
Distributed Vector Representations of Words in the
Sigma Cognitive Architecture

Volkan Ustun1, Paul S. Rosenbloom1,2, Kenji Sagae1,2, Abram Demski1,2

1 Institute for Creative Technologies, 2 Department of Computer Science
University of Southern California, Los Angeles, CA USA

Abstract. Recently reported results with distributed-vector word representa-
tions in natural language processing make them appealing for incorporation into
a general cognitive architecture like Sigma. This paper describes a new algo-
rithm for learning such word representations from large, shallow information
resources, and how this algorithm can be implemented via small modifications
to Sigma. The effectiveness and speed of the algorithm are evaluated via a
comparison of an external simulation of it with state-of-the-art algorithms. The
results from more limited experiments with Sigma are also promising, but more
work is required for it to reach the effectiveness and speed of the simulation.

1 Introduction

Distributed vector representations facilitate learning word meanings from large col-
lections of unstructured text. Each word is learned as a distinct pattern of continuous
(or discrete or Boolean) values over a single large vector, with similarity among word
meanings emergent in terms of distances in the resulting vector space. Vector repre-
sentations are leveraged in cognitive science to model semantic memory [13,22].
They have also been used for many years in neural language models [18], where they
have yielded good performance [1,2], but have not scaled well to large datasets or
vocabularies. Recently, however, scalable methods for training neural language mod-
els have been proposed [10,11], handling very large datasets (up to 6 billion words)
and achieving good performance on a range of word similarity tests.

The premise of distributed vector representations might have interesting repercus-
sions for cognitive architectures as well since these architectures have naturally in-
volved memory models and language tasks. Yet, vector representations are rare in
cognitive architectures, limited to experiments with a separate module in ACT-R [20]
and an effort in progress to incorporate them into LIDA to yield Vector LIDA [4].

Sigma – briefly introduced in Section 5 – is being built as a computational model
of general intelligence that is based on a hybrid (discrete+continuous) mixed (symbol-
ic+probabilistic) cognitive architecture of the same name [15]. Its development is
driven by a trio of desiderata: (1) grand unification, uniting the requisite cognitive
and non-cognitive aspects of embodied intelligent behavior; (2) functional elegance,
yielding broad cognitive (and sub-cognitive) functionality from a simple and theoreti-
cally elegant base; and (3) sufficient efficiency, executing rapidly enough for antici-

pated applications. The potential utility of distributed vector representations suggests
it is worth considering what they might bring to Sigma. At the same time, Sigma’s
approach to achieving functional elegance via a graphical architecture – built from
graphical models [7] (in particular, factor graphs and the summary product algorithm
[8]), n-dimensional piecewise linear functions [14], and gradient descent learning [16]
– that sits below the cognitive architecture and implements it, suggests that it might be
possible to support distributed vector representations with only small extensions to the
architecture.

In other words, the goal of this paper is to evaluate whether Sigma provides a
functionally elegant path towards a deep and effective integration of distributed vector
representations into a cognitive architecture. The Distributed Vector Representation
in Sigma (DVRS) model – Section 3 – is inspired primarily by BEAGLE [6], but with
adaptations intended to leverage as much as possible of Sigma’s existing capabilities.
Section 2 provides background on BEAGLE (and on Vector LIDA, which builds on
BEAGLE’s approach while striving for increased efficiency).

Because Sigma is not yet completely up to implementing the full DVRS model,
results are presented from two approximations to it. DVRS’ is a simulation of DVRS
outside of Sigma that simplifies Sigma’s use of gradient descent in learning word
meanings. This yields an efficient approximation to DVRS that enables large-scale
experimentation. DVRS+ is a partial implementation of DVRS within Sigma. It ena-
bles verifying that the core ideas work within Sigma, while requiring little modifica-
tion to it, but it is incomplete and presently too slow for large-scale experimentation.

