
Genetic Programming on Program Traces as an

Inference Engine for Probabilistic Languages

Vita Batishcheva2 and Alexey Potapov1,2

1ITMO University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia

elokkuu@gmail.com, potapov@aideus.com

Abstract. Methods of simulated annealing and genetic programming over prob-

abilistic program traces are developed firstly. These methods combine expres-

siveness of Turing-complete probabilistic languages, in which arbitrary genera-

tive models can be defined, and search effectiveness of meta-heuristic methods.

To use these methods, one should only specify a generative model of objects of

interest and a fitness function over them without necessity to implement do-

main-specific genetic operators or mappings from objects to and from bit

strings. On the other hand, implemented methods showed better quality than the

traditional mh-query on several optimization tasks. Thus, these results can con-

tribute to both fields of genetic programming and probabilistic programming.

Keywords: probabilistic programming, genetic programming, program traces

1 Introduction

Two crucial approaches in AGI are cognitive architectures and universal algorithmic

intelligence. These approaches start from very different points and sometimes are

even treated as incompatible. However, we believe [1] that they should be united in

order to build AGI that is both efficient and general. However, a framework is re-

quired that can help to intimately combine them on the conceptual level and the level

of implementation. Probabilistic programming could become a suitable basis for de-

veloping such a framework. Indeed, on the one hand, query procedures in the Turing-

complete probabilistic programming languages (PPLs) can be used as direct approxi-

mations of universal induction and prediction, which are the central components of

universal intelligence models. On the other hand, probabilistic programming has al-

ready been successfully used in cognitive modeling [2].

Many solutions in probabilistic programming utilize efficient inference techniques

for particular types of generative models (e.g. Bayesian networks) [3, 4]. However,

Turing-complete languages are much more promising in the context of AGI. These

PPLs allow for specifying generative models in the form of arbitrary programs includ-

ing programs which generate other programs. Inference over such generative models

automatically results in inducing programs in user-defined languages. Thus, the same

inference engine can be used to solve a very wide spectrum of problems.

On the one hand, the performance of generic inference methods in PPLs can be ra-

ther low even for models with a small number of random choices [5]. These methods

mailto:elokkuu@gmail.com
mailto:potapov@aideus.com

are most commonly based on random sampling (e.g. Monte-Carlo Markov Chains) [2,

6]. There are some works on developing stronger methods of inference in Turing-

complete probabilistic languages (e.g. [5, 7]), but they are not efficient for all cases,

e.g. for inducing programs, although some progress in this direction is achieved [8].

Thus, more appropriate inference methods are needed, and genetic programming (GP)

can be considered as a suitable candidate since it has already been applied to universal

induction [9] and cognitive architectures [10].

On the other hand, wide and easy applicability of inference in PPLs is also desira-

ble by evolutionary computations. Indeed, one would desire to be able to apply some

existing implementation of genetic algorithms simply by defining the problem at hand

without developing binary representations of solutions or implementing problem-

specific recombination and mutation operators (and some attempts to overcome this

also exist in the field of genetic programming, e.g. [11]).

Consequently, it is interesting to combine generality of inference over declarative

models in Turing-complete PPLs and strength of genetic programming. This combi-

nation will give a generic tool for fast prototyping of genetic programming methods

for arbitrary domain specific languages simply by specifying a function generating

programs in a target language. It can also extend the toolkit of PPLs, since conven-

tional inference in probabilistic programming is performed for conditioning, while

genetic programming is intended for optimization of fitness functions.

In this paper, we present a novel approach to inference in PPLs based on genetic

programming and simulated annealing, which are applied to probabilistic program

(computation) traces. Each program trace is the instantiation of the generative model

specified by the program. Recombinations and mutations of program traces guarantee

that their results can be generated by the initial probabilistic program. Thus, program

traces are used as a “universal genetic code” for arbitrary generative models, and it is

enough to only specify such a model in the form of a probabilistic program to perform

evolutionary computations in the space of its instantiations. To the best of our

knowledge, there are no works devoted to implementing an inference engine for PPLs

on the base of genetic programming, so this is the main contribution of our paper.

In [12] authors indicated that “current approaches to Probabilistic Programming are

heavily influenced by the Bayesian approach to machine learning” and the optimiza-

tion approach is promising since “optimization techniques scale better than search

techniques”. That is, our paper can also be viewed as the work in this direction, which

is much lesser explored in the field of probabilistic programming.

