
Intelligence as Inference
or Forcing Occam on the World

Peter Sunehag and Marcus Hutter
{Peter.Sunehag, Marcus.Hutter}@anu.edu.au

Research School of Computer Science
Australian National University

Canberra Australia

Abstract. We propose to perform the optimization task of Universal
Artificial Intelligence (UAI) through learning a reference machine on
which good programs are short. Further, we also acknowledge that the
choice of reference machine that the UAI objective is based on is arbi-
trary and, therefore, we learn a suitable machine for the environment we
are in. This is based on viewing Occam’s razor as an imperative instead
of as a proposition about the world. Since this principle cannot be true
for all reference machines, we need to find a machine that makes the
principle true. We both want good policies and the environment to have
short implementations on the machine. Such a machine is learnt itera-
tively through a procedure that generalizes the principle underlying the
Expectation-Maximization algorithm.

1 Introduction

Universal Artificial Intelligence (UAI) [Hut05,LH07] formalizes intelligence as an
incomputable optimization problem. We will here recast optimization problems
as inference problems and define an iterative procedure that generalize the ex-
pectation maximization algorithm [DLR77] beyond its original form and context.
The idea has been used previously in more narrow settings [DH97,WGRT11].
Our approach here brings “planning as inference” [Bot12] to a universal setting
and we will discuss how to completely reduce the design of intelligent agents to
building an inference mechanism. However, we also note the importance of the
training environment. We note that it has been argued [HB04] that the human
neo-cortex relies on only one mechanism and that, therefore, it should be possi-
ble to understand higher level cognitive abilities as one mechanism interacting
with the environment with lower level processing in between.

Since we want a practical approach, we are only interested in computable
policies. Hence, we are considering a search for programs achieving the highest
possible return. The return function is not explicit and is evaluated for a program
by running it and observing what return was achieved. This means that the
impact of issues like running speed and memory use are subsumed into the
return function. The setting is essentially that of achieving bounded optimality
(rationality) as defined in [Rus97,RN10].

Our approach is to iteratively develop a reference machine on which good
programs are short and, thereby, representing what we have learnt so far. The
reference machine defines a distribution over programs by letting the probability
of p be proportional to 2−`(p) where `(p) is the length of p. For every iteration we
want the machine to represent probabilities which are such that the probability
of the Turing machine T implemented by program p on the previous machine U ,
becomes proportional to the product of its (expected) return and its previous
probability. If this is achieved we are guaranteed an improvement in expected
return which means we got a better reference machine for finding rewarding
programs.

In a practical approach the update is based on a population of sample pro-
grams. These can be sampled for the machine by coin-flipping the bits of the
program, but they can include any evaluated programs from any sources. This
is an important point of the approach since all programs written by human pro-
grammers can be used and their intelligence can be mined for good ideas this
way. In fact, it is already used this way in the development of programming
languages and their libraries that aim to ease the development of good programs
and in some cases make bad things harder to do. The goal can be viewed as mak-
ing Occam’s razor true as a proposition about the world, while having to make
it so is in line with viewing Occam as an imperative [Web10]. This procedure
can be seen far beyond programming languages, e.g. in science where concepts
and terminology are created such that complex phenomena can be described
in compact form. The perspective of this article makes much of human progress
into a quest towards artificial general intelligence. In fact, we can go a bit further
by first looking at the background of our approach.

Evolution. In [DH97], the authors identified the Relative Payoff Procedure
(RPP) as an Expectation-Maximization (EM) procedure. RPP makes binary
choices independently and with probabilities proportional to the payoff relative
to the total payoff and then iterates. It has some similarities with evolutionary
algorithms (and natural evolution) where the most fit part of the population
grows at the expense of the less fit, but like the probabilistic model-building
genetic algorithms [Pel12], an explicit distribution representing current prefer-
ences is iteratively estimated resulting in more powerful optimization/learning
in an optimization-as-inference paradigm. Unlike most evolutionary approaches,
the expectation-maximization approach is learning also from the unfit and the
degrees of fitness of all samples.

