
A General System for Learning and Reasoning in
Symbolic Domains

Claes Strannegård1, Abdul Rahim Nizamani2, and Ulf Persson3

1 Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg,
Sweden and Department of Applied Information Technology,

Chalmers University of Technology, Sweden
claes.strannegard@gu.se

2 Department of Applied Information Technology, University of Gothenburg, Sweden
abdulrahim.nizamani@gu.se

3 Department of Mathematical Sciences, Chalmers University of Technology, Sweden
ulfp@chalmers.se

Abstract. We present the system O? that operates in arbitrary symbolic domains,
including arithmetic, logic, and grammar. O? can start from scratch and learn the
general laws of a domain from examples. The main learning mechanism is a for-
malization of Occam’s razor. Learning is facilitated by working within a cognitive
model of bounded rationality. Computational complexity is thereby dramatically
reduced, while preserving human-level performance. As illustration, we describe
the learning process by which O? learns elementary arithmetic. In the beginning,
O? knows nothing about the syntax or laws of arithmetic; by the end, it has con-
structed a theory enabling it to solve previously unseen problems such as “what
is 67∗8?” and “which number comes next in the sequence 8,11,14?”.

Keywords: domain-independent agent, Occam’s razor, bounded rationality.

1 Introduction

The goal of artificial general intelligence (AGI) is to build systems with general in-
telligence at the human level or beyond [1]. Such systems must be able to learn the
mechanics of new domains while adapting to arbitrary performance measures in those
domains. Developmental (epigenetic) robotics, inspired by developmental psychology,
builds agents that develop automatically through interaction with their environment [2].
Research in the field has so far focused on sensorimotor development and social inter-
action, leaving higher cognitive functions, such as symbolic reasoning, largely unex-
plored.

A standard textbook in artificial intelligence [3] characterizes an agent as rational
if it always acts so that the expected value of its performance measure is maximized.
Herbert Simon introduced the notion of bounded rationality [4] to designate “rational
choice that takes into account the cognitive limitations of the decision maker – limita-
tions of both knowledge and computational capacity”.

Inductive program synthesis – in particular, inductive logic programming [5] – is
program synthesis from examples of input-output pairs [6]. The analytic approach uses

examples to construct actual programs, while generate-and-test uses examples for test-
ing purposes only. Analytic techniques include anti-unification and recursive relation
learning. The computational complexity of the methods used has proven a major obsta-
cle to the use of inductive program synthesis on a larger scale [6].

Cognitive architectures such as Soar [7], ACT-R [8], CHREST [9], and NARS [10]
have been used to model various aspects of human cognition. Such architectures com-
monly use abstract rewrite systems to model computations as rewrite sequences [11].
They often include explicit models of such cognitive resources as working, sensory,
declarative, and procedural memory. These cognitive resources are bounded in vari-
ous ways: e.g., with respect to capacity, duration, and access time [12]. In particular,
working memory, which can typically only hold a small number of items (chunks) is a
well-known bottleneck for human problem solving [13]. That said, one can easily obtain
models of bounded rationality by placing limits on the available cognitive resources.

According to Piaget’s developmental theory, children adapt to new information in
one of two ways: by assimilation, in which new information fits into existing knowledge
structures; and by accommodation, in which new information causes new knowledge
structures to form or old structures to be modified [14].

Occam’s razor tells us to prefer short and simple explanations, both in science and
everyday life. It can be formalized in several ways, some of which (e.g., Kolmogorov
and Solomonoff complexity) are not computable, while others (e.g., Levin complexity)
are [15]. A computable version of Kolmogorov complexity can be obtained by combin-
ing it with traditional complexity classes from complexity theory. Likewise, although
the universal AI model AIXI is not computable in its original form, restricted versions
have been proposed that are capable of problem solving in e.g. game domains [16].

In this paper, we present a general system, designed to match the learning and rea-
soning capabilities of unaided humans in symbolic domains. Section 2 presents the
system O?. Sections 3 and 4 shows how O? can be used for learning and reasoning,
respectively. For the sake of concreteness, we consider the special case of elementary
arithmetic. Section 5 offers some conclusions.

2 Computational model

In cognitive psychology, computational models should, ideally, perform both (i) at least
and (ii) at most at the human level for any given performance measure. For AGI, satisfy-
ing (i) is generally sufficient. Indeed, performing above the human level is an advantage;
not to mention that a unilateral cognitive model satisfying (i) but not (ii) may be easier
to construct.

