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Abstract. This paper describes Scene Based Reasoning (SBR), a cognitive ar-

chitecture based on the notions of "scene" and "plan". Scenes represent real-

world 3D scenes as well as planner states. Introspection maps internal SBR da-

ta-structures into 2D "scene diagrams" for self-modeling and meta-reasoning. 

On the lowest level, scenes are represented as 3D scene graphs (as in computer 

gaming), while higher levels use Description Logic to model the relationships 

between scene objects. A plethora of subsystems implement perception, action, 

learning and control operations on the level of "plans", with scenes acting as 

planner states. 
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1 Introduction 

In this paper we describe Scene Based Reasoning (SBR), a cognitive architecture in 

the tradition of SOAR [14], ACT-R [1] and similar systems [10]. Particular similari-

ties exist with the ICARUS system [16] with respect to the explicit representation of 

plans with decompositions, the "grounding in physical states", the purpose of control-

ling a physical agent, the use of observable attributes as a semantic base and spatial 

roles/ relationships between objects. Both systems share a development roadmap that 

includes modeling social interaction [16]. 

The distinctive characteristic of SBR is the use of "scenes", which can be thought 

of as a generalization of "scene graphs" [24] (as in computer gaming in order to repre-

sent 3D world states), Description  Logic [2] (in order to represent the relationships 

between scene objects) and STRIPS style planner states [7] (in order to model time 

and action). Scenes are also used to represent internal SBR data-structures using a 

kind of "gödelization" (encoding properties of the reasoning system in object-level 

language): For example a "plan" (a directed graph composed of nodes and arrows) 

can be mapped into a 2D "scene diagram", similar to the way that humans draw fig-

ures and diagrams in order to gain clarity about complex subject matters. Once the 

plan is available as a 2D scene, SBR can apply its object recognition and reasoning 

mechanisms in order to classify the plan, create abstractions, analyze its effects, com-

pare it with other plans and modify the plan. The improved plan can be tested in a 

"simulation sandbox" or the real world and can finally be converted back to an inter-

nal SBR structures for inclusion in the standard inventory of the system.  

Applying a similar procedure to the class hierarchy of objects (represented as a De-

scription Logic TBox structure) allows the SBR system to talk about "beliefs" without 

the need for higher order or modal logic. Updated beliefs can be "written" to a new 



TBox, and this TBox can be tested in a sandbox against cases from the Episodic 

Memory etc. The same mechanism can be applied to belief sets of other agents in 

order to perform a "what-would-he-do" analysis and other types of social reasoning.  

Applying "gödelization" to the recent history of cognitive events ("thoughts") al-

lows the system to talk about it's own cognitive process. Cognitive events include the 

visual recognition of an object, sensory inputs, a change in attention focus, discover-

ing the missing piece in a planning or reasoning process etc. A separate paper will 

explore these meta-reasoning properties in the context of the "Self-Model Theory of 

Subjectivity" [17]. 

A second distinctive feature of SBR is the use of "plans" as first order objects and 

as the "unit of analysis" for most subsystems - we could even talk about "Plan Based 

Reasoning": Perception at the highest abstraction level is plan recognition, action is 

plan execution, episodic memory is storing past plan executions, planning is plan 

generation, and plan learning is the acquisition of new plans, sub-plans (task decom-

positions) and execution statistics. Language comprehension is plan recognition and 

language generation basically serves to integrate other agents into the subject's plans 

(to be treated in a future paper). Plan optimization is implemented as a plan itself, 

allowing the SBR system to improve it's own improvement strategy. 

 

 

Fig. 1. An overview of SBR subsystems working together for simplified close-loop robot con-

trol. 3D reconstruction converts sensor data into a scene, which serves as an initial state for the 

planner to develop plans. The attention subsystem executes plan actions and controls the atten-

tion focus in order to track execution. 

In this paper the authors focus on the technical aspects of the SBR architecture and a 

consistent definition of the SBR subsystems. A prototypical implementation of SBR 

exists as the "TinyCog" open-source project on http://tinycog.sourceforge.net/. Ti-

nyCog currently runs several demos using a scene representation that unifies descrip-

tion logics with planner states. 