The results reported here from DVRS’ (Section 4) and DVRS+ (Section 6) show
the potential of the DVRS algorithm itself and its incorporation into Sigma, but sig-
nificant work remains for a complete and efficient implementation of DVRS in Sig-
ma. This necessary further work is discussed in Section 7, along with the conclusion.

2 Background

BEAGLE builds a holographic lexicon − represented by distributed vectors − that
captures word meanings from unsupervised experience with natural language [6].
Two types of information are utilized to learn the meaning of a word: (1) context, as
defined by the words that co-occur in the same sentence, and (2) word order, as de-
fined by the relative positions of the nearest co-occurring words.

BEAGLE assigns two vectors to each word in the vocabulary: (1) an environmen-
tal vector and (2) a lexical (meaning) vector. The word’s environmental vector is
ultimately intended to represent the physical characteristics of the word, such as or-
thography, phonology etc. and hence, should not change over time. However, in the
basic model focused on here, this lower-level similarity is not included, and instead
each environmental vector is simply a fixed random vector. The word’s lexical vector,
on the other hand, represents the memory for contexts and positions. Each time a
word is encountered, its lexical vector is updated from the associated context and
order information. BEAGLE uses superposition for context information – simply the
sum of the environmental vectors of all of the co-occurring words. Positional infor-

mation is captured via n-grams, by binding together via convolution all of the words
in each n-gram (of size up to 5 in [6]). The order information for a word in a sentence
is the sum of all of the n-gram convolutions containing it. The word’s lexical vector is
then updated by adding in the context and ordering vectors.

BEAGLE uses circular convolution for binding to avoid the problem of expanding
dimensionality, where the output of binding is larger than its inputs, making further
binding either infeasible or intractable [12]. It furthermore uses a directed variant of
circular convolution – where different inputs are permuted distinctly prior to convolu-
tion – so as to avoid losing information about their relative ordering during the other-
wise symmetric convolution operation.

The approach taken in Vector LIDA [21] is similar to that in BEAGLE. The Modu-
lar Composite Representation (MCR) used in Vector LIDA also relies on capturing
context and order information in high dimensional vectors, but it uses integer rather
than real-valued vectors and replaces the expensive circular convolution operation –
which is O(n log n) if FFTs are used [3] and O(n2) otherwise – with a faster modular
sum operation that still avoids the expanding dimensionality problem.

3 The DVRS Model(s)

DVRS is conceptually similar to BEAGLE and MCR, but it retains BEAGLE’s real-
valued vectors while substituting a different fast binding operation based on pointwise
product with random positional vectors. This approach still avoids the expanding
dimensionality problem, but is more aligned with how Sigma works. Real-valued
vectors are a natural special case of Sigma’s pervasive usage of n-dimensional piece-
wise-linear functions; they just restrict the function to piecewise constant values over
domains that are one dimensional and discrete.

The binding needed for ordering information is achieved by pointwise multiplying
the environmental vector of each nearby co-occurring word with a random vector that
is uniquely characteristic of the relative position between that word and the word
being learned. The capture of word order information in DVRS thus maps onto skip-
grams [5], which are generalizations of n-grams that allow intervening words to be
skipped – a skip distance of k allows k or fewer words to be skipped in constructing n-
grams. The current DVRS model employs 3-skip-bigrams, in which pairs of words
are learned with at most three words skipped between them. As a result, there can be
as many as 8 such skip-grams per word in a sentence. In recent work, a similar formu-
lation was used in calculating the predicted representation of a word [11], with the
excellent results reported there serving as encouragement for the potential of DVRS.

A more formal description of DVRS is as follows. Let’s assume that: each sen-
tence has n words, l(i) is the lexical vector of the ith word in the sentence, and e(i) is
the environmental vector of the ith word. Each element of each environmental vector
is randomly selected from the continuous span [-1,1). If the word being updated is the
kth word (wordk) in the sentence, then the context information, c(k), for it is the sum of
the environmental vectors for the other n-1 words in the sentence.

