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Abstract. The intelligence of multiagent systems is known to depend
on the communication and observation abilities of its agents. However
it is not clear which factor has the greater influence. By following an
information-theoretical approach, this study quantifies and analyzes the
impact of these two factors on the intelligence of multiagent systems. Us-
ing machine intelligence tests, we evaluate and compare the performance
of collaborative agents across different communication and observation
abilities of measurable entropies. Results show that the effectiveness of
multiagent systems with low observation/perception abilities can be sig-
nificantly improved by using high communication entropies within the
agents in the system. We also identify circumstances where these as-
sumptions fail, and analyze the dependency between the studied factors.

1 Introduction

The literature on multiagent systems has put forward many studies showing how
factors such as communication [7,3,1,9] and observation [4,11,5] influence the
performance of multiagent systems. However, it is ambiguous whether (a) aug-
menting the agents’ observations to read/interpret the environment in which
they operate, or rather (b) boosting communication between these agents, has
higher influence on their performance, which is the main motivation behind this
research. In fact, one of the fundamental characteristics of agent-based systems
is their ability to observe/perceive and sense the environment [12,5]. Within a
multiagent system setting, perhaps the main property of agents is their ability
to interact and communicate [12, Sect. 5].

The goal of this paper is to compare the above factors by measuring the
influence that each has on the intelligence of cooperative agent-based systems.
Moreover, we try to reveal the dependencies between one factor and another.
To the best of our knowledge, no studies have applied formal intelligence tests
for this purpose. In real-world multiagent applications, agents can have limited
sensitivity of the environment (observations), thus relying on communication to
improve their performance can be inevitable. Therefore, quantifying the influ-
ence of the rules of information aggregation on the effectiveness of such systems
is likely to have major implications by predicting the usefulness and expected
performance of these systems over different settings.
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In this study we begin by introducing our approach to measuring the intelli-
gence of groups of artificial agents in Sect. 2. We then describe our experiments
(Sect. 4), the outcomes (Sect. 4) and conclude (Sect. 5) with a discussion of the
implication of our findings on the current state of research.

2 Approach to Measuring Intelligence

Our approach is to use (machine) intelligence tests to evaluate a group of arti-
ficial agents collaborating in different settings. We adjust their communication
and observation abilities over a series of controlled experiments in order to see
whether the changes are reflected by their measured intelligence.

2.1 The Anytime Intelligence Test

To achieve our stated goal, we need to be able to quantify the performance of
artificial agents. While many problems are relevant to agent-based systems, not
every evaluation metric can be used as a formal (universal) intelligence test. We
have chosen to use an extension of the Anytime Universal Intelligence Test [6]
(anYnt) to quantify the performance of multiagent systems. The test is derived
from formal and mathematical considerations [6, Sect. 3] that build upon Legg
and Hutter’s definition of universal intelligence [8], and it can be used in practice
to evaluate artificial agents in a dynamic setting [6, Sect. 6.3] and [7]. We follow
the agent-environment framework [8] where an environment is the world where
agents can interact using a set of observations, actions and rewards. At each step
of the test, the environment generates observations from the set of observations
O and sends them to the agents. Agents performs actions from a limited set of
actions A in response. Finally, the environment rewards back each agent from
the set R ⊆ Q based on the quality of its action. An iteration or step i of the
test stands for one sequence of observation-action-reward.

2.2 Measuring Uncertainty and Information

We follow an information-theoretical approach building on the notion of Shan-
non’s entropy [10] to measure the uncertainty H(µ) in a given environment µ,
as well as the amount of information in an observation o, or a communication
range c. We define N to be the set of all possible states of an environment µ. At
the beginning of a test (e.g anYnt), the entropy is maximal as there is complete
uncertainty about the current state of µ from an agent’s perspective. Therefore
the probability p(sµ) of a given state sµ occurring follows a uniform distribution
and is equal to 1/|N |. Using log2 as a base for calculations, the uncertainty H(µ)
is calculated as follows: H(µ) = −

∑
sµ∈N

p(sµ) log2 p(sµ) = log2 |N | bits.