2 Comparison 

SBR shares characteristics with SOAR, ACT-R, ICARUS and a number of lesser 

known cognitive architectures. The "Jonny Jackanapes" architecture [11] includes a 

"fusion" of HTN planning with Description Logics. [22] describes a cognitive archi-

tecture with a focus on plan recognition designed to infer the intents of competitive 

agents. PELA [12] describes a probabilistic planner that learns from interactions with 

the world. 

The symbolic "scene" representation resembles [21] semantic networks, while sce-

ne graphs are commonly used in computer gaming [24]. [4] combine scene graphs 

with semantic networks to model human vision and propose this as a representation 

for "mental images". 

[5] surveyed the combination of physics simulation and planning. IJCAI 2015 will 

host an "Angry Birds Competition" that will require physics simulation. 

[9] surveyed the combination of planning and description logics. [20] introduces 

situation calculus to the FLEX DL system in order to allow for planning with DL 

ABox structures. 

The SBR attention subsystem resembles the [15] "Meander" subsystem for the 

ICARUS cognitive architecture with similar execution tracking and re-planning prop-

erties. 

3 Architecture Overview 

The proposed architecture consists of four layers with several subsystems each: 

 

 

Fig. 2. The SBR Architecture layer stack. 

3.1 Subsystems Overview 

The "Interface" layer converts sensor data into scenes and executes planner tasks. 

3D Scene Reconstruction. Converts 2D sensor data into a 3D scene graph and 

performs the reverse operation.  

Senso-Motoric. Provides the interfaces between the SBR planner and the sensors 

and actuators available as part of a physical or simulated robot. 

The "Planner" layer creates, recognizes and executes plans: 



SBR Planner. The core of the SBR system, which takes as input an initial scene 

and a goal represented by a sub-scene. It returns a number of plans represented by 

HTN tasks, together with confidence scores. 

Prediction Subsystem. Predicts the behavior of objects and agents during plan-

ning operations.  

Episodic Memory. Stores large amounts of scenes, split into key frames and in-

dexed by the included objects and their properties [19]. 

The "Reasoning" layer implements reasoning capabilities on top of the planner. 

Plan Reasoning. Implements operations on plans that together allow for improv-

ing plans and meta-reasoning about plans. 

Logical Reasoning. Implements a Description Logic on top of the SBR planner, 

maintaining beliefs about the world, together with a confidence score. 

The "Control" layer provides high-level control of a SBR system. 

Attention Subsystem. Controls the "focus of attention" of the SBR system, exe-

cutes plans and contains the system's "persistent goals". 

3.2 Data Structures 

Objects. Untyped list of key-value tuples ("attributes") with values that can be in-

tegers, real numbers, strings or references to other objects. Symbolic object descrip-

tions are created using the "object configurator" explained below. 

Agents. Objects that maintain a "persistent goal hierarchy" and a set of beliefs. 

Agents represent humans, animals, robots and AGI instances in planning processes. 

Relations. Named and directed arrows between two objects.  

 

Fig. 3. A sample scene with a scene graph and a symbolic representation. 

Scenes. Represent real-world 3D constellations and "mental images" as well as 

semantic networks for logical reasoning. On the lowest level, scenes are implemented 

as 3D scene graphs ([24], as in computer gaming) consisting of a number of "objects", 

together with their position and surface texture so that they can be rendered into a 2D 

image by a rendering engine. On higher levels, scene graph details are ignored, object 

characteristics are abstracted into attributes and spatial object constellations are en-

coded into semantic relations. Finally, scenes are used as an "ABox" for Description 

Logics reasoning. Scenes provide for self-referentiality and meta-reasoning by repre-

senting plans and other internal SBR objects as a 2D diagrams. 



 

Fig. 4.   "Eating dinner" - A plan for eating dinner, explaining the relationship between scenes, 

scripts and plans. Tasks (in blue) may have multiple learned decompositions that are combined 

by the planner to create plans with utility and cost. 

Sub-Scenes. Scenes with only partially filled object attributes. Sub-scenes are used 

as rule-heads and to describe the state change effect of an action. 

Scripts. Consist of sequences of scenes (similar to [Schank et al 1977]) represent-

ing a transition through time of the included objects.  

