Anchoring Knowledge in Interaction: Towards a harmonic subsymbolic/symbolic framework and architecture of computational cognition

Tarek R. Besold

Al Research Group, Institute of Cognitive Science, University of Osnabrück

23. July 2015

The following is joint work with:

Kai-Uwe Kühnberger

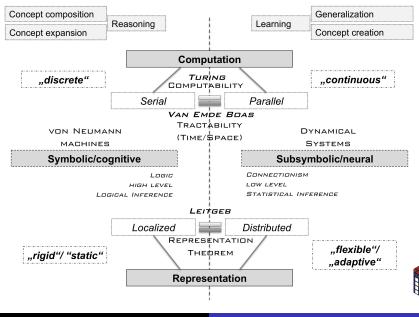
Institute of Cognitive Science, University of Osnabrück

Artur d'Avila Garcez

City University London

Alessandro Saffiotti

Örebro University


Martin H. Fischer

University of Potsdam

Alan Bundy University of Edinburgh

Prelude: The Status Quo in Neural-Symbolic Integration

- A Harmonic Analogy: Coupled Layers of Knowledge from Embodied Interaction to Symbols (and Back Again)
- Participation 2 The Core Ideas and Objectives
- Steps Towards an Implementation: A Sketch of an Architecture
- Going Far Beyond Multi-Level Data Fusion

Natural agents seem to rely on...

- ...enormous richness of representations (multimodal, grounded, embodied, situated).
- ...many layers of representation at different abstraction levels.
- ...dynamic re-organization of knowledge.
- ...dynamic changes or alignments of representation (e.g., in agent-agent interactions).
- ...online and bidirectional learning in real-time.
- ...flexible adaptations to changes in the environment, the task(s), the "social setting" (presence of other agents), etc.

Conceptually similar situation in music:

- Different levels: Physical level (audio data), MIDI level, chord progression level, harmonic level, melodic level, rhythmic level, score level, structural level of a piece, (semantic) meta-level, etc.
- Transfer/interaction between levels:
 - Sometimes obvious mappings: MIDI to score to harmonic structure.
 - Sometimes partial or incomplete mappings: Harmonic structure to score, rhythmic to physical level.
 - Sometimes fuzzy or tentative mappings: Melody to harmony (in an idiom), physical to structural level of a piece.
 - Sometimes there are no mappings: MIDI to semantic/meta level, melodic to structural to harmonic level.

 \Rightarrow Piece of music as multi-layered, multi-representational entity with certain connections and constraints between layers (relations, mappings, etc.).

Conceptually similar situation in music:

- Different levels: Physical level (audio data), MIDI level, chord progression level, harmonic level, melodic level, rhythmic level, score level, structural level of a piece, (semantic) meta-level, etc.
- Transfer/interaction between levels:
 - Sometimes obvious mappings: MIDI to score to harmonic structure.
 - Sometimes partial or incomplete mappings: Harmonic structure to score, rhythmic to physical level.
 - Sometimes fuzzy or tentative mappings: Melody to harmony (in an idiom), physical to structural level of a piece.
 - Sometimes there are no mappings: MIDI to semantic/meta level, melodic to structural to harmonic level.

 \Rightarrow Piece of music as multi-layered, multi-representational entity with certain connections and constraints between layers (relations, mappings, etc.).

Conceptually similar situation in music:

- Different levels: Physical level (audio data), MIDI level, chord progression level, harmonic level, melodic level, rhythmic level, score level, structural level of a piece, (semantic) meta-level, etc.
- Transfer/interaction between levels:
 - Sometimes obvious mappings: MIDI to score to harmonic structure.
 - Sometimes partial or incomplete mappings: Harmonic structure to score, rhythmic to physical level.
 - Sometimes fuzzy or tentative mappings: Melody to harmony (in an idiom), physical to structural level of a piece.
 - Sometimes there are no mappings: MIDI to semantic/meta level, melodic to structural to harmonic level.

 \Rightarrow Piece of music as multi-layered, multi-representational entity with certain connections and constraints between layers (relations, mappings, etc.).

The music/knowledge analogy:

- Changing one layer in a piece of music influences (in an obvious, partial, or fuzzy way) many (but not all) other levels.
- Multi-representational analysis can be used to learn or detect mappings between layers, novelties and correlations, to systematically unfold specific properties, or to find invariant properties.
- Envision an agent system also operating on different levels of representations:
 - Neural layer learning on the perception/motor level.
 - Anchoring layer learning elementary (semi-)symbolic representations of objects.
 - Reactive layer taking over in critical situations.
 - Deep learning layer learning on more abstract levels.
 - Symbolic layer for reasoning and planning.
 - (Higher) Symbolic layer providing core ontology.
- Some layers have obvious, some have partial, some have fuzzy, some have no mappings/relations between themselves.