It is interesting to note that evolution theory itself has begun to place im-
portance on more than genes [WE03], namely on gene-expression that changes
during life based on the environment. An adaptation is learnt through (or caus-
ing) changed gene-expression (which can even be inherited) and then, according
to this theory, a gene can be discovered that accommodates this adaptation and
locks it in. The accommodation theory of evolution introduce a purpose-driven
aspect into the process. This layer is represented in the mentioned algorithms by
the distribution which allows for learning and exploration of complex relation-
ships, if the distribution is more sophisticated than the independence in RPP

allows for. In the accommodation theory of evolution, behavior is explored before
it is accommodated by DNA. The suitable gene that accommodated the adap-
tation could have been useless without the adaptation already being to some
extent in place. Gene expression (and also we here speculate brains and culture
when available) is what makes it possible for some biological adaptation before
a change in DNA takes place. A startling speculative possibility is that species
that can learn better during life also have an accelerated genetic evolution mak-
ing high levels of intelligence a much more probable outcome than it would be
with a simpler entirely gene-centered understanding of evolution. That the more
simplistic understandings of evolution cannot learn something complex in fea-
sible time has been understood for a long time, e.g. by the authors of [Len80].
As one might conclude that biological evolution was geared towards intelligence,
one can argue that our current technological and scientific evolution is moving
towards Artificial General Intelligence even without someone making it the goal.

Logical reasoning. We believe that logical reasoning is not essential in the
building of an intelligent agent and is not a natural part of the human mind.
It has been repeatedly shown that plausibility-based reasoning is the innate hu-
man thinking. People systematically place more belief in an event than a superset
containing it, if the event creates a plausible narrative [Kah11] (not advocated
here). Logical reasoning likely evolved from rhetoric in ancient Greece and does
not seem to have been accommodated genetically and might not confer advan-
tage except for some very particular constructed environments like computer
programming.

We believe that logic is learnt from the human created environment. More-
over, practical logical reasoning is seldom fully formally logical, e.g. mathemat-
ical proofs are not written out in full but just aims at plausibility of each step
and hence originally accepted proofs are sometimes found to be flawed. Search-
ing through proof space suffers from combinatorial explosion and looking for
plausible chains guided by one’s belief about what is likely true (will hold up
to scrutiny) or not is more practical. Our approach is based on plausible im-
provement by improving a sample-based approximation of what would guaran-
tee improvement, and not on search for improvements with formal proof as the
Gödel machine [Sch07]. The Gödel machine starts with a set of axioms defining
an agent and then aims to update to a provably better set. The shifting induc-
tive bias approach [SZW97] is closer to what is considered here though a direct
comparison is difficult.

With probabilistic architectures with parameterized programs like e.g. Deep
Belief Networks [HOT06], it is easier to generate programs that run and do
something. The involved pattern recognition based reasoning is far more efficient
than dealing with logical programs and architectures.

Outline. We first provide background and notation for Universal Artificial In-
telligence (UAI) and general reinforcement learning. Then we introduce the ob-
jective whose optimization defines how one should update a reference machine
to have a guaranteed improvement of expected utility when sampling programs
from the machine. We go on to discuss a setting where generated observations in

the optimization process are taken into account. We then we change from opti-
mizing the given UAI objective to actually learning about the world through de-
veloping the reference machine for the UAI objective. Finally we discuss merging
the notions of actions and observations as well as agent and environment before
we conclude in the last chapter.

2 Learning a Reference Machine for UAI

We will consider an agent [RN10,Hut05] that interacts with an environment
through performing actions at from a finite set A and receives observations
ot from a finite set O and rewards rt from a finite set R ⊂ [0, 1] resulting
in a history ht := o1r1a1, ..., otrt. Let H := ∪n(O × R × A)n × (O × R) be
the set of histories and let ε be the empty history. A function ν : H × A →
O × R is called a deterministic environment. A function π : H → A is called
a (deterministic) policy or an agent. We define the value function V based on
geometric discounting by V πν (ht−1) =

∑∞
i=t γ

i−tri where the sequence ri are the
rewards achieved by following π from time step t onwards in the environment ν
after having seen ht−1.