Key frames. Scenes marking the start and end points of important transitions.  

Plans. A tree with one root task which is decomposed into a sequence of sub-tasks. 

4 3D Scene Reconstruction 

This subsystems performs the conversion of 2D sensor data into a 3D scene using an 

iterative algorithm depicted below.  

 

Fig. 5. 3D Scene Reconstruction: 1) Perform classical 2D feature extraction (edges, textures, 

…) and retrieve episodic memory (EM) object matches. 2) Check the EM for scenes that con-

tain all or part of the objects. 3) Construct a plausible scene with expectations from higher SBR 

levels. 4) Configure 3D objects (position, textures, …) for best fit with the sensor data. 5) Ren-

der the scene including lightning and filters. 6) Calculate "deltas" on edges, textures etc. 7) Use 

deltas to correct object position and state.  



5 Prediction Subsystem or "Sandbox" 

This subsystem performs a probabilistic prediction of the behavior of objects and 

agents in a scene in order to perform a "what-if" simulation of likely outcomes of 

actions, effectively providing a simulation sandbox to the SBR planner. 

 A physics engine [5] predicts the behavior of passive objects. 

 An "abstracted physics simulation" predicts object behavior for longer time spans 

based on spatial relationship and previously observed scripts. 

 A "social reasoning simulation" predicts the behavior of agents in a scene as a 

reaction to SBR actions. This simulation "spawns" a new instance of the SBR sys-

tem per agent with the agent's parameters and simulates the agent's likely actions 

similar to [13]. 

The prediction subsystem can predict the behavior of the SBR system itself, as it 

can be modeled just like other actors. This can be thought to be part of a SBR "self-

model". 

6 SBR Planner 

The SBR takes as input an initial scene and a goal and returns a number of plans, 

together with probability scores. The proposed planner includes several features from 

recent research: 

 Spatial-temporal planning language: The SBR planner operates on scenes instead 

of FOL formulas. 

 Probabilistic planning: SBR tasks have multiple outcomes. 

 Timeline planning: SBR tasks take a certain time to complete. 

 Multi-agent planning: The prediction subsystem predicts the behavior of agents 

and movable objects.  

 Resource-bound operations: The planner will return first plans that are fast to gen-

erate, and then propose additional plans if time is available. 

 

Fig. 6. Eating dinner satisfies hunger: Sub-scenes describe conditions and effects of tasks. 

Planning with these characteristics is only partially understood as of today and the 

authors have not found any reference to practical systems combining stochastic plan-

ning and HTNs for more than toy domains. In the face of this situation, the authors 

sketch below a new approach that relies on "active tasks" and "worst-case analysis" in 

order to cope with the increased branching factor of probabilistic planning: 

Active task. A planner task with a known decomposition, together with statistics 

about past executions of the task in the episodic memory, along the lines of 



PRODIGY [25] and PELA [12]. Past execution may have included re-planning or 

escalation processes in order to deal with local failures, which have an impact on the 

cost of the action and its duration. 

The statistics of past executions of active tasks are analyzed with respect to the fac-

tors leading to success. 

Worst-Case Analysis. Undesired outcomes from all tasks in a plan are treated in-

dividually, as opposed to calculating probability distributions over "histories" [8]. 

Combined with the cost of executing the plan and the impact of a failed plan, the SBR 

planner can calculate a risk compensation and decide whether to pursue this path, 

develop a better plan or to choose non-action. 

6.1 Example: Solving Equations 

The following example of solving an equation demonstrates how 2D scene represen-

tations can provide the basis for symbolic reasoning. 

 

Fig. 7. Solving equations using the SBR planner 

1. The 3D reconstruction subsystem passes the 2D sensor data to a statistical algo-

rithm in order to recognize the type and value of each object, resulting in a symbol-

ic representation. 

2. The reconstruction subsystem determines the symbolic "left-of" spatial relation-

ships between the objects. 

3. The HTN planner then applies "actions" to the symbolic representation in order to 

simplify and solve the expression. Rules were learned during training sessions. 

7 Reasoning About Plans 

This subsystem implements several operations on plans that together allow SBR to 

acquire, simulate, optimize and reason about plans: 

Plan recognition. Plan recognition analyzes sensor input in order to determine the 

plans of all involved agents [3]. This process detects errors during 3D scene recogni-

tion and triggers investigation and learning processes.  