The amount of information an agent π is given about the environment can be
calculated as the entropy H(o) of the observation o sent to π by the environment
at one iteration of the test, which translates to the minimum number of bits used
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to describe o. Consequently, we expect from the theory that the more information
given to an agent (or the larger its set of observation about the environment),
the higher the probability that this agent will accurately reason about it by
processing and interpreting the provided information. Furthermore, we denote by
c the communication range of an agent π. The amount of information transmitted
within c is calculated as the entropy H(c) which, using log2, refers to the minimal
binary representation needed to describe the transmitted data over the range c.

2.3 Evaluating Different Agent Communication Modes

Given an anYnt testing environment µ with |N | states, and a group of agents
Π to be evaluated, each iteration or step i of the test is run as follows:

1. The environment µ sends an observation o to each agent π ∈ Π, where o is
a description of: the state π currently occupies in µ, as well as a set of other
neighbor (reachable) states of µ at iteration i.

2. Agents communicate by sharing their observations with other agents (using
different communication strategies) within their communication range c.

3. Each agent takes an action based on its observation/communication details
using its decision-making technique.

4. The environment rewards back each agent based on the quality of its action.

Let c (the communication range an agent π) be the set of neighbor states over
which π can transmit/receive data. We evaluate a cooperative group of local
search agents using the three communication techniques briefly summarized be-
low. A detailed description of the implementation of these agents and their com-
munication techniques can be found in [2, Sect. 4].

Stigmergy or indirect communication Agents communicate by altering the envi-
ronment so that it reflects their observations. At each iteration of the test, when
an agent senses a reward as part of its observation o, it communicates with the
other agents by inducing fake-rewards in its communication range c. The fake
rewards reflect the real reward the agent has observed.

Direct communication At each iteration of the test, agents broadcast a copy of
their observation o, to the other agents in their communication range c. Agents
then select the action leading to the highest visible reward.

Imitation In this setting - in addition to the evaluated agents - we introduce a
smart agent that always takes the most rewarding action at each iteration of the
test. The evaluated agents imitate the smart agent by mimicking its action when
it is in their communication range c. The agents also share this action with the
other agents located in their communication range c, if any exist.

In the context of the above settings, the observation entropy H(o) can be in-
creased/decreased by adding/removing states to/from the set of neighbor states
in o sent by the environment µ. Likewise, adding/removing states to/from the set
of states belonging to the communication range c allows us to increase/decrease
the communication entropy H(c) of the evaluated system.
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3 Experiments

We have conducted a series of controlled experiments on a cooperative collective
of agents Π over the anYnt test, using the test environment class implemen-
tation found in [2, Sect. 3.2], which is an extension of the spatial environment
space described in [6, Sect. 6.3]. Each experiment consisted of 200 iterations of
observation-communication-action-reward sequences and the outcome from each
experiment is an average score returning a per-agent measure of success of the
collective of evaluated agents over a series of canonical tasks of different algo-
rithmic complexities. The number of agents used was |Π| = 20 agents, evaluated
over an environment space of H(µ) = 11.28 bits of uncertainty.

A description of our experiments can be stated as follows: we evaluate a
group of agents Π over a series of (anYnt) intelligence tests and record the
group’s score Υ (Ho,Hc) over a range of entropy values H(o) and H(c). The
score Υ (Ho,Hc) is a real number in [−1.0, 1.0]. Average results of Π (using the
different communication modes described in Sect. 2.3) taken from 1000 repeated
experiments are depicted in Fig. 1. Note that the coefficient of variation is less
than 0.025 across our experiments. We denote by E the set of entropy values used
in Fig. 1. These values are in the range [0.04, 10.84] bits, and they correspond to
log2 n, where n is the number of states in o or c, as appropriate. Moreover, Fig. 2
depicts the scores Υ (Ho,Hc) from Fig. 1, plotted for fixed values of H(c) across
increasing values of H(o) (left-side plots of Fig. 2) and vice versa (right-side plots
of Fig. 2). We analyze and discuss these results in the following section.