2 Background

Probabilistic Programs

Since general concepts of genetic programming are well known, we will concentrate

on probabilistic programming. Some PPLs extend existing languages preserving their

semantics as a particular case. Programs in these languages typically include calls to

(pseudo-)random functions. PPLs use an extended set of random functions corre-

sponding to different common distributions including Gaussian, Beta, Gamma, multi-

nomial, etc. Evaluation of such a program with random choices is performed in the

same way as evaluation of this program in the base (non-probabilistic) language.

However, programs in PPLs are treated as generative models defining distributions

over possible return values [5], and their direct evaluation can be interpreted as taking

one sample from corresponding distributions. Multiple evaluation of a program can be

used to estimate an underlying distribution.

PPLs go further and support programs defining conditional distributions. Such a

program contains a final condition indicating whether the result of program evaluation

should be accepted or not (in some languages an “observe” statement can be placed

anywhere to impose conditions on intermediate results). The simplest way to sample

from conditional distributions is the rejection sampling, in which a program is simply

evaluated many times while its final condition is not satisfied. However, the rejection

sampling can be extremely inefficient even for rather simple models.

One can utilize a method for efficient inference of conditional probabilities without

sampling for a restricted set of models, but generic inference methods should be used

for Turing-complete languages. One of such widely used methods is based on Monte-

Carlo Markov Chains (MCMC), namely, the Metropolis-Hastings (MH) algorithm.

This algorithm uses stochastic local search to sample such instances, for which the

given condition will remain true. To implement it for models specified by probabilis-

tic programs, one needs to introduce small changes to the return values of elementary

random procedures called in these programs, so these values should be memoized [2].

MCMC can be much more efficient than rejection sampling for evaluating posteri-

or distributions. However, without utilizing some additional techniques it can be as

bad as the rejection sampling (or even worse due to overheads) in retrieving the first

appropriate sample. One can easily check this on the example of the following simple

Church program (mh-query 1 1 (define xs (repeat 20 flip)) xs (all xs)).

In this program, the list of 20 random Boolean values is defined, and this list is re-

turned, when all its values are true. If one replaces “mh-query 1 1” with “rejection-

query”, calculation time will slightly decrease. However, retrieving many samples by

mh-query will be much faster than executing rejection-query many times. Thus, the

unsolved problem here is the problem of finding the first admissible instantiation of a

model. This is done blindly in both MCMC and the rejection sampling.

In many practical problems, a user can convert a strict condition into a soft one or

even can initially have a task with the goal to optimize some function. Thus, query

procedures which accept a fitness-function for optimization instead of a strict condi-

tion for satisfying can be used as a part of MCMC sampling as well as they can be

used independently for solving optimization problems.

Implemented Language

Since exploration of solution spaces in probabilistic programming require manipula-

tions with random choices made during program evaluation, development of new

query procedures is connected with interfering in the evaluation process. Since no

language supports flexible enough external control of this process, it was easier for us

to implement a new interpreter. However, we decided not to develop a new language,

but to reproduce (using Scheme as the host language) some basic functionality of

Church [2] including a number of simple functions (+, -, *, /, and, or, not, list, car,

cdr, cons, etc.), several random functions (flip, random_integer, gaussian, multinomi-

al), declaration of variables and functions (define, let), function calls with recursion.

Also, “quote” and “eval” were implemented. For example, the following program is

acceptable (which is passed to our interpreter as the quoted list)

'((define (tree) (if (flip 0.7) (random-integer 10)

 (list (tree) (tree))))

 (tree))

Traditional Lisp interpreters will return different results on each run of such pro-

grams. Interpreters of PPLs provide for query functions, which are used for calculat-

ing posterior probabilities or to perform sampling in accordance with the specified

condition. We wanted to extend this language with GP-based query procedures, which

accept fitness-functions instead of strict conditions. Let’s consider how genetic opera-

tors can be implemented in these settings.

3 Genetic Operators For Computation Traces

Mutations

To combine genetic programming with probabilistic languages we treat each run of a

program as a candidate solution. The source of variability of these candidate solutions

comes from different outcomes of random choices during evaluation. Mutations con-

sist in slight modifications of the random choices performed during the previous eval-

uation that resembles some part of the MH-algorithm. All these choices should be

cached and bound to the execution context, in which they were made. To do this, we

implemented the following representation of program traces, which idea (but not its

implementation) is similar to that used in the mh-query implementation in Church [2].