Plan simulation. The prediction subsystem's "abstracted physics simulation" al-

lows to simulate object behavior in a scene, effectively creating a "sandbox". 

Plan statistics. The episodic memory maintains a history of "scripts" of past plan 

executions, including the initial conditions and outcomes by means of the initial and 



last scene. This allows to apply clustering and learning algorithms beyond the scope 

of this paper. 

Plan optimization. Convert plans into 2D scenes using a "pen on paper" represen-

tation, compare, tweak, merge, mix and match different plans, pre-validate plans us-

ing simulation and execute the new plan in the real world. All of these optimization 

steps are implemented as meta-plans that can be optimized as well. 

8 Logical Reasoning  

The logical reasoning subsystem uses Description Logics (DL) [2] to maintains be-

liefs about the world together with confidence scores in a way similar to FLEX [20]. 

FLEX inference rules closely resemble SBR planner tasks, allowing the SBR planner 

to execute inferences rules directly without the need for a separate DL system. The 

DL "ABox" resembles SBR scenes, allowing to use DL in order to model symbolic 

object relationships. 

Using this architecture, the system can talk about its beliefs ("all birds can fly": 

confidence=0.9), can test potential new hypotheses against a base of episodic memory 

cases and track "clashes" (contradictions during reasoning like "penguin P is a bird 

but doesn't fly") to the their axioms. New beliefs can be acquired via machine learn-

ing and checked against the episodic memory for consistency and explanation capa-

bility of actor's behavior. All of these operations are performed by "active tasks". 

9 Attention Subsystem 

The Attention Subsystem maintains a list of "persistent goals", a portfolio of plans 

and controls a "focus of attention" while tracking the execution of plans.  

Persistent Goals. A list of medium and long term goals. Persistent goals are creat-

ed manually by a human system operator (Asimov's laws of robotics), as a reaction to 

"urges" or by SBR-Planner as part of a plan that can't be executed immediately. 

Attention Focus. Most of the time the attention focus lies with the images from a 

camera of a robot running SBR, but attention can also be focused on parts of the "self-

model". Sensor data are processed by 3D reconstruction and passed on to the episodic 

memory in order to retrieve "associations", i.e. plans and scripts associated with the 

focused objects in their context. These "ideas popping up" are matched against active 

"persistent plans" in order to determine if the idea could contribute to an active plan.  

When executing plans or "active tasks", the attention focus tracks the current vs. 

planned world state and initiates re-planning if necessary. 

Portfolio of Plans. A set of plans created in order to satisfy the list of persistent 

goals. The attention subsystem evaluates the plans according to utility, cost and 

chance for success and execute the plan with the highest value.  



10 Learning 

Statistical learning is essential for a cognitive architecture based on a probabilistic 

planner. However, most references to learning algorithms have been omitted in the 

previous sections because their role is limited to auxiliary and relatively well under-

stood tasks like calculating task success probabilities, guiding the planner search pro-

cess or clustering parameter values in order to generate new concepts. Also, the exact 

choice of algorithms is irrelevant to the general AGI architecture.  

This section summarizes the areas where statistical algorithms are employed: 

3D Scene Reconstruction. Identify approximately objects and their positions from 

sensor data. 

SBR Planner. Learn and propose applicable planner tasks to given problems, learn 

task decompositions, learn success factors for executing tasks. 

Prediction Subsystem. Predict the behavior of agents as a script.  

Episodic Memory. Maintain statistics about object occurrences in scenes, success-

ful execution of tasks, identify scenes leading to successful plan execution. 

Plan Reasoning. Classify plans for generalization. 

Logical Reasoning. Classify concepts for generalization, learn DL implication 

links based on example. 

Attention Subsystem. Learn the utility function of plans. 

Also, non-statistical learning is employed: 

Attention subsystem. When trying to "understand" an input 3D script, the plan 

recognition system will try to classify all objects and to determine the plans of all 

involved agents. Lack of such understanding may trigger active investigation, includ-

ing "asking the operator" or getting closer to the agents in order to gather better sensor 

input. 
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