In this paper, we use the following strategy for AGI. Suppose that a human, with
bounded cognitive resources, can solve a certain problem. Suppose further that one has
a well-designed unilateral cognitive model of this person – one that also has bounded
cognitive resources. Then, a solution exists within the model: one that we can find by
searching the model. The search strategy can be combined with any heuristic algorithm.
By so exploiting the link to human cognition, we hope to mitigate the combinatorial
explosion associated with many standard AI algorithms. We now proceed to define our
model formally.

Definition 1 (Tag). A tag is a string of ASCII symbols that does not contain any punc-
tuation symbols: in particular, no commas, colons, parentheses, or spaces.

Tags will be written in monospaced font. For example, x, 1 and Digit are tags.

Definition 2 (Variable). A variable is a string of the form (σ:τ), where σ and τ are
tags.

For example, (x:Number) and (x:Sent) are variables.

Definition 3 (Term). A term is a finite tree whose nodes are labeled with tags or vari-
ables. Variables may only appear in the leaf nodes.

Example 1. Here are two examples of terms (about arithmetic and propositional logic):

*

(x:Number) 0

||

(x:Sent) True

For purposes of this paper, terms will be presented not as trees but as strings, to make
the notation more compact. We use a standard linearization algorithm that inserts paren-
theses into the strings to reflect the implied tree structure. We use some conventions –
e.g. omitting certain parentheses – to make the notation easier to read. The above terms
linearize to (x:Number)*0 and (x:Sent)||True, respectively. To go in the reverse di-
rection, we use a standard parsing algorithm. In this way, one can move freely between
representations of terms as trees or strings.

Definition 4 (Axiom). An axiom is a triple (τ, t, t ′), where τ is a tag and t and t ′ are
terms.

Example 2. Here are some examples of axioms (about arithmetic and propositional
logic):

(Equal,1+2,3)

(Equal,(x:Number) * 0,0)

(Equi,(x:Sent) || True,True)

(Equi,(x:Sent) && (y:Sent),(y:Sent) && (x:Sent)).

Definition 5 (Theory). A theory is a finite set of axioms.

Definition 6 (Assignment). An assignment is a partial function from variables to terms.

For instance, α = {((x:Number),1),((y:Number),2)} is an assignment. By extension,
assignments are defined from terms to terms. Thus, α((x:Number)+(y:Number)) =
1+2.

If s is a subtree of t, we write t(s). Moreover, if s′ is an arbitrary tree, we write
t(s′/s) to denote the result of replacing all occurrences of s in t by s′.

Definition 7 (Rewrite). Suppose (τ, t1, t2) is an axiom. Then, we write

t(t ′)
(τ, t1, t2)t(t ′′/t ′)

if there is an assignment α such that α(t1) = t ′ and α(t2) = t ′′. The conclusion t(t ′′)
follows from the premise t(t ′) by Rewrite.

Example 3. Here is an example application of Rewrite (with α as above):

1+2 (Equal, (x:Number)+(y:Number), (y:Number)+(x:Number))
2+1

Definition 8 (Computation). A computation is a sequence of terms (t0, . . . , tn) such
that for all i < n, ti+1 follows from ti by application of Rewrite.

We write computations vertically, from top to bottom, with the relevant axioms shown
at the transitions.

Example 4. Here is an example of a computation in the domain of arithmetic:

(1+2)*3
(Equal,1+2,3)

3*3 (Equal,3*3,9)
9

Example 5. Below is an example of a computation in the domain of propositional logic.
Here x, y, and z, are abbreviations of (x:Sent), (y:Sent), and (z:Sent), respectively.
Intuitively, the computation is a proof of the tautology (p→ q)∨ p. This is because all
of the axioms used in the computation preserve logical equivalence.

(p => q) || p
(Equi,x => y,(not x) || y)

((not p) || q) || p
(Equi,x || y,y || x)

(q || (not p)) || p
(Equi,(x || y) || z,x || (y || z))

q || ((not p) || p)
(Equi,(not x) || x,True)

q || True
(Equi,x || True,True)

True

Definition 9 (Agent). An agent is a tuple (T,C,W,L,D), where

- T is a theory (representing beliefs in declarative memory);
- C is a set of terms (representing concepts in declarative memory);
- W is a natural number (representing working memory capacity);
- L is a natural number (representing assimilation capacity); and
- D is a natural number (representing accommodation capacity).