Instead of viewing the environment as a function H × A → O × R we can
equivalently write it as a function ν : H×A×O×R → {0, 1} where we also write
ν(o, r|h, a) for the function value ν(h, a, o, r) (which is not the probability of the
four-tuple). It equals zero if in the first formulation (h, a) is not sent to (o, r)
and 1 if it is. In the case of stochastic environments we instead have a function
ν : H×A×O×R → [0, 1] such that

∑
o,r ν(o, r|h, a) = 1 ∀h, a. Furthermore, we

define ν(ht|π) := Πt
i=1ν(oiri|ai, hi−1) where ai = π(hi−1). ν(·|π) is a probability

measure over strings or sequences and we can define ν(·|π, ht−1) by conditioning
ν(·|π) on ht−1. We define V πν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri.
Given a countable class of environments and strictly positive prior weights

wν for all ν in the class, we define the a-priori environment ξ by letting ξ(·) =∑
wνν(·) and the AIXI agent [Hut05] is defined by following the policy

π∗ := arg max
π

V πξ (ε).

The optimistic-AIXI agent [SH12b], which is an extension of AIXI, takes the
decision

π◦ := arg max
π

max
ξ∈Ξ

V πξ (ε)

for a finite set of a priori environments Ξ. Other variations include the space-time
embedded agents of [OR12] who are part of (computed by) the environment.

This article is dealing with the Universal Artificial Intelligence (UAI) setting
where AIXI is a mixture of all computable, or lower semi-computable, environ-
ments. The mixture weights are defined from a choice of reference Universal
Turing Machine (UTM) as 2−K(ν) for environment ν, and K is Kolmogorov
complexity (length of the shortest program that implements the argument) with
respect to U . The resulting a priori environment ξ can, equivalently, be defined

as sampling a program for U and run it. The probability of a program p is
proportional to 2−`(p) where `(p) is the length of p. The expected reward of
a policy/agent is viewed as a measure of its intelligence [LH07]. However, this
is dependent on the reference machine and so is the AIXI agent defined from
it by maximizing that intelligence measure. Any agent is super-intelligent for
some reference machine. The optimistic extension is both meant to be a more
explorative version with more uniformly good performance across environments
but also to diminish the dependence on the reference machine by being able to
choose a large finite set of machines instead of just one. We will later in this
article address the problem of choosing a good reference machine to base AIXI
on, but we will first deal with the involved optimization problem by iteratively
learning a reference machine that represents a preference between policies such
that good policies have shorter programs on this machine.

Learning reference machines. Let T be the set of all Turing machines and
suppose we are given a (possibly unknown) return function R : T → R that for
each T ∈ T says how rewarding this machine is. We ideally want a machine from

arg max
T∈T

R(T).

A prominent example is when we have a general reinforcement learning envi-
ronment µ as defined in [Hut05] (and above) and T computes a policy. R(T)
is then the expected discounted reward sum when acting according to T in µ.
Given a Universal Turing Machine U , any Turing machine can be represented
as a program p for U . Hence, given U , the search for a Turing machine T be-
comes a search for a program p for U . Though the choice of reference machine
U does not affect which Turing machines are good, it affects how long/complex
its implementation is. We suppose that a practical search would favor shorter
programs over longer ones and, therefore, the choice of reference becomes criti-
cal for success. In fact, we will replace the search for programs with the task of
incrementally inferring what a good choice of machine is. The choice of machine
will encapsulate everything we have learned up to that time about how good
various programs are by making the good ones shorter than worse alternatives.
We want a machine U with high expected return defined by∑

p

2−`U (p)R(p).

One approach is to propose a different machine and estimate the expected return
by running sampled programs on this machine. We will here instead consider a
generalized Expectation-Maximization procedure similar to what [DH97] dis-
cussed in their narrow setting, which allows you to evaluate the new machine
without running any programs on it. One only requires the ability to measure
the length of a program translated for it. However, all of what follows can be
expressed in terms of the expected utility objective above.

Given reference machine U , we want to change to U ′ (including a mapping
of programs on U to programs on U ′) if∑

p

2−`U (p)R(p)`U (p) >
∑
p

2−`U (p)R(p)`U ′(p)

where `U (p) is the length of the program p for U while `U ′(p) is the length
of the translation of p for U ′. We suppress the search over translation pro-
grams to simplify notation. The larger the expectation of R(p)`U (p), the stronger
the correlation between return and length. Hence, the smaller the expression∑
p 2−`U (p)R(p)`U (p) is, the stronger the correlation between high return and

short length. This update says that we want programs with high reward to have
low complexity and, furthermore, guarantees that∑

p

2−`U′ (p)R(p) >
∑
p

2−`U (p)R(p).