𝑐 𝑘 = 𝑒 𝑖 ,𝑤ℎ𝑒𝑟𝑒 𝑖 ≠ 𝑘
!

!!!
 (1) (1)

The sequence vectors are random vectors created for the binding operation, and
like the environmental vectors are defined based on random selections from the con-
tinuous span [-1,1). s(j) is unique for each relative position j from wordk. The word
order information, o(k), is then calculated as follows (“.*” is the pointwise vector
multiplication operation):

𝑜 𝑘 = 𝑠 𝑗 .∗ 𝑒 𝑘 + 𝑗 ,𝑤ℎ𝑒𝑟𝑒 𝑗 ≠ 0
!

!!!!
 𝑎𝑛𝑑 0 < 𝑘 + 𝑗 ≤ 𝑛 (2) (2)

DVRS uses gradient descent, where the gradient is based on the sum of the normal-
ized context and order vectors – 𝑐(𝑘) + 𝑜(𝑘) – to incrementally update the lexical
vectors, l(k), as new training sentences are processed.

The key difference between DVRS+ and DVRS is that the former selects values in
environmental and sequence vectors randomly from [0,1) rather than [-1,1). Sigma
was originally designed to operate only with non-negative functional values because
its general implementation of the summary product algorithm, which subsumes both
the sum-product and max-product variants, is only guaranteed to produce correct
outputs given non-negative inputs. Distributed vector computations only depend on
sum-product, not on max-product, and sum-product – both in general and in Sigma –
does work with negative values. However, other aspects of Sigma – such as its gradi-
ent-descent learning algorithm – also only work with non-negative values, so the use
of negative values for distributed vectors has been put off to future work. This does
limit the vectors in DVRS+ to one quadrant of the full vector space, and as seen in
Section 6, leads to somewhat degraded performance.

The key difference between DVRS’ and DVRS is that the former uses a lexical
vector update operation that is similar to that in BEAGLE – the lexical vector l(k) of
wordk is modified by simply adding in the normalized sum of c(k) and o(k):

𝑙 𝑘 = 𝑙 𝑘 + 𝑐(𝑘) + 𝑜(𝑘) (3) (3)

By implementing DVRS’ outside of Sigma, very large training datasets can be
processed quickly and compared with state-of-the-art models to provide valuable
insight into the overall effectiveness of DVRS.

4 Evaluating the DVRS’ Simulation

The goals of this evaluation are to: (1) assess the effectiveness of DVRS’; (2) deter-
mine its robustness over random initializations of the evaluation and sequence vec-
tors; and (3) evaluate whether replacing BEAGLE’s use of expensive directed circular
convolution by cheap pointwise products degrades performance. Training is per-
formed over a corpus of ~500k sentences (12.6M words and 213K distinct words)
extracted from the first 108 bytes of the English Wikipedia dump from March 3, 2006,
provided by [9]. The text was preprocessed to contain only lowercase characters and
spaces, using the script in [9]. Stop words are ignored in creating the context infor-

mation. An iMac 12,2 with 8GB RAM and a 3.4Ghz I7-2600 processor is used in the
training.

One way to compare the quality of different word vectors is by examining their
similarity to their closest neighbors. Table 1 depicts the top 5 neighbors of the words
language, film, business, and run, ordered by vector cosine distances. Three forms of
training are explored: only on context, only on ordering, and on their composite.
Similar to the assessments in [6], composite training better captures word similarities
for the examples shown here.