Definition 10 (Term size). Given a term t, s(t) is the number of nodes of t.

The measure s(t) is a simple model of the load of t on working memory. We also define
s(ax) = s(t)+ s(t ′) for axioms ax = (τ, t, t ′) and s(T) = Σ{s(ax) : ax ∈ T} for theories
T .

Definition 11 (Agent computation). Let A=(T,C,W,L,D) be an agent. An A-computation
is a sequence of terms (t0, . . . , tn) with restrictions on

- terms: ti ∈C, for all i < n;
- transitions: ti+1 is obtained from ti using Rewrite and an axiom from T , for all

i < n;
- width: s(ti)≤W, for all i≤ n; and
- length: n≤ L.

The definition aims to capture those computations within reach of an unaided human
with belief set T , concept set C, working memory capacity W , assimilation capacity L,
and accommodation capacity D (cf. Definition 19).

Observation 1 For any agent A, the set of A-computations is finite.

This holds for combinatorial reasons, since all resources of A are bounded. Any A-
computation can be obtained by inserting terms belonging to a finite set C into a frame
of finite length L and width W .

Definition 12 (Induction problem). An induction problem (IP) is a finite set of items,
where an item is a tuple (τ, t, t ′,u) such that τ is a tag, t and t ′ are variable-free terms,
and u is an integer (utility).

Definition 13 (Item computation). The agent A computes the item (τ, t, t ′,u) if there is
an A-computation c from t to t ′ that uses only axioms with the tag τ and has the property
that, for every assignment α((σ : τ′′)) = t ′′ occurring in c, there is a (type-checking)
A-computation from t ′′ to τ′′ that uses only axioms with the tag Type.

Example 6. Suppose that the following are A-computations –the right one being a type-
checking computation. Then A computes the item (Equal,2+0,2,1).

2+0
(Equal,(x:Digit)+0,(x:Digit))

2
2 (Type,2,Digit)

Digit

Definition 14 (Performance). The performance of agent A on induction problem I is
the number

Σ{u : (τ, t, t ′,u) ∈ I and A computes (τ, t, t ′,u)}.

The convention that Σ/0 = 0 ensures that the performance is always defined.

Observation 2 The performance measure is computable.

Next, let us introduce the four operators to be used for constructing theories.

Definition 15 (Crossover). The term t ′′ is obtained from the terms t and t ′ by crossover
if t ′′ can be obtained from t by replacing a subtree of t by a subtree of t ′.

For example, 1+(3∗4) is a crossover of 1+2 and 3∗4.

Definition 16 (Abstraction). The axiom (τ, t,w) is obtained from the item (τ, t ′,w′,u)
by abstraction if α(t) = t ′ and α(w) = w′, for some assignment α.

Example 7. (Equal,(x:Aterm)+(y:Aterm),(y:Aterm)+(x:Aterm)) is obtained from
the item (Equal,1+2,2+1,1) by abstraction.

Definition 17 (Recursion). The axiom ax is obtained from the item (τ, f (t), t ′,u) by
recursion if ax = (τ, f (w),w′), where w′ contains f (w′′), and w and w′′ contain the
same variable. w and w′ are formed by crossover.

Example 8. The axiom (Equal,f((x:Aterm)+1),f((x:Aterm))*2) is obtained from
the item (Equal,f(0),1,1) by recursion.

Definition 18 (Memorization). The axiom ax is obtained by memorization from the
item (τ, t, t ′,u), where u > 0, if ax = (τ, t, t ′).

Example 9. The axiom (Equal,1+2,3) is obtained from the item (Equal,1+2,3,1) by
memorization.

Definition 19 (Occam function). The Occam function takes agent An =(Tn,Cn,W,L,D)
and IP In as input and outputs agent An+1 = (Tn+1,Cn+1,W,L,D), as specified below.

Let Cn+1 =Cn∪Γ, where Γ is obtained from In by taking subtrees of terms that ap-
pear in items of In, and replacing one or more leaf nodes of those subtrees by variables
taken from a set generated from Cn.

To define Tn+1, first form the set ∆ consisting of:

- All axioms ax such that s(ax)≤D, whose terms are obtained from Cn+1 by crossover;
- All axioms obtained from items of In by abstraction;
- All axioms ax such that s(ax) ≤ D that are obtained from items of In by recursion,

using terms of Cn+1; and
- All axioms obtained from items of In by memorization.