4 Results and Discussion

Indirect communication Figures 1 and 2a show that the effectiveness of the
agents in Π monotonically increases with the observation entropy of the agents
H(o) until it converges around an H(o) of 10.8 bits. Increasing the (stigmergic)
communication entropy H(c) between the agents also has an impact on their
intelligence. However, the influence of H(c) on intelligence is rather more compli-
cated, as it seems also to depend on the observation entropies H(o). For instance,
for an H(o) of 0.04 bits, the best performance, max(Υ (Ho,Hc)), is reached when

the coefficient α = H(c)
H(o) = 9. For larger H(o) entropies, the best performances

are reached at smaller α values until α ≈ 1 at an H(o) of 10.84 bits. The overall
picture from Fig. 1 (indirect communication) shows that the performance drops
as the entropy H(c) moves away from α × H(o). This non-monotonic variation
of scores shows that increasing communication does not necessarily always lead
an increase in performance as presumed. To understand the influence of indirect
communication on the scores of the collectives we have to analyze further the
relationship between H(o) and H(c). Figure 3 is a whisker plot showing the vari-
ation in the scores across different entropy values H(c) ⊆ E for fixed entropies
H(o), and vice versa. The figure also shows that - for indirect communication -
H(c) is most significant when H(o) ∈ [0.3, 1.9] bits. For instance, using stigmergy
to communicate very short observations (low H(o) entropies) does not have a
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Fig. 1: Test scores Υ (Ho,Hc) for different values of H(o) and H(c) (in bits), for the
same collective of agents using the communication modes described in Sect. 2.3.
The gray color-map intensities reflect how high the score values Υ (Ho,Hc) are,
where higher intensities mean larger scores (higher values are black and lower
values are white). We consider the small variations in the scores along the fourth
decimal place as experimental error.



6 N. Chmait, D. L. Dowe, D. G. Green and Y.-F. Li

 0.1  0.3  0.7  1.3  1.9  2.8  3.7  4.9  6.1  7.5  9.1  10.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H(o)

S
co

re

 0.1  0.3  0.7  1.3  1.9  2.8  3.7  4.9  6.1  7.5  9.1  10.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H(c)

S
co

re

(a) Variation in scores for collective Π using indirect communication.
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(b) Variation in scores for collective Π using direct communication.
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(c) Variation in scores for collective Π using imitation.

Fig. 2: Variation in the scores (from Fig. 1) of collective Π using different com-
munication strategies. The scores are plotted for fixed values of H(c) across
increasing values of H(o) (left-side plots of Fig. 2), as well as for fixed values of
H(o) across increasing values of H(c) (right-side plots of Fig. 2)

large influence on performance possibly because the observations do not carry
much information. Likewise, using stigmergy within collectives of agents with
extended observation abilities (high H(o) entropies) has no significant effect on
performance, as the uncertainty in the environment is already reduced as a re-
sult of the agents’ observations. However, communication using stigmergy was
fairly effective in less extreme cases. To make our observation more concrete, we
define below the communication-over-observation coefficient of success φ.
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Fig. 3: Whisker plot showing the variation in test scores across different entropy
values H(c) for fixed entropies H(o) (left-side), and vice versa (right-side). The
central mark (in red) is the median while the edges of the box represent the
25th and 75th percentiles of the scores and the whiskers extend to the most
extreme score values. The blue line-plot shows the average scores at each of the
intermediate entropy values.

Definition 1. Let S = {(x, y) ∈ E × E | x > y}. The communication-over-
observation coefficient of success is: φ = (

∑
S inf(Υ (x, y), Υ (y, x))÷ |S|), where

inf(a, b) is a function that returns 1 if a < b, or zero otherwise.

For this mode of communication, the coefficient φ = 11/276 = 0.0399. Knowing
that the test scores are of the form Υ (Ho,Hc), the value of φ suggests that, for
this communication mode, it is much more effective to increase the observation
entropies of the agents as opposed to increasing their communication entropies1.
More importantly, the dependency of communication H(c) on observation H(o)
is made explicit here. For instance, using H(c) values inferior to H(o) is rarely
more rewarding than in the reciprocal case.

Direct communication While increasing observation entropies still leads to a sig-
nificant increase in performance, the influence of direct communication is much
more significant than in Fig. 2a. We can observe a clear pattern in Fig. 2b show-
ing higher performances for higher communication entropies for a fixed H(o).
Nevertheless, in this setting using very low H(o) entropies does not ensure op-
timal performances for Π. However, re-compensating these short-sighted agents
with high H(c) entropies can lead to a system up to four times better in per-
formance, which also indicates the very low-dependency of H(c) on the value

1 Recall that we are experimenting for the entropy values E, using a number of agents
|Π| = 20, over an environment of uncertainty H(µ) = 11.28 bits.
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of H(o). On the other hand, for fairly high observation entropies, augmenting
communication between the agents is at least as effective as mounting their ob-
servations, and can sometimes be even more effective as shown in Fig. 3. In
this setting the coefficient φ = 272/276 = 0.9855, meaning that augmenting
the communication entropies within the system will highly likely lead to a more
intelligent system. Consequently, communication is effective here even when the
observation entropies are slim, again suggesting a low dependency on H(o).