Table 1. Five nearest neighbors of four words in context, order, and composite spaces.

	 	 language	 	 	 	 	 	 	 film	 	 	
Context	 Order	 Composite	 	 	 Context	 Order	 Composite	
spoken	 cycle	 languages	

	
director	 movie	 movie	

languages	 society	 vocabulary	
	

directed	 german	 documentary	
speakers	 islands	 dialect	

	
starring	 standard	 studio	

linguistic	 industry	 dialects	
	

films	 game	 films	
speak	 era	 syntax	 	 	 movie	 french	 movies	

	 	 business	 	 	
	

	 	 run	 	 	
Context	 Order	 Composite	 	 	 Context	 Order	 Composite	
businesses	 data	 commercial	

	
home	 play	 runs	

profits	 computer	 public	
	

runs	 hit	 running	
commercial	 glass	 financial	

	
running	 pass	 hit	

company	 color	 private	
	

hit	 die	 break	
including	 space	 social	 	 	 time	 break	 play	

Mikolov et al. [10] argue that a more complex similarity test is more appropriate
for the assessment of the quality of the trained word vectors. They propose for this a
general word analogy test along with a specific set of test instances – termed the
Google test data in the remainder of this article. This test simply asks, for example,
the question “What is the word that is similar to small in the same way that biggest is
similar to big?”. Such questions can be answered by performing simple algebraic
operations over the vector representations. To find the word that is most similar to
small in the same way that biggest is similar to big, one can merely compute the vec-
tor V = (lbiggest - lbig) + lsmall and determine which word’s lexical vector is closest to V
according to cosine distance. In other words, what is added to the representation of
big to get biggest should also yield smallest if added to the representation of small.1
The Google test data includes 8,869 semantic test instances (such as determining
which word is most similar to king in the way wife is similar to husband) and 10,675
syntactic test instances (such as determining which word is most similar to lucky in
the way happy is similar to happily).

Table 2 shows the accuracy of DVRS’ over various configurations of system set-
tings on the Google test data. The vocabulary of the training data includes all four
words in the Google test data instances for 8,185 of the 8,869 semantic test cases and
10,545 of the 10,675 syntactic test cases. Mikolov et al. [10] report an accuracy of

1 As pointed out in [11], the words most similar to V in this case will actually be biggest and

small, so the search results should exclude them off the top.

24% for their CBOW model with a training set of 24M words and a vector dimension-
ality of 600. Mnih and Kavukcuoglu [11] report an accuracy of 17.5%	 for a model
trained on the 47M words of the Gutenberg dataset. The DVRS’ co-occurrence model
achieves a comparable result, 24.3%,	 with approximately 12.6M words in the training
data and a vector dimensionality of 1024. Adding ordering information (via skip-
grams) didn’t improve the accuracy of the co-occurrence models in the cases tested.
Increasing the vector size above 1536 also did not improve the accuracy. Overall,
these results are comparable to the recently reported accuracies by [10] and [11] for
comparable sizes of training data.

Table 2. Performance (% correct) on the Google test data for test instances in which all four
words are in the vocabulary (and in paranthesis for all test instances).

 Vector size Semantic Syntactic Overall
Co-occurrence only 1024 33.7 (31.1) 18.8 (18.6) 25.3 (24.3)
3-Skip-Bigram only 1024 2.7 (2.5) 5.0 (4.9) 4.0 (3.8)
3-Skip-bigram composite 512 29.8 (27.5) 18.5 (18.3) 23.4 (22.4)
3-Skip-bigram composite 1024 32.7 (30.2) 19.2 (18.9) 25.1 (24.0)
3-Skip-bigram composite 1536 34.6 (31.9) 20.1 (19.9) 26.4 (25.3)
3-Skip-bigram composite 2048 34.3 (31.7) 20.1 (19.9) 26.3 (25.2)

Robustness across different random initializations of environmental vectors has al-
so been assessed for DVRS’. The model was run 5 times with different initializations
of environmental vectors of size 1024, and performance was measured over a ran-
domly selected subset (~10%) of the Google test data for composite training. The
performance (% correct) was in the range [23.8, 25.0] for the best match and in the
range [37.0, 37.5] when checked for a match within the 5 closest words, demonstrat-
ing the negligible effect of random initializations.