The music/knowledge analogy:

- Changing one layer in a piece of music influences (in an obvious, partial, or fuzzy way) many (but not all) other levels.
- Multi-representational analysis can be used to learn or detect mappings between layers, novelties and correlations, to systematically unfold specific properties, or to find invariant properties.
- Envision an agent system also operating on different levels of representations:
 - Neural layer learning on the perception/motor level.
 - Anchoring layer learning elementary (semi-)symbolic representations of objects.
 - Reactive layer taking over in critical situations.
 - Deep learning layer learning on more abstract levels.
 - Symbolic layer for reasoning and planning.
 - (Higher) Symbolic layer providing core ontology.

• Some layers have obvious, some have partial, some have fuzzy, some have no mappings/relations between themselves.

The music/knowledge analogy:

- Changing one layer in a piece of music influences (in an obvious, partial, or fuzzy way) many (but not all) other levels.
- Multi-representational analysis can be used to learn or detect mappings between layers, novelties and correlations, to systematically unfold specific properties, or to find invariant properties.
- Envision an agent system also operating on different levels of representations:
 - Neural layer learning on the perception/motor level.
 - Anchoring layer learning elementary (semi-)symbolic representations of objects.
 - Reactive layer taking over in critical situations.
 - Deep learning layer learning on more abstract levels.
 - Symbolic layer for reasoning and planning.
 - (Higher) Symbolic layer providing core ontology.
- Some layers have obvious, some have partial, some have fuzzy, some have no mappings/relations between themselves.

A "pre-established harmony":

- Triggering abstract plan to move from A to B should result in corresponding motor action, classifying (on the neural level) a perceptual input as chair should activate the concept "chair" in the ontology, etc.
- Basic links might be hard-coded,...
- ...learning a new concept on the subsymbolic level should nonetheless result in a new concept entry in the ontology.

 \Rightarrow Interaction between the different layers in terms of information and conceptualizations.

 \Rightarrow Simulated or actual system operating on interacting levels in multi-representational manner should allow for mechanisms/interactions similar to music case.

A "pre-established harmony":

- Triggering abstract plan to move from A to B should result in corresponding motor action, classifying (on the neural level) a perceptual input as chair should activate the concept "chair" in the ontology, etc.
- Basic links might be hard-coded,...
- ...learning a new concept on the subsymbolic level should nonetheless result in a new concept entry in the ontology.
- \Rightarrow Interaction between the different layers in terms of information and conceptualizations.
- \Rightarrow Simulated or actual system operating on interacting levels in multi-representational manner should allow for mechanisms/interactions similar to music case.

The Core Ideas and Objectives

- Developing, theoretically and practically, a conceptual framework and corresponding architecture that model an agent's knowledge, thinking, and acting as interrelated parts of a unified cognitive capacity.
- Knowledge as...
 - ...multi-layered phenomenon appearing at different levels of abstraction.
 - ...promoting interaction between levels.
 - ...influenced by interaction between agent and environment (potentially including other agents).
- Radically new paradigm in...
 - ...interaction styles: Action-centered, embodied, multi-modal.
 - ...knowledge repositories: Different levels and forms of knowledge representation, e.g., multi-modal, hybrid.
 - ...user modeling and communication through learning and adaptation.

The Core Ideas and Objectives

- Developing, theoretically and practically, a conceptual framework and corresponding architecture that model an agent's knowledge, thinking, and acting as interrelated parts of a unified cognitive capacity.
- Knowledge as...
 - ...multi-layered phenomenon appearing at different levels of abstraction.
 - ...promoting interaction between levels.
 - ...influenced by interaction between agent and environment (potentially including other agents).
- Radically new paradigm in...
 - ...interaction styles: Action-centered, embodied, multi-modal.
 - ...knowledge repositories: Different levels and forms of knowledge representation, e.g., multi-modal, hybrid.
 - ...user modeling and communication through learning and adaptation.

The Core Ideas and Objectives

- Developing, theoretically and practically, a conceptual framework and corresponding architecture that model an agent's knowledge, thinking, and acting as interrelated parts of a unified cognitive capacity.
- Knowledge as...
 - ...multi-layered phenomenon appearing at different levels of abstraction.
 - ...promoting interaction between levels.
 - ...influenced by interaction between agent and environment (potentially including other agents).
- Radically new paradigm in...
 - ...interaction styles: Action-centered, embodied, multi-modal.
 - ...knowledge repositories: Different levels and forms of knowledge representation, e.g., multi-modal, hybrid.
 - ... user modeling and communication through learning and adaptation.

- Embodiment level:
 - Learning of elementary forms of multi-modal representation from agent interaction with environment.
 - Emphasize the importance of sensorimotor interactions as part of knowledge formation.
 - Systematic assessment of basic learning signatures in the presence of different sensorimotor experiences.
 - Recommendations for the development of cognitively-inspired formal frameworks for embodied computation.
 - Together with approaches from computational neuroscience and network-level cognitive modeling create cognitively-inspired foundations and low-level input representations for subsequent stages.