In this representation, each expression in the original program during recursive

evaluation is converted to the structure (struct IR (rnd? val expr) #:transparent), where

IR is the name of the structure, rnd? is #t if random choices were made during evalua-

tion of the expression expr; val is the result of evaluation (one sample from the distri-

bution specified by expr). interpret-IR-prog function was implemented for evaluating

programs (lists of expressions) given in symbolic form. Consider some examples.

 (interpret-IR-prog '(10)) (list (IR #f 10 10)) meaning that the result of evalua-

tion of the program containing only one expression 10 is 10 and it is not random.

 (interpret-IR-prog '((gaussian 0 1))) (list (IR #t -0.27 (list 'gaussian (IR #f 0 0)

(IR #f 1 1)))) meaning that the result of evaluation of (gaussian 0 1) was -0.27.

 (interpret-IR-prog '((if #t 0 1))) (list (IR #f 0 (list 'if (IR #f #t #t) (IR #f 0 0)

1))) meaning that only one branch was evaluated.

 In the more complex case, random branch can be expanded depending on the

result of evaluation of the stochastic condition: (interpret-IR-prog '((if (flip) 0 1)))

 (list (IR #t 1 (list 'if (IR #t #f '(flip)) 0 (IR #f 1 1)))).

 In definitions of variables only their values are transformed to IR: (interpret-IR-

prog '((define x (flip)))) (list (list 'define 'x (IR #t #f '(flip)))). Evaluation of

definitions results in changes of the environment as usual. Let-expressions have

similar behavior, but they have a body to be evaluated. Function definitions are

kept unchanged. Non-library function application is replaced by its body and let-

binding of its arguments.

 Symbols, which can be found in the environment, are replaced by their values:

(interpret-IR-prog '((define x (random-integer 10)) x)) (list (list 'define 'x (IR

#t 5 (list 'random-integer (IR #f 10 10)))) (IR #t 5 'x)).

The evaluated program can be evaluated again, and previously made random

choices can be taken into account during this re-evaluation. We extended interpret-IR-

prog in such a way that it can accept both initial programs and their IR expansions

(since re-evaluation process can run into branches not expanded yet, such unification

is necessary to deal with mixed cases also).

During each following re-evaluation of the expanded program, deterministic ex-

pressions are not evaluated again, but their previous values are used. All stochastic

expressions are evaluated in the same way as during the first run except calls to the

basic random functions, which behavior is changed. These functions are modified in

order to take previously returned values into account. The mutation speed parameter p

added to interpret-IR-prog indicates, how close new values should be to previous

values. For example, the previous result of (flip) is changed with probability equals to

p. Re-evaluation of (IR #t v (gaussian x0 s)), where v is the previously returned value,

x0 is mean and s is sigma, will correspond to (gaussian v (* p s)), but in other imple-

mentations it could be biased towards x0.

For example, the result of re-evaluation of the IR expression (list (IR #t -0.27 (list

'gaussian (IR #f 0 0) (IR #f 1 1)))) using p=0.01 can be (list (IR #t -0.26 (list 'gaussian

(IR #f 0 0) (IR #f 1 1)))).

Simulated Annealing

The described interpreter is already enough to implement an optimization query based

on simulated annealing. Let the program be given, which last expression returns the

value of energy (fitness) function to be minimized. Then, we can re-evaluate this pro-

gram many times preferring evaluation results with lower value of the last expression.

Simulated annealing maintains only one program trace (in the form of IR expan-

sion). It executes interpret-IR-prog to generate new candidate solutions (with transi-

tion probabilities derived by the interpreter for the given program and parameterized

by the temperature), and accepts them with probability (/ 1 (+ 1 (exp (/ dE t)))), where

dE is the difference of energies of the candidate and current solutions, and t is the

current temperature (other acceptance probabilities can be used).

On each iteration, candidate solutions are generated until acceptance (although the

number of tries is limited), and the temperature is decreased from iteration to itera-

tion. We implemented annealing-query on the base of this approach.

Crossover

Crossover also utilizes program traces. However, it requires dual re-evaluation of two

expansions of a program. These expansions are interpreted together as the same pro-

gram, while their structures match (and they should match except variations caused by

random choices). The main difference is in application of the basic random functions

since the previously returned values from both parents should be taken into account.

For example, in our implementation, the dual flip randomly returns one of the pre-

vious values, and the dual Gaussian returns (+ (* v1 e) (* v2 (- 1 e))), where v1 and

v2 are the previous values, and e is the random value in [0, 1] (one can bias the result

of this basic element of crossover towards initial Gaussian distribution). Mutations are

introduced simultaneously with crossover for the sake of efficiency.