The impact of using pointwise vector multiplication instead of circular convolution
has also been assessed in DVRS’, with vectors of size 512. The comparison isn’t
directly with BEAGLE, but with a version of DVRS’ in which pointwise vector mul-
tiplication is replaced with circular convolution. The achieved accuracies on the
Google test data were 23.4% for pointwise multiplication and 19.9% for circular con-
volution; implying that, at least for this case, pointwise multiplication does not de-
grade performance, and in fact enhances it instead. Furthermore, training on the full
training set takes a bit more than 3 hours with pointwise multiplication, but 4.5 days
for circular convolution. An O(n2) variant of circular convolution is used here, but
even an optimal O(n log n) implementation would be dominated by the O(n) time
required with pointwise multiplication. Training DVRS’ on just ordering information
occurs at ~1.4M words/minute with a vector dimensionality of 100, a rate that is com-
parable to that reported for similar configurations in [11].

5 Sigma

The Sigma cognitive architecture provides a language of predicates and conditionals.
A predicate is defined via a name and a set of typed arguments, with working memory

containing predicate instantiations that embody the state of the system. The argument
types may vary in extent and may be discrete – either symbolic or numeric – or
continuous. Conditionals are defined via a set of predicate patterns and an optional
function over pattern variables, providing a deep combination of rule systems and
probabilistic networks. Conditions and actions are predicate patterns that behave like
the respective parts of rules, pushing information in one direction from the conditions
to the actions. Condacts are predicate patterns that support the bidirectional pro-
cessing that is key to probabilistic reasoning, partial matching, constraint satisfaction
and signal processing. Functions encode relationships among variables, such as joint
or conditional probability distributions, although the dimensions of the functions may
in general be continuous, discrete or symbolic, and the values of the functions may be
arbitrary non-negative numbers (which can be limited to [0,1] for probabilities and to
0 (false) and 1 (true) for symbols).

Sigma’s graphical architecture sits below its cognitive architecture, and serves to
implement it. The graphical architecture is based on factor graphs and the summary-
product algorithm [8], plus a function/message representation based on n-dimensional
piecewise-linear functions [14]. Factor graphs are a general form of undirected
graphical model composed of variable and factor nodes. Factor nodes embody
functions – including all of those defined in the cognitive architecture plus others only
relevant within the graphical architecture – and are linked to the variable nodes with
which they share variables. In
its simplest form, there would
only be one variable per
variable node, but Sigma
supports variable nodes that
represent sets of variables. A
factor graph (Figure 1)
implicitly represents the
function defined by
multiplying together the
functions in its factor nodes.
Or, equivalently, a factor
graph decomposes a single
complex multivariate
function into a product of
simpler factors.

The summary product algorithm computes messages at nodes and passes them
along links to neighboring nodes. A message along a link represents a function over
the variables in the link’s variable node. Given that a variable node may embody
multiple variables, functions in messages are defined in general over the cross product
of their variables’ domains. An output message along a link from a variable node is
simply the (pointwise) product of the input messages arriving along its other links.
An output message along a link from a factor node is computed by multiplying the
node’s function times the product of its incoming messages, and then summarizing
out all of its variables that are not included in the target variable node, either by
integrating the variables out to yield marginals or maximizing them out to yield
maximum a posteriori (MAP) estimates.

Fig 1. Factor graph for algebraic function:
f (x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = f1(x,y)f2(y,z).

Working memory compiles into a sector of the graphical architecture’s factor
graph, with conditionals compiling into more complex sectors. Functions are
represented in an n-dimensional piecewise-linear manner and stored in factor nodes
within the overall graph. Memory access in the cognitive architecture then maps onto
message passing within this factor graph. As messages are sent, they are saved on
links. If a new message is generated along a link, it is sent only if it is significantly
different from the one already stored there. Message passing reaches quiescence –
and thus memory access terminates – when no new messages are available to send.
Once quiescence is reached, both decisions and learning occur locally – via function
modification – at the appropriate factor nodes based on the messages they have
received via Sigma’s summary product algorithm. Based on ideas in [19] for Bayesian
networks, a message into a factor node for a conditional function can be seen as
providing feedback to that node from the rest of the graph that induces a local gradi-
ent for learning. Although Sigma uses undirected rather than directed graphs, the
directionality found in Bayesian networks can be found at factor nodes when some of
the variables are distinguished as the children that are conditionally dependent on the
other parent variables. The original batch algorithm is modified to learn incrementally
(online) from each message as it arrives [16].