Then, form the set ∆′ ⊆ ∆, whose axioms satisfy a few additional conditions: e.g., all
variables must appear in both terms of the axiom, or not at all.

Next, form the set ∆′′ ⊆ ∆′ containing at most 3 axioms, using the preference order:

1. The performance of (Tn∪∆′′,Cn+1,W,L,D) on In is as large as possible;
2. s(∆′′) is as small as possible;
3. ∆′′ has a maximum number of variable tokens;
4. ∆′′ has a minimum number of variable types;
5. ∆′′ is as lexicographically small as possible.

Finally, let Tn+1 = Tn∪∆′′.

To illustrate the difference between type and token in this case, we can consider the
term (x:Number)*(x:Number) + 2, which contains one variable type and two variable
tokens. Condition 1 aims to maximize utility. Condition 2 is a formalization of Occam’s
razor. Condition 3 ensures that variables are preferred over constants and Condition 4
that variables are reused whenever possible. Condition 5, finally, guarantees that the
output is always uniquely defined.

Observation 3 The Occam function is computable.

This follows since there are only finitely many agents and associated computations to
check. We implemented the system O? comprising approximately 2,500 lines of code
in the functional programming language Haskell. O? can be initialized with any agent
A0. At stage n, O? takes IP In as input and updates An to An+1. O?’s update function is
a version of the Occam function with the following additions.

To reduce search complexity, O? applies the Occam function in multiple steps. First
it forms the set ∆ by crossover and iterates over lengths of candidates (1 to D). If
crossover fails to find an optimal candidate for ∆′′, O? uses abstraction and then recur-
sion, and finally memorization if all else fails. The search for ∆′′ from ∆′ is exhaustive,
while the search for A-computations uses the A∗ algorithm with the goal of finding the
shortest computations.

Crossover produces a large number of axioms. Therefore, a small set of filters is ap-
plied for reducing the complexity while still maintaining the generality of the resulting
set ∆. These filters include the following: an axiom should be new (not already in the
theory); it should not have a variable in the right term that is absent from the left term
(cf. pure functions); it should contain at most two wildcards (variables appearing in the
left term but not in the right term), e.g., (Equal,(x:Aterm) * 0,0). Moreover, variable
assignments, e.g., (Equal,(x:Aterm),1), are not allowed.

3 Learning

In this section we illustrate how O? can learn in the special case of elementary arith-
metic. All problems considered below were solved by O? running on a standard com-
puter.

Example 10. Define A0 by letting T0 = /0, C0 = /0, W = 8, L = 10, and D = 6. Suppose
I0 consists of the items

(Type,0,Digit,1) (1)
(Type,1,Digit,1) (2)
(Type,2,Digit,1). (3)

Then, C1={0,1,2,Digit} and T1 consists of the axioms

(Type,0,Digit) (4)
(Type,1,Digit) (5)
(Type,2,Digit). (6)

Item (1) is A1-computable as follows:

0 (4)
Digit

The other two items can be computed similarly. Intuitively, A1 has memorized that 0, 1,
and 2 are digits.

Example 11. Let A1 be as above. Suppose I1 consists of the items

(Type,1,Number,1) (7)
(Type,1#2,Number,1) (8)
(Type,1#(2#1),Number,−1). (9)

The symbol # can be interpreted as a juxtaposition operator: e.g., 1#2 is interpreted as
12. Now C2−C1={1#2,2#1,1#(2#1),Number} and T2−T1 consists of the axioms

(Type,Digit,Number) (10)
(Type,Number#Digit,Number). (11)

Item (7) is A2-computable using the axioms (5) and (10). Item (8) is A2-computable as
follows:

1#2 (5)
Digit#2

(10)
Number#2 (6)

Number#Digit
(11)

Number

Item (9) is not A2-computable. It is not hard to see that T2 is too weak to compute this
item. Therefore, O? terminates the search and concludes that the item is not computable.
The performance of A2 on I1 is 2, which is optimal. If item (9) were not included in I1,
then T2−T1 would include the axiom:

(Type,Number#Number,Number)

instead of the axiom (11). Intuitively, A2 knows that numbers are sequences of digits.

Example 12. Let A2 be as above. Suppose I2 consists of the items

(Type,1,Aterm,1) (12)
(Type,1+2,Aterm,1). (13)

Then, T3−T2 consists of the axioms

(Type,Number,Aterm) (14)
(Type,Aterm+Aterm,Aterm). (15)

Item (13) is readily A3-computable using the axioms (10), (14), and (15).