However, such a branch can be encountered during re-evaluation that has not been

expanded yet in one or both parents. In the latter case, this branch is evaluated simply

as it was the first execution. Otherwise it is re-evaluated for the parent, for which it

has already been expanded (without crossover, but with mutations). It is not expanded

for another parent, since this expansion will be random and not evaluated by fitness

function, so it will simply clutter information from the more relevant parent.

Children can contain earlier expanded, but now unused branches, which can be ac-

tivated again in later generations due to a single mutation or even crossover. These

parts of the expanded program resemble junk DNA and fast genetic adaptations.

Let us consider one simple, but interesting case for crossover, namely a recursive

stochastic procedure '((define (tree) (if (flip 0.7) (random-integer 10) (list (tree)))).

Expansion of (tree) can produce large computation traces, so let us consider results of

crossover on the level of values of the last expression.

'(6 9) + '(8 0) '(7 6)
'(7 9) + '((0 7) (7 4)) '(7 (7 4))
'((3 (7 (1 7))) 5) + '((5 2) 2) '((4 (7 (1 7))) 2)

It can be seen that while the structure of trees matches, two program traces are re-

evaluated together and results of random-integer are merged in leaves, but when the

structure diverges, a subtree is randomly taken from one of the parents (depending on

the result of re-evaluating (flip 0.7)). This type of crossover for generated trees auto-

matically follows from the implemented crossover for program traces. Of course,

someone might want to use a different crossover operator based on the domain-

specific knowledge, e.g. to exchange arbitrary subtrees in parents. The latter is diffi-

cult to do in our program trace representation (and additional research is needed to

develop a more flexible representation). On the other hand, recombination of program

traces during dual re-evaluation guarantees that its result can be produced by the ini-

tial program, and also provides for some flexibility.

Using the described genetic operators, evolution-query was implemented.

4 Empirical Evaluation

We considered three tasks, each of which can be set both for conditional sampling and

fitness-function optimization. Three query functions were compared – mh-query

(web-church), annealing-query and evolution-query (Scheme implementation). mh-

query was used to retrieve only one sample (since we were interested in its efficiency

on this step; moreover, the tasks didn’t require posterior distributions).

Curve Fitting

Consider the generative polynomial model y=poly(x|ws), which parameters defined as

normally distributed random variables should be optimized to fit observations {(xi,

yi)}. Implementation of poly is straightforward. The full generative model should also

include noise, but such a model will be useless since it is almost impossible to blindly

guess noise values. Instead, MSE is used in annealing-query and evolution-query, and

the following condition is used in mh-query.

(define (noisy-equals? x y) (flip (exp (* -30 (expt (- x y) 2)))))

(all (map noisy-equals? ys-gen ys))

noisy-equals? can randomly be true, even if its arguments differ, but with decreas-

ing probability. Speed of this decrease is specified by the value, which equals 30 in

the example code. The smaller this value, the looser the equality holds. We chose

such the value that mh-query execution time approximately equals to that of anneal-

ing-query and evolution-query (which execution time is controlled by the specified

number of iterations), so we can compare precision of solutions found by different

methods. Of course, such comparison is quite loose, but it is qualitatively adequate

since linear increase of computation time will yield only logarithmic increase of pre-

cision. The results for several functions and data points are shown in Table 1.

TABLE I. AVERAGE RMSE

Task
RMSE

mh-query annealing-query evolution-query

4x2+3x xs=(0 1 2 3) 1.71 0.217 0.035

4x2+3x xs=(0 0.1 0.2 0.3 0.4 0.5) 0.94 0.425 0.010

0.5x3–x xs=(0 0.1 0.2 0.3 0.4 0.5) 0.467 0.169 0.007

It can be seen that mh-query is inefficient here – it requires very loose noise-

equals? yielding imprecise results. Stricter condition results in huge increase of com-

putation time. Evolution-query is the most precise, while annealing-query works cor-

rectly, but converges slower. The worst precision is achieved, when wn is selected

incorrectly. It is important to see, how crossover on program traces results in chil-

dren’s “phenotypes”. Consider the example of how crossover affects ws values

'(1.903864 -11.119573 4.562440) +

'(-20.396958 -12.492696 -0.735389 3.308482)

 '(-5.232313 -11.462677 2.3152821 3.308482)

The values in same positions are averaged with random weights (although these

weights are independent for different positions as in geometric semantic crossover). If

lengths (i.e. wn) of parent’s vector parameters ws differ, the child’s wn value will

correspond to that of one of the parents or will be between them.