6 The DVRS+ Sigma Model

Context and word order information are captured by two similar predicates: (a) Con-
text-Vector(distributed:environment) and (b) Ordering-
Vector(distributed:environment), using the discrete type environ-
ment – with a range equal to the vector dimensionality – for the distributed
argument. By default, all types are continuous in Sigma, but discrete types fragment
the number line into unit-length regions, each with a constant function that can take
on any non-negative value. It should be clear how this directly yields the real-valued
vectors needed here.

The predicate Skip-Gram-Vector(position:position distribut-
ed:environment) introduces a second argument, position, for the relative
position from the word whose lexical vector is being updated. With a sufficient scope
for position, Skip-Gram-Vector can store the environmental vectors of the
words at each relative position of interest from the current word. The Skip-
Gram-Vector predicate is used in establishing the word order information. The
Meaning-Vector(word:word distributed:environment) predicate
captures both the context and word order information for the word being updated.

Conditionals specify the rest of the DVRS+ Sigma model. The conditional in Fig-
ure 2, for example, determines how context information is computed for words, with

CONDITIONAL Co-occurence
Conditions: Co-occuring-Words(word:w)
Actions: Context-Vector(distributed:d)
Function(w,d): *environmental-vectors*

Fig 2. Conditional for context information.

Figure 3 explaining the computations implicitly defined by this conditional for a
simplified hypothetical case where the vocabulary has only 4 words and the vector
dimensionality is 5. Coming out of the condition is a message with a local vector for
the other words in the sentence; that is, the vector’s domain is the entire vocabulary
and there is a value of 1 at every word in the sentence (and a value of 0 everywhere
else). In Figure 3(a), the co-occurring words are the first and the fourth words, with a
single zero region of width two sufficient to mark the second and third words as not
co-occurring. Via the summary product algorithm, this vector is multiplied times the
2D function that stores the environmental vectors (Figure 3(b)) to yield a 2D function
that is non-zero for only the environmental vectors of the words in the sentence (Fig-
ure 3(c)); and then the word variable is summarized out via integration (Figure 3(d)) –
summing across all of the environmental vectors for words in the sentence – to gener-
ate a message for the action that is the distributed context vector. Because this mes-
sage represents a distributed vector rather than a probability distribution, Sigma has
been extended to do vector (or l2) normalization – i.e., sum of squares – over these
messages rather than the normal form of probabilistic (or l1) normalization (Figure
3(e)). But, otherwise, a simple knowledge structure, in combination with the underly-
ing summary product algorithm, computes what is necessary.

Fig. 3. Computation of context information.

Computing the ordering information is similar, albeit slightly more involved (Fig-
ure 4). The condition here yields a 2D function that captures the environmental vec-
tors for nearby words according to their position – distance and direction – from the
word being learned, while the function stores the unique sequence vectors, by posi-
tion. The product yields a 2D function representing the pointwise products of the

CONDITIONAL Ordering
 Conditions: Skip-Gram-Vector(position:p distributed:d)
 Actions: Ordering-Vector(distributed:d)
 Function(p,d): *sequence-vectors*

Fig. 4. Conditional that computes the ordering vector.

corresponding environmental and sequence vectors, with summarization (and an l2
norm) yielding the ordering vector via addition over these products.