Example 13. Let A3 be as above. Suppose I3 consists of the item

(Type,1*2,Aterm,1). (16)

Then, T4−T3 consists of the axiom

(Type,Aterm*Aterm,Aterm). (17)

Now the system has learned the syntactic notions of digit, number, and arithmetical
term. Next it will learn some algebraic laws.

Example 14. Let A4 be as above. Suppose I4 consists of the items

(Equal,1+0,1,1) (18)
(Equal,1+1,1,−1). (19)

Then, T5−T4 consists of the axiom:

(Equal,(x:Aterm)+0,(x:Aterm)). (20)

Item (18) is A5-computable as follows:

1+0 (20)
1

The straightforward type-checking computation uses the axioms (2), (10), and (14).
Item (19) is not A5-computable, since no axiom of T5 matches 1+1. If item (19) were
not included in I4, then T5−T4 would consist of

(Equal,(x:Aterm)+(y:Aterm),(x:Aterm)).

Example 15. Let A5 be as above. Suppose I5 consists of the item

(Equal,0+1,1+0,1). (21)

Then, T6−T5 consists of the axiom

(Equal,(x:Aterm)+(y:Aterm),(y:Aterm)+(x:Aterm)). (22)

Item (21) is A6-computable as follows:

0+1 (22)
1+0

The two type-checking computations are, once again, straightforward.

Example 16. Starting from A6, we may continue in the same way and eventually arrive
at an agent, An, which contains (a subset of) the theory BASE, defined in Appendix A.
In particular Tn contains the axioms

(Equal,8+3,1#1) (23)
(Equal,f(1),f(0+1)). (24)

4 Reasoning

In this section, we illustrate how O? is able to reason about the domains it has learned
about and solve previously unseen problems of deduction and induction. For simplicity,
we continue to work in the arithmetic domain. First, we will consider the deduction
problem of computing 67∗8.

Example 17. Let An be as above. Let In be given by

(Equal,(6#7)*8,(5#3)#6,1). (25)

Then, Tn+1 = Tn and the item is computable by An+1 as follows:

(6#7)*8

(6*8)#(7*8)

(6*8)#(5#6)

((6*8)+5)#6

((4#8)+5)#6

(4#(8+5))#6

(4#(1#3))#6

((4+1)#3)#6

(5#3)#6

Next, we will consider the induction problem of finding the next number in the sequence
8,11,14.

Example 18. Let An+1 be as above and let In+1 be given by

(Equal,f(0),8,1) (26)
(Equal,f(1),1#1,1) (27)
(Equal,f(2),1#4,1). (28)

Then, Tn+2−Tn+1 consists of the axioms

(Equal,f(0),8) (29)
(Equal,f((x:Aterm)+1),f((x:Aterm))+3). (30)

For instance, item (27) is computable by An+2 as follows:

f(1)
(24)

f(0+1)
(30)

f(0)+3
(29)

8+3 (23)
1#1

Now, An+2 can compute f(3) to obtain 1#7 and thus solve the number-sequence prob-
lem ”correctly”.

5 Conclusions

We have described the general system O? for learning and reasoning in symbolic do-
mains. O? differs from standard AI models by being domain independent and by con-
taining a unilateral cognitive model whose purpose is to reduce computational complex-
ity, while keeping performance at the human level or above. In this way, the combinatorial-
explosion problem, arising in e.g. inductive logic programming, automatic theorem

proving, and grammar induction, is mitigated. O? is able to learn the mechanics of
new symbolic domains from scratch. It is general purpose: it has nothing built in that is
specific to arithmetic or any other particular domain.

This paper showed that O? can learn elementary arithmetic from scratch. After
learning, it could solve both deductive problems like computing 67 ∗ 8 and inductive
problems like computing the next number in the sequence 8,11,14. In [17], it was
shown that an agent similar to An is able to perform above the average human level on
number sequence problems appearing in IQ tests. The paper [18] showed that O? can
also learn propositional logic from scratch. After learning, it was able to perform above
the average human level on propositional logic problems where the task is to distinguish
tautologies from non-tautologies.

At present, the main heuristic of O? is to confine the search for solutions to the cog-
nitive model. This heuristic is unsophisticated; nevertheless, it is sufficient for reaching
human-level performance in certain domains. It can potentially be combined with more
traditional heuristics to improve performance further.