Subset Sum Problem

In the subset sum problem, a set of integer numbers is given, and a nonempty subset

should be found such that its sum equals a given integer value (we will assume that

the sum equals 1 and skip the check of non-triviality of the solution for the sake of

simplicity). Integers in each set were generated as random numbers from a certain

range, e.g. -10000 to 10000. A random subset was selected, and the last number was

calculated as 1 minus sum of elements in this subset. The following program specifies

the generative model for this task.

(define xs '(9568 5716 8382 7900 -5461 5087 1138 -1111 -9695 -5468 6345

 -1473 -7521 -4323 9893 -9032 -4715 3699 5104 1551))

(define (make-ws n) (if (= n 0) '() (cons (flip) (make-ws (- n 1)))))

(define ws (make-ws (length xs)))

(define (summ xs ws) (if (null? xs) 0

 (+ (if (car ws) (car xs) 0) (summ (cdr xs) (cdr ws)))))

(define subset-sum (summ xs ws))

mh-query was executed using the condition (equal? subset-sum 1), while anneal-

ing-query and evolution-query were executed to minimize (abs (- subset-sum 1)).

Direct comparison of different queries appeared to be difficult on this task. However,

the results are qualitatively similar. All methods either stably find correct solutions

(this is the case, when the task dimensionality is about 15 or less or when the range of

numbers is small and many subsets can sum up to the desirable value) or all the meth-

ods fail (to achieve this, one should take numbers from a larger range and take the set

size 20 or more).

However, for certain task complexities intermediate results can be obtained. In par-

ticular, the following results were obtained for the range [-10000, 10000] and the set

sizes 20÷25. With as much as twice time limit of annealing-query and evolution-

query, mh-query was able to find correct solutions in 83% cases. annealing-query and

evolution-query yielded approximately 75% correct solutions (their performance vary

depending on settings, and annealing-query showed more stable results, while our

simple form of genetic programming had some tendency to get stuck in local extre-

ma). It should be pointed out that in the rest 25% cases the solution found is almost

optimal (error equals to 1).

Let’s make sure that these slightly superficial results of genetic programming are

not due to its invalid functioning. Consider the following typical effect of crossover

over program traces on the “phenotype” level.

'(#t #f #t #t #t #t #t #f #t #t) + '(#f #f #t #t #f #t #f #t #t #f) '(#t #f #t #t #t #t #f #f #t #f)

One can see that this is the uniform crossover. It is possibly not the most interest-

ing one, but it is correct. From this example, it can also be seen that optimization que-

ries on probabilistic programs fit well for solving deterministic problems.

Integer Number Sequence Prediction

One more test task we considered was the task of integer number sequence prediction.

We restricted the set of possible sequences to polynomials, but it can easily be ex-

tended to the wider class of sequences defined by recurrence relations. Consider the

following fragment of the generative model.

; recursively generating expressions

(define xs '(1 2 3 4 5 6))

(define ys '(3 7 13 21 31 43))

(define (gen-expr) (if (flip 0.6)

 (if (flip) 'x (random-integer 10))

 (list (multinomial '(+ - *) '(1 1 1)) (gen-expr) (gen-expr))))

(define (f x) (eval (list 'let (list (list 'x x)) expr)))

After these definitions, the function f(x) is used to map all xs and check if the re-

sult matches ys or to calculate the total deviation depending on the query type.

We ran tests for different sequences and compared the results. mh-query wasn’t

able to find a solution in each run. Depending on the web browser, it either finished

with “Maximum call stack size exceeded” error or worked extremely long in some

runs. annealing-query and evolution-query also were not able to find precise solutions

in each case and terminated with imprecise solutions. Percentages of runs, in which

correct solutions were found, are shown in Table 2. The value of xs was '(0 1 2 3 4 5).

TABLE II. PERCENTAGE OF CORRECT SOLUTIONS

ys
Correct answers, %

mh-query annealing-query evolution-query

'(0 1 2 3 4 5) 90% 100% 100%

'(0 1 4 9 16 25) 20% 100% 100%

'(1 2 5 10 17 26) 10% 70% 80%

'(1 4 9 16 25 36) 0% 90% 80%

'(1 3 11 31 69 131) 0% 90% 60%

mh-query yielded surprisingly bad results here, although its inference over other

recursive models can be successful. evolution-query also yielded slightly worse re-

sults than annealing-query. The reason probably consists in that this task could not be

well decomposed into subtasks, so crossover doesn’t yield benefits, but annealing can

approach to the best solution step by step.