The combination of context and ordering information occurs via a form of action
combination that is Sigma’s generalization of how multiple actions combine in paral-
lel rule-based systems. Normal rule actions for the same predicate are combined in
Sigma via max. For probabilistic information, multiple actions for the same predicate
combine via probabilistic or. For distributed vectors, Sigma has been extended to use
straight addition across multiple actions for the same predicate. For negative actions,
Sigma normally inverts the message – converting, for example, 0s to 1s and 1s to 0s –
and then multiplies this with the results of positive action combination; however, for
vectors, negative actions simply imply subtraction.

The conditional in Figure 5 shows how an index for the current word is attached to
the context vector – via outer product – to yield an action that influences the segment
of the meaning/lexical vector that corresponds to the current word. A similar condi-
tional with an identical action pattern also exists for the ordering vector. The results
of these actions then combine additively to yield the total input to the meaning vector.

This input is then used to update, via gradient descent, the meaning/lexical func-
tion stored in the Meaning conditional shown in Figure 6. This differs from
BEAGLE’s superposition approach, but does so as to be able to leverage Sigma’s
existing learning algorithm in acquiring word meanings.

The evaluation goal for DVRS+ is to determine how well it performs in
comparison to DVRS’. Although several new optimizations have been added to
Sigma in support of distributed vector representations – including variable tying, so a
single function could appear in multiple conditionals, and sparse function products, to
speed up the products found in many of these conditionals [17] – efficiently
processing large distributed vectors is still a challenge. So, in evaluating DVRS+,
lexical representations are learned only for the 46 distinct words in the capital-
common-countries portion of the Google test data, which contains a total of 506 test
instances; such as determining which word is the most similar to Paris in the way
Germany is similar to Berlin. The training data included only the sentences containing
at least one of these 46 distinct words, resulting in a training set with 65,086 distinct
co-occurring words, each with a unique environmental vector, over 28,532 sentences.

When trained on the composite set of features with vectors of size 100 – and over
a range of different random initializations because choice of random vectors can have

CONDITIONAL Context
 Conditions: Context-Vector(distributed:d)
 Current(word:w)
 Actions: Meaning-Vector(word:w distributed:d)

Fig. 5. Conditional for adding context information to meaning vector.

CONDITIONAL Meaning
 Condacts: Meaning-Vector(word:w distributed:d)
 Function(w,d): Uniform

Fig. 6. Conditional for gradient-descent learning with an initially uniform function.

a significant effect with small vector sizes – standard DVRS’ finds between 55.7%
and 68.2% (median of 60.4%) of the best answers, but with only non-negative values
it yields between 26.1% and 43.1% (median of 32.4%) of the best answers. DVRS+ is
too slow to run many random variations – it is currently 50 times slower than DVRS’
(~4 hours for training rather than 5 minutes) – so only one version was run with a
good, but not necessarily optimal, random initialization. This version finds 35.2% of
the correct answers, placing it below the range for standard DVRS’, but well within
the range for non-negative DVRS’. It is above the median for the latter, but not at the
maximum. There is thus a significant degradation due to the lack of negative values,
plus possibly a smaller residual difference that may be due to issues in how gradient
descent is operating here. Still, there is a promising positive effect with DVRS+.

7 Conclusion

A new efficient algorithm has been introduced for learning distributed vector repre-
sentations, with a variant of it having been implemented within Sigma in a functional-
ly elegant manner that maximally leverages the existing mechanisms in the architec-
ture. Although the implementation within Sigma is not yet totally complete, nor yet
sufficiently efficient, it shows real promise. It also raises the possibility of pursuing
other intriguing research problems. One key direction is using distributed vector rep-
resentations of word meanings as a bridge between speech and language (and possibly
cognition). Achieving this would yield a major demonstration of grand unification in
Sigma. Pervasive use of distributed vector representations within Sigma could also
yield both a native form of analogy and a form of semantic memory worth evaluating
as a psychological model. However, success will require additional enhancements to
Sigma. As discussed earlier, a full capability for negative values will be needed for
improved effectiveness. Furthermore, DVRS+ is considerably slower than the external
DVRS’, implying a need for significant further optimizations.