We find the approach to AGI as proposed in this paper promising. More research is
needed, however, to determine its applicability, scalability, and robustness.

Acknowledgement

This research was supported by The Swedish Research Council, Grant 421-2012-1000.

A Arithmetic theory

The following are the axioms of the arithmetic theory BASE. Here x, y, and z are abbre-
viations of (x:Aterm), (y:Aterm), and (z:Aterm), respectively.

- (Type, 0, Digit)
- (Type, 1, Digit)
- . . .
- (Type, 9, Digit)
- (Type, Digit, Number)
- (Type, Number#Digit, Number)
- (Type, Number, Aterm)
- (Type, Aterm+Aterm, Aterm)
- (Type, Aterm*Aterm, Aterm)
- (Equal, x+0, x)
- (Equal, 0+x, x)
- (Equal, 1+1, 2)
- (Equal, 1+2, 3)
- . . .
- (Equal, 9+9, 1#8)
- (Equal, x*0, 0)
- (Equal, 0*x, 0)

- (Equal, x*1, x)
- (Equal, 1*x, x)
- (Equal, 2*2, 4)
- (Equal, 2*3, 6)
- . . .
- (Equal, 9*9, 8#1)
- (Equal, x+y, y+x)
- (Equal, x+(y+z), (x+y)+z)
- (Equal, (x#0)+y, x#y)
- (Equal, (x#y)+z, x#(y+z))
- (Equal, x#(y#z), (x+y)#z)
- (Equal, x*(y+z), (x*y)+(x*z))
- (Equal, (x#y)*z, (x*z)#(y*z))
- (Equal, f(1), f(0+1))
- (Equal, f(2), f(1+1))
- (Equal, f(3), f(2+1))

References

1. Wang, P., Goertzel, B.: Theoretical Foundations of Artificial General Intelligence. Atlantis
Press (2012)

2. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.: Au-
tonomous Mental Development by Robots and Animals. Science 291(5504) (2001) 599–600

3. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall series in
artificial intelligence. Prentice Hall (2010)

4. Simon, H.A.: Models of Bounded Rationality: Empirically Grounded Economic Reason.
Volume 3. MIT press (1982)

5. Muggleton, S., Chen, J.: Guest editorial: special issue on Inductive Logic Programming (ILP
2011). Machine Learning (2012) 1–2

6. Kitzelmann, E.: Inductive Programming: A Survey of Program Synthesis Techniques. In:
Approaches and Applications of Inductive Programming. Springer (2010)

7. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An Architecture for General Intelligence.
Artificial Intelligence 33(3) (1987) 1–64

8. Anderson, J.R., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum, Mah-
wah, N.J. (1998)

9. Gobet, F., Lane, P.: The CHREST Architecture of Cognition: The Role of Perception in
General Intelligence. In: Artificial General Intelligence 2010, Lugano, Switzerland, Atlantis
Press (2010)

10. Wang, P.: From NARS to a Thinking Machine. In: Proceedings of the 2007 Conference on
Artificial General Intelligence, Amsterdam, IOS Press (2007) 75–93

11. Bezem, M., Klop, J.W., de Vrijer, R.: Term Rewriting Systems. Cambridge University Press
(2003)

12. Smith, E.E., Kosslyn, S.M.: Cognitive Psychology: Mind and Brain. Upper Saddle River,
NJ: Prentice-Hall (2006)

13. Toms, M., Morris, N., Ward, D.: Working Memory and Conditional Reasoning. The Quar-
terly Journal of Experimental Psychology 46(4) (1993) 679–699

14. Piaget, J.: La construction du réel chez l’enfant. Delachaux & Niestlé (1937)
15. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications.

Texts in computer science. Springer (2009)
16. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation.

Journal of Artificial Intelligence Research 40(1) (2011) 95–142
17. Strannegård, C., Nizamani, A.R., Sjöberg, A., Engström, F.: Bounded Kolmogorov complex-

ity based on cognitive models. In Kühnberger, K.U., Rudolph, S., Wang, P., eds.: Proceedings
of AGI 2013, Beijing, China, Springer (2013)

18. Nizamani, A.R., Strannegård, C.: Learning Propositional Logic From Scratch. In: The 28th
annual workshop of the Swedish Artificial Intelligence Society (SAIS), 2014. (in press)