Nevertheless, it seems that crossover operator over program traces produces quite

reasonable results in the space of phenotypes. If the structure of the parents matches,

each leaf is randomly taken from one of the parents, e.g. '(+ (+ 3 x) x) + '(- (- x x) x)

 '(- (+ x x) x). In nodes, in which the structure diverges, a subtree is randomly taken

from one of the parents, e.g.

'(- (- (* (* 3 (* x x)) 3) (- x 8)) (* (- x 0) x)) +'(- 3 (- 5 x)) '(- 3 (* (- x 0) x))

'(* (+ 4 x) x) + '(* (* 2 (- 1 x)) 7) '(* (* 4 x) 7)

“Phenotypic” crossover effect is somewhat loose, but not meaningless, and it pro-

duces valid candidate solutions, which inherit information from their parents.

Conclusion

We developed the methods of simulated annealing and genetic programming over

probabilistic program traces. For the best of our knowledge, this is the first implemen-

tation of such methods. The same functions for genetic operators over program traces

were used to solve optimization problems for very different types of objects including

parametrically defined functions, sets, and symbolic expressions without producing

invalid candidate solutions. Our implementation corresponds to the uniform crosso-

ver. Other types of genetic operators are to be implemented, since our implementation

showed advantage over annealing only in the task of learning real-valued models. It is

interesting to combine probabilistic programming with advanced genetic program-

ming systems such as MOSES [10].

In spite of simplicity of the used meta-heuristic search methods, they outperformed

the standard mh-query. Although this comparison doesn’t mean that annealing-query

or evolution-query can replace mh-query since they solve different tasks, it shows that

they can be combined and also optimization queries can be useful to extend semantics

of PPLs. Still, efficiency of general inference methods is insufficient, and this could

be one of the principle obstacles in the path to AGI. Possibly, one general inference

method cannot be efficient in all problem domains, so it should be automatically spe-

cialized w.r.t. each domain encountered by an AGI-agent implying that such methods

should be deeply combined with cognitive architectures.

Acknowledgements

This work was supported by Ministry of Education and Science of the Russian Feder-

ation, and by Government of Russian Federation, Grant 074-U01.

References

1. Potapov, A., Rodionov, S., Myasnikov, A., Begimov, G.: Cognitive Bias for Universal Al-

gorithmic Intelligence. arXiv:1209.4290v1 [cs.AI] (2012)

2. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church:

a language for generative models. arXiv:1206.3255 [cs.PL] (2008)

3. Minka, T., Winn, J.M., Guiver, J.P., Knowles, D.: Infer.NET 2.4. Microsoft Research

Camb., http://research.microsoft.com/infernet (2010)

4. Koller, D., McAllester, D.A., Pfeffer, A.: Effective Bayesian inference for stochastic pro-

grams. Proc. National Conference on Artificial Intelligence (AAAI), pp. 740–747 (1997)

5. Stuhlmüller, A., Goodman, N. D.: A dynamic programming algorithm for inference in re-

cursive probabilistic programs. arXiv:1206.3555 [cs.AI] (2012)

6. Milch, B., Russell, S.: General-purpose MCMC inference over relational structures. Proc.

22nd Conference on Uncertainty in Artificial Intelligence, pp. 349–358 (2006)

7. Chaganty, A., Nori A.V., Rajamani, S.K.: Efficiently sampling probabilistic programs via

program analysis. Proc. Artificial Intelligence and Statistics, pp. 153–160 (2013)

8. Perov, Y., Wood, F.: Learning Probabilistic Programs. arXiv:1407.2646 [cs.AI] (2014)

9. Solomonoff, R.: Algorithmic Probability, Heuristic Programming and AGI. In: Baum, E.,

Hutter, M., Kitzelmann, E. (Eds). Advances in Intelligent Systems Research, vol. 10 (proc.

3rd Conf. on Artificial General Intelligence), pp. 151–157 (2010)

10. Goertzel, B., Geisweiller, N., Pennachin, C., Ng, K.: Integrating Feature Selection into

Program Learning. In: Kühnberger, K.-W., Rudolph, S., Wang, P. (Eds.): AGI’13, LNAI

7999, pp. 31–39 (2013)

11. McDermott, J., Paula, C.: Program Optimisation with Dependency Injection. In: Proc. 16th

European Conference on Genetic Programming, EuroGP (2013)

12. Gordon, A.D., Henzinger, Th.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming.

In: Proc. International Conference on Software Engineering (2014)

http://research.microsoft.com/infernet

