 8. We use the learning rate α =
0.1. The pessimistic agent has zero
happiness (and rewards), whereas the
optimistic agent is initially unhappy,
but once it transitions to state s1 be-
comes happy. The plot also shows the
rewards of the optimistic agent.

2 + γQ̂0(s1, α) − Q̂0(s1, α) = 2 − 0.5ε. If Q̂0 is not updated by some learning
mechanism the agent will continue to accrue this positive happiness for all fu-
ture time steps. If the agent does learn, it will still be some time steps before
Q̂ converges to Q∗ and the positive happiness becomes zero (see Figure 2). It
is arguable whether this agent which suffered one time step of unhappiness but
potentially many time steps of happiness is overall a happier agent, but it is
some evidence that absolute pessimism does not necessarily lead to the happiest
agents.

5.4 Maximising Happiness

How can an agent increase their own happiness? The first source of happiness,
luck, depends entirely on the outcome of a random event that the agent has
no control over. However, the agent could modify its learning algorithm to be
systematically pessimistic about the environment. For example, when fixing the
value function estimation below rmin/(1−γ) for all histories, happiness is positive
at every time step. But this agent would not actually take any sensible actions.
Just as optimism is commonly used to artificially increase exploration, pessimism
discourages exploration which leads to poor performance. As demonstrated in
Example 8, a pessimistic agent may be less happy than a more optimistic one.

Additionally, an agent that explicitly tries to maximise its own happiness is
no longer a reinforcement learner. So instead of asking how an agent can increase
its own happiness, we should fix a reinforcement learning algorithm and ask for
the environment that would make this algorithm happy.
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6 Conclusion

An artificial superintelligence might contain subroutines that are capable of suf-
fering, a phenomenon that Bostrom calls mind crime [1, Ch. 8]. More generally,
Tomasik argues that even current reinforcement learning agents could have moral
weight [12]. If this is the case, then a general theory of happiness for reinforce-
ment learners is essential; it would enable us to derive ethical standards in the
treatment of algorithms. Our theory is very preliminary and should be thought
of as a small step in this direction. Many questions are left unanswered, and we
hope to see more research on the suffering of AI agents in the future.
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