This result is simply proven using Jensen’s inequality similar to [DH97].

log
∑
p

2−`U′ (p)R(p)− log
∑
p

2−`U (p)R(p)

= log
∑
p

2−`U (p)R(p)∑
q 2−`U (q)R(q)

2−`U′ (p)

2−`U (p)

≥
∑
p

2−`U (p)R(p)∑
q 2−`U (q)R(q)

log
2−`U′ (p)

2−`U (p)

=
1∑

q 2−`U (q)R(q)

(∑
p

2−`U (p)R(p)`U (p)−
∑
p

2−`U (p)R(p)`U ′(p)
)
≥ 0.

The desired result follows since log is monotone increasing.

Approximations with sample programs.
∑
p 2−`U (p)R(p)`U ′(p) is not com-

putable. Hence, we cannot exactly evaluate if U ′ is better than U . Instead we
will in practice need to rely on a set of sample programs p and their evaluations
R(p). If R is of the form of an expectation of a stochastic return one needs to
run the evaluation repeatedly and average. To sample with a reference machine
U is simple since it is done by coin flipping on the input tape. In other words,
one randomly picks characters for the programming code which is typically a
practical disaster if one does not have a reference machine that makes a rea-
sonable program out of many short random strings. This problem disappears
if as program we simply set parameters for an algorithm that can be run for
any choice of such. An important point is that the set of sample programs do
not all have to be sampled from the current reference machine but interesting
programs developed elsewhere can also be introduced to be learnt from. Further,
one needs a translation to the new machine. This is not necessarily difficult if
the proposed change is to make some routines from the best programs part of

the machine (language), reducing a block of code like a matrix multiplication to
a macro. This way, the process becomes one of discovering and collecting useful
routines while developing a high-level language. In the case when parameterized
probabilistic functions are used, one can instead learn to imitate successful pro-
grams by finding parameters that lead to close reproduction of the programs’
behavior.

Including observations/data and environment. The setting discussed above
has a return function that goes straight from programs (Turing machines) to a
real valued return. However, an alternative is to include more structure where
running the program generates data d ∈ D (D can be finite or countably infinite),
which might consist of a sequence of observations each of which can contain a
reward, and then there is a return function R : D → R. R can e.g. be defined as
a discounted reward sum. Though this can, as was mentioned before, be viewed
as just an example of the optimization task above if we have been provided
with a general reinforcement learning environment (which could be a Bayesian
mixture of environments as for AIXI), we can also try to take advantage of the
extra information and structure. This is done by replacing p with a pair (p, d)
but we must let the coding of d be done by the machine Û that represents the
environment since we cannot change the objective optimized as long as we are in
the optimization setting. Hence we end up with pairs (p, q) where q is a program
on Û that is run conditioned on p, i.e. q becomes an environment and p a policy.
In other words, we want to change from U to U ′ such that∑

p,q

2−(`U (p)+`Û (q))R(p, q)`U (p, q) >
∑
p,q

2−(`U (p)+`Û (q))R(p, q)`U ′(p, q)

where `U (p, q) is the length of a program on U (given by a translation) that
produce the outcome of running policy p in environment q. This is simultane-
ously aiming for a machine where good policies have short program and where
the likely data to be generated when such a policy is run, can also be coded
compactly. This strategy is a sound method for representing plausibility and
desirability in the same way and simultaneously modeling the world and the
value of different choices in it. In the optimization discussed so far, we know
the objective we optimize a policy for and the learning of this has so far been a
separate matter. We will below take the next step of our investigation.

Combined learning of agent and environment. The above described strat-
egy starts with a reference machine Û that AIXI’s initial model ξ is defined
from. The choice of Û is arbitrary and any policy/agent can be considered super-
intelligent dependent on the reference machine. The reference machine defines
what is considered a simple hypothesis and defines belief based on viewing sim-
pler hypothesis as more plausible than more complex ones, i.e. Occam’s razor is
relied on. In this article, we learn a reference machine that implicitly incorpo-
rates an understanding of the world that makes Occam true. We replace q by
d and 2−`Û (q) by the unknown true environment probability µ(d|p) and aim for
higher

∑
p,d 2−`U (p)µ(d|p)R(d) by choosing U ′ with

∑
p,d

2−`U (p)µ(d|p)R(d)`U (p) >
∑
p,d

2−`U (p)µ(d|p)R(d)`U ′(p).