- Anchoring level:
 - Representations resulting from embodiment level may be noisy, uncertain, vague, differ in representation languages between agents, subject to changes in the environment, etc.
 - Remedy: Expand anchoring framework in robotics to grounding not only objects, but also certain general observable properties appearing in the environment.
 - Top-down and bottom-up anchoring during learning.
 - Dynamic introduction of new symbols for new objects and categories by repair and concept invention mechanisms.
 - Denotations of a symbol used in communication must be consistent across communicating agents.
 - Enable the establishment of analogical links across agents.

- Neural level:
 - Embodiment view provides interaction-based neural representation of knowledge not represented at conceptual level.
 - Remedy: Specify lifting procedure producing descriptions, i.e., lifting grounded situations and agent's action patterns to more abstract (symbolic) representations.
 - Combine neural learning with temporal knowledge representation using variations of RBM models.
 - Validate hypotheses through symbolic description of trained networks while robustly dealing with uncertainty/errors through Bayesian inference model.
 - Use conceptual spaces (Gärdenfors) to link symbolic and sub-symbolic data.
 - Additionally combine this with analogy-making and corresponding transfer mechanisms between representation systems.

- Knowledge level:
 - Lifted multi-modal representations can be error-prone, different agents possibly use distinct/incompatible languages, etc.
 - Remedy: Develop domain-independent dynamic re-organization of knowledge based on ontology repair mechanisms, analogy, concept invention, and knowledge transfer.
 - Enable adaptation of agent to new situations, alignment between representations across agents, reformation of knowledge entries, and generation of new knowledge.

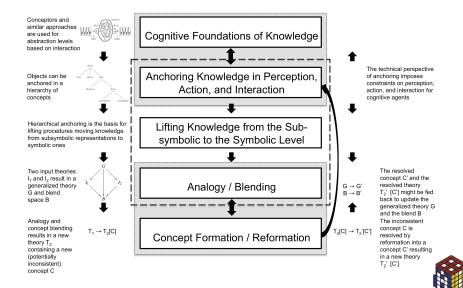
Overall account:

- Grounding knowledge in cognitively plausible multimodal interaction paradigms.
- Llifting grounded situations into more abstract representations.
- Reasoning by analogy and concept blending at more abstract levels.
- Repair and re-organization of initial and generated abstract representations.

Five thrusts:

- Cognitive Foundations of Knowledge.
- Anchoring Knowledge in Perception, Action, and Interaction.
- Iifting Knowledge from the Subsymbolic to the Symbolic Level.
- Analogy/Blending.
- Oncept Formation/Reformation.

Conceptual commitments:


- How does knowledge develop from the concrete interaction sequences to the abstract representation level?
 The crucial aspect is the lifting of grounded situations to more abstract representations.
- How can experience be modeled?
 Experience can be explained by deep learning.
- How is deeper understanding of a complex concept made possible?

Theory repair makes precisely this possible.

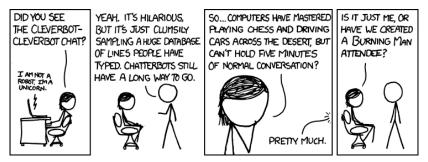
• To which extent do social aspects play a role? Analogical transfer of knowledge between agents is a central aspect concerning efficient and flexible learning and understanding.

Steps Towards an Implementation

Data fusion: "data fusion techniques combine data from multiple sensors and related information from associated databases to achieve improved accuracy and more specific inferences than could be achieved by the use of a single sensor alone."

Difference in ambition:

- Development of a cognitively-inspired combination of low-level sensing with high-level reasoning in attempt of anchoring (symbolic) knowledge in (subsymbolic) perception and (inter)action in continuous feedback loop.
- Significant step towards (re-)creation of foundation for cognitive capacities and forms of reasoning in next generation AI systems.
- Major progress towards development of computational test bench and agent model for theories from cognitive science.


Data fusion: "data fusion techniques combine data from multiple sensors and related information from associated databases to achieve improved accuracy and more specific inferences than could be achieved by the use of a single sensor alone."

Difference in ambition:

- Development of a cognitively-inspired combination of low-level sensing with high-level reasoning in attempt of anchoring (symbolic) knowledge in (subsymbolic) perception and (inter)action in continuous feedback loop.
- Significant step towards (re-)creation of foundation for cognitive capacities and forms of reasoning in next generation AI systems.
- Major progress towards development of computational test bench and agent model for theories from cognitive science.

(Definitely Not) The End

(XKCD #948)

Questions, comments, criticism, ideas,...?

Get in touch: tarek.besold@uni-osnabrueck.de