Further investigations are also worth pursuing with the DVRS’ model, including:
(1) training with larger data sets for more rigorous comparisons, (2) experimenting
with different skip-grams rather than just 3-skip-bigrams, and (3) exploring the utility
of distributed vector representations across a range of natural language tasks.

Acknowledgements. This work has been sponsored by the U.S. Army. Statements
and opinions expressed do not necessarily reflect the position or the policy of the
United States Government.

References

1. Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. A neural probabilistic language mod-
el. The Journal of Machine Learning Research, 3, 1137-1155. (2003).

2. Collobert, R., & Weston, J. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th international confer-
ence on Machine learning (pp. 160-167). (2008).

3. Cox, G. E., Kachergis, G., Recchia, G., & Jones, M. N. Toward a scalable holographic
word-form representation. Behavior Research Methods, 43(3), 602-615. (2011).

4. Franklin, S., Madl, T., D'Mello, S., & Snaider, J. LIDA: A systems-level architecture for
cognition, emotion, and learning. IEEE Transactions on Mental Development. (2013).

5. Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. A closer look at skip-gram
modelling. In Proceedings of the 5th international Conference on Language Resources
and Evaluation (LREC-2006) (pp. 1-4). (2006).

6. Jones, M. N., & Mewhort, D. J. Representing word meaning and order information in a
composite holographic lexicon. Psychological review, 114(1), 1. (2007).

7. Koller, D., & Friedman, N. Probabilistic Graphical Models: Principles and Techniques.
MIT press. (2009).

8. Kschischang, F. R., Frey, B. J., & Loeliger, H. A. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2), 498-519. (2001).

9. http://mattmahoney.net/dc/textdata.html. Last accessed March 28th, 2014.
10. Mikolov, T., Chen, K., Corrado, G., & Dean, J. Efficient estimation of word representa-

tions in vector space. In Proceedings of the International Conference on Learning Repre-
sentations. (2013).

11. Mnih, A., & Kavukcuoglu, K. Learning word embeddings efficiently with noise-
contrastive estimation. In Advances in Neural Information Processing Systems (pp. 2265-
2273). (2013).

12. Plate, T. A. Holographic reduced representations. IEEE Transactions on Neural Net-
works, 6(3), 623-641. (1995).

13. Riordan, B., & Jones, M. N. Redundancy in perceptual and linguistic experience: Compar-
ing feature-based and distributional models of semantic representation. Topics in Cognitive
Science, 3(2), 303-345. (2011).

14. Rosenbloom, P. S. Bridging dichotomies in cognitive architectures for virtual humans. In
Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems. (2011).

15. Rosenbloom, P. S. The Sigma cognitive architecture and system. AISB Quarterly, 136, 4-
13. (2013).

16. Rosenbloom, P. S., Demski, A., Han, T., & Ustun, V. Learning via gradient descent in
Sigma. In Proceedings of the 12th International Conference on Cognitive Modeling.
(2013).

17. Rosenbloom, P. S., Demski, A., & Ustun, V. Efficient message computation in Sigma’s
graphical architecture. Submitted to BICA 2014. (2014).

18. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning representations by back-
propagating errors. Nature, 323, 533-536. (1986).

19. Russell, S., Binder, J., Koller, D. & Kanazawa, K. (1995). Local learning in probabilistic
networks with hidden variables. Proceedings of the 14th International Joint Conference on
AI (pp. 1146-1152). (1995)

20. Rutledge-Taylor, M. F., & West, R. L. MALTA: Enhancing ACT-R with a holographic
persistent knowledge store. In Proceedings of the XXIV Annual Conference of the Cogni-
tive Science Society (pp. 1433-1439). (2007).

21. Snaider, J., & Franklin, S. Modular composite representation. Cognitive Computation, 1-
18. (2014).

22. Turney, P. D., & Pantel, P. From frequency to meaning: Vector space models of seman-
tics. Journal of Artificial Intelligence Research, 37(1), 141-188. (2010).