In the sampling setting we simply sample from the world instead of using Û .
This is making the simplifying assumption that we have a reset after a program
has been run and evaluated, i.e. we can start every program in the same situation.
This is feasible if one wants to train an agent in a rich world like a general game
playing situation but where one can start over.

Exploration is important, both for the individual programs who act sequen-
tially for a long time and whose total return depends on exploration, as well
as for the sampling of programs. The learnt bias towards programs believed to
have high reward ensures that we aim to explore promising possibilities and not
waste time on finding out exactly how bad something is. Optimistic hypotheses
have the beneficial property that if the outcome does not clearly contradict the
hypothesis, the agent has received high return [SH12a].

When we above wrote that we want
∑
p,d 2−`U (p)µ(d|p)R(d) to be high, there

are two possible interpretations depending on what we expect the programs to
be doing. We can have p that is simply implementing a policy, i.e. it delivers
actions and need an observation in between each to deliver the next. However,
we can also allow programs that produce output that can be understood as pairs
of actions and observations or whole sequences of such pairs (i.e. all of the data
d), but where the observation part can be changed by the environment resulting
in a different return. This stays within the usual agent-environment framework
while we can go further and still use the same expression above, by letting the
environment rewrite the whole output. In this setting, a program is sampled
and then data is generated. The data might not entirely coincide with the data
coded/generated by the program on the reference machine, because the program
acts in the (unknown and uncertain) world. In this setting there is no distinction
between actions and observations. The program aims to write a certain (say)
1000 bits and there are another, possibly different 1000 bits resulting which the
return is based on.

Reward-modulated inference. If we want to implement our strategy using a
parameterized probabilistic architecture, the objective becomes one of optimizing
a reward weighted likelihood/loss. One can e.g. envision the action being part
of the observation and one tries to improve the observation to achieve higher
reward.

In the field of neuro-science where finding the update equation for synap-
tic weights used by biological brains is sought, reward-modulation of spike-
timing-dependent synaptic plasticity has been the recent focus of much research.
Herrstein’s law [Her70] states that an animal, including humans, tend to select
actions with a frequency proportional to the reward accumulated while tak-
ing that action. [LS06] shows that such operant matching is the result if one
has correlation between reward and neural activity in a spiking neural network.
[LPM07] began analyzing such methods from a learning-theoretic perspective

and [FSG10] interpreted a broad class of candidate rules as having a reward-
driven part and an unsupervised part. They considered the latter to be unde-
sirable for reinforcement learning and introduced a reward predicting critic to
cancel it out. However, Deep Learning [HOT06,BLPL07] often starts with an un-
supervised phase and then tunes for the actual objective. [SL14] recently argued
that model-free reinforcement learning cannot account for human behavior but
argues that some modeling of observations is taking place in the human brain.

[DH97] points out the difference between their iterative procedure, which is
the basic idea used in this article, and the simpler matching procedure which
stay with the same frequencies. The difference is that the current probability
of taking an action is taken into account in the expectation and then, if the
most rewarding actions stay the same, its frequency will for each iteration keep
increasing towards one. If it changes, the procedure is still able to change and
move in a new direction. That the simpler matching is so prevalent in nature
might imply that the natural environment is so uncertain, changing and even
dramatically adversarial that this modest amount of optimization for current
conditions is suitable and can also still be challenging in a complex environment.

Optimizing the world=agent+environment. In our final setting we do not
hold a true environment nor an a priori reference machine fixed but evolve the
machine that defines the environment. This means that we no longer have a clear
separation between agent and environment. The only thing fixed in this setting is
the return function R. For this to be useful we must either be in a setting where
the return is not just internal in the sense that it sums up rewards produced by
a program on the reference machine, but that it is external to the environment
we discuss. For example, if we want an agent to produce a music song in a music
school that is then sold outside, we have a meaningful setting where it is useful
to optimize the whole operation and not a subset that is interpreted as the
agent. Alternatively, we can view the environment as being everything and the
return as being internal, but where it is a hard task to change the total world
to increase the reward. The update objective

∑
p 2−`U (p)R(p)`Ũ (p) is telling us

that we want to change U to U ′ such that the expression becomes larger with
Ũ = U ′ than with Ũ = U , resulting in

∑
p 2−`U′ (p)R(p) >

∑
p 2−`U (p)R(p).