Imitation Figure 2c highlights the significance of communication in agent col-
lectives relying on imitation. In this setting, Υ (Ho,Hc) is mainly controlled by
how much entropy is exchanged through communication between the agents.
For agents with very-low observations, the scores can be improved up to six
times higher (e.g. from 0.1319 to 0.7978 in Fig. 2c) by increasing their com-
munication entropies. Figure 3 shows that, in this setting, increasing commu-
nication significantly influences performance, while the impact of observation
is not as important. We can also see that tuning the observation entropies has
a negligible effect when H(c) > 2.3 bits as opposed to changing the communi-
cation entropies. We must point out that the effect of imitation is significant
regardless of the type/intelligence of the agent that is being imitated. For in-
stance, imitation will result in either positive or negative shift in performance,
depending on the intelligence of the imitated agent. In this setting the coefficient
φ = 274/276 = 0.9928, leading to a similar and even stronger conclusion than in
the case of direct communication.

Furthermore, we have plotted in Fig. 4 the gradient difference ∇Υ (Ho,Hc) of
the scores Υ (Ho,Hc), in the H(c) and H(o) directions across the entropy values E.
For instance, each line in Fig. 4 depicts the gradient shift over multiple entropy

 0.1  0.3  0.7  1.3  1.9  2.8  3.7  4.9  6.1  7.5  9.1  10.8
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Fig. 4: Average difference in gradient ∇Υ (Ho,Hc) in H(c) and H(o) directions
over a set of entropy values E.
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values calculated according to Eq. (1) below:

∇Υ (Ho,Hc)←
∣∣∣∣∂Υ (Ho,Hc)

∂H(c)

∣∣∣∣− ∣∣∣∣∂Υ (Ho,Hc)

∂H(o)

∣∣∣∣ (1)

The outcome from (1) highlights the entropies where (in a environment of un-
certainty H(µ) = 11.28 bits, and |Π| = 20) communication has the highest
influence on the effectiveness Υ (Ho,Hc) of Π when compared to the influence of
observation. We observe that indirect communication has highest impact across
entropies of [0.3, 1.9] bits. Direct communication is most significant within en-
tropies of [0.1, 1.9] bits, while imitation has the highest influence over entropy
values in the range [0.7, 4.9] bits1.

Environment space Experimenting over environments with different uncertain-
ties H(µ) lead to similar conclusions as above. However, the scores converged
faster in environments of lower uncertainty and the gap in performance was less
significant than in environments of high uncertainty.

Number of agents Testing with different number of agents also influenced the
performance of the evaluated collectives. The influence of communication on the
scores was stronger in many cases where a larger number of agents was used.

5 Conclusion

This paper follows an information-theoretical approach to quantify and ana-
lyze the effectiveness of a collaborative group of artificial agents across different
communication settings. Using formal intelligence tests from the literature of
artificial general intelligence, we measure the influence of two factors inherent to
multiagent systems: the observation and communication abilities of agents, on
the overall intelligence of the evaluated system.

Agents collaborating using three different communication strategies are eval-
uated over a series of intelligence tests, and their scores are recorded. We high-
light the different configurations where the effectiveness of artificial agent-based
systems is significantly influenced by communication and observation. We also
show that dull systems with low observation or perception abilities can be re-
compensated for, and significantly improved, by increasing the communication
entropies between the agents, thus leading to smarter systems. Moreover, we
identify circumstances where the increase in communication does not monoton-
ically improve performance. We also analyze the dependency between commu-
nication and observation and its impact on the overall performance.

The outcome from our experiments can have many theoretical and practical
implications on agent-based systems as they allow us to predict the effectiveness
and the expected performance of these systems over different (communication
or collaboration) settings. We are aware that using different implementations
or extensions of the studied communication strategies would possibly lead to a
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variation in the scores. However, the same approach can still be used to under-
stand the rules of information aggregation within a multiagent setting, and the
influence of these rules on the effectiveness of the evaluated system.
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