3 Conclusions

We discussed reducing all of intelligence to an inference mechanism and prop-
erties of the environment. We introduced a formal approach that iteratively
develops a reference machine suitable for both, implementing a good model of
the environment as well as good policies for it.
Acknowledgement This work was supported by ARC grant DP120100950.

References

[BLPL07] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise
training of deep networks. In NIPS’2007. MIT Press, 2007.

[Bot12] M. Botvinick, M.; Toussaint. Planning as inference. Trends in cognitive
sciences, 16(10):485 – 488, 2012.

[DH97] P. Dayan and G. Hinton. Using expectation-maximization for reinforcement
learning. Neural Computation, 9(2):271–278, 1997.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. J. of the Royal Stat. Soc.: B, 39:1–38, 1977.

[FSG10] N. Fremaux, H. Sprekeler, and W. Gerstner. Functional requirements for
reward-modulated spike timing-dependent plasticity. Journal of Neuro-
science, 30(40):13326–13337, 2010.

[HB04] J. Hawkins and S. Blakeslee. On Intelligence. Times Books, 2004.
[Her70] R. J. Herrnstein. On the law of effect. Journal of the Experimental Analysis

of Behavior, 13:243–266, 1970.
[HOT06] G. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep

belief nets. Neural Comput., 18(7):1527–1554, July 2006.
[Hut05] M. Hutter. Universal Articial Intelligence: Sequential Decisions based on

Algorithmic Probability. Springer, Berlin, 2005.
[Kah11] D. Kahneman. Thinking, fast and slow. 2011.
[Len80] D. Lenat. The plausible mutation of DNA. Technical report, Standford

University, 1980.
[LH07] S. Legg and M. Hutter. Universal Intelligence: A defintion of machine

intelligence. Mind and Machine, 17:391–444, 2007.
[LPM07] R. Legenstein, D. Pecevski, and W. Maass. Theoretical analysis of learning

with reward-modulated spike-timing-dependent plasticity. In NIPS, 2007.
[LS06] Y. Loewenstein and S. Seung. Operant matching is a generic outcome

of synaptic plasticity based on the covariance between reward and neural
activity. PNAS, 15224–15229, 103(41), 2006.

[OR12] L. Orseau and M. Ring. Space-time embedded intelligence. In Artificial
General Intelligence, pages 209–218. Springer Berlin Heidelberg, 2012.

[Pel12] M. Pelikan. Probabilistic model-building genetic algorithms. In GECCO,
777-804. ACM, 2012.

[RN10] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Englewood Cliffs, NJ, 3nd edition, 2010.

[Rus97] Stuart Russell. Rationality and intelligence. Artificial Intelligence, 1997.
[Sch07] J. Schmidhuber. Gödel machines: Fully self-referential optimal universal

self-improvers. In Artificial General Intelligence, 199-226. 2007.
[SH12a] P. Sunehag and M. Hutter. Optimistic agents are asymptotically optimal.

In Proceedings of the 25:th Australasian AI conference, pages 15–26, 2012.
[SH12b] P. Sunehag and M. Hutter. Optimistic AIXI. In Proceedings of the 4:th con-

ference on Artifical General Intelligence (AGI’2012), pages 312–321, 2012.
[SL14] H. Shteingart and Y. Loewenstein. Reinforcement learning and human

behavior. Current Opinion in Neurobiology, 25(0):93 – 98, 2014.
[SZW97] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias

with success-story algorithm, adaptive Levin search, and incremental self-
improvement. Machine Learning, 28:105–130, 1997.

[WE03] M.J. West-Eberhard. Developmental Plasticity and Evolution. Oxford Uni-
versity Press, USA, 2003.

[Web10] G. Webb. Occam’s razor. In Encl. of Machine Learning. Springer, 2010.
[WGRT11] D. Wingate, N. Goodman, Kaelbling L. Roy, D., and J. Tenenbaum.

Bayesian policy search with policy priors. In IJCAI, 1565-1570, 2011.

