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Abstract. The theory of Causal Entropic Forces was introduced to explain the 

emergence of intelligence as a phenomenon in physical systems.  Although the 

theory provides illustrations of how behavior shaped by causal entropic forces 

resembles human cognitive niche in specific simple settings, the theory leaves 

open some important questions.  First, the definition of causal entropic forces, 

in terms of actions that maximize the statistical diversity of future paths a sys-

tem can take, makes no connection with concepts of knowledge and rationality 

traditionally associated with intelligence. Second, the theory does not explain 

the origins of such path based forces in classical thermodynamic ensembles.  

This paper addresses both these issues using the principles of open system 

quantum mechanics, quantum statistics and the Hamiltonian theory of Dynamic 

Economics. The construction finally arrived at is much more general than the 

notion of entropic forces and shows how maximizing future path diversity is 

closely related to maximizing a particular utility function over a sequence of in-

teractions till the system attains thermodynamic equilibrium.  
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One of the fundamental problems in Artificial Intelligence existing right from the 

inception of the field is the lack of a precise formulation. The most widely studied AI 

architectures involve logical agents, goal based agents and utility maximizing agents. 

The latter approach, also termed as the economic approach to rationality, proposes 

that intelligence can be referred to as the agent’s ability to maximize a utility or value 

function over the sequence of states it will see in its lifetime, given transition proba-

bilities for combinations of states and actions. In this approach the agent receives a 

reward for each state it sees, based on a reward function over the sample space of 

states, and its job is to maximize the predicted future sum of these rewards or the 

utility of its action. The problem here lies in getting a consensus on the global prefer-

ence order on the utilities of actions in a particular state, which has been discussed in 

great depth in existing literature [2].  

 The paper on Causal Entropic Forces [1] proposes a first step towards estab-

lishing a connection between thermodynamic entropy maximization over a future path 

and intelligent behavior. It purports the idea that general causal entropic forces can 

result in spontaneous emergence of intelligent behavior in simple physical systems 

without the need for explicitly specifying goals or utilities. However, there are two 
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potential problems with this paper – a) It hypothesizes a force, dependent on the sta-

tistical diversity of future paths up to a finite time horizon, as against those based on 

instantaneous entropy production which are widely studied in statistical thermody-

namics. The conditions under which such forces might exist have not been estab-

lished. b) Although it does illustrate, with examples, emergence of ‘human-like’ be-

havior in the narrow sense of tool use and walking abilities, it is far from establishing 

a clear relation between the traditional notion of intelligence and existence of forces 

that maximize path diversity. This paper attempts to resolve both the above mentioned 

issues in the context of open quantum systems and the Hamiltonian theory of dynamic 

economics [6]. The next section provides a very brief introduction to Quantum Me-

chanics for the non physicists. 

1 Background 

1.1 Quantum Mechanics 

In non-relativistic QM, all matter in the universe is expressed in the form of a 

wavefunction which associates nonzero probability amplitude to every coordinate in 

the combined configuration space of all particles (as against the conventional Euclid-

ean space, in the configuration space every point corresponds to the degrees of free-

dom of all particles). The time evolution of this universal wavefunction ψ is deter-

mined by the Schrodinger wave equation: 

  
  

  
                                (1) 

where H is the quantum Hamiltonian. It is a linear operator with eigenvalues as possi-

ble values of energy of the system.  

1.2 Density Matrix Formalism and the Canonical Ensemble 

If the values of all commuting observables are not known, we have more than one 

wave-function describing the system. Under this condition, the system state is repre-

sented by a density matrix which describes a statistical ensemble of wave-functions: 

                                                                    (2) 

The density operator is positive definite so it can always be diagonalized in an 

eigenbasis. The time evolution of the density matrix is then given by the von-

Liouville equation which is the quantum counterpart of the classical Liouville equa-

tion in statistical mechanics: 

  
  

  
                                      (3) 



If the universe is separated into a system and an environment which are in thermal 

equilibrium (only able to exchange energy), the density matrix is given by the cele-

brated Gibbs state: 

    

        
                   (4) 

Here β is the inverse temperature of the reservoir and H is the system Hamiltonian. 

2 Causal Entropic Forces 

The paper [1] proposes a first step towards establishing a connection between path 

entropy maximization and intelligent behavior. It purports the idea that general causal 

entropic forces can result in spontaneous emergence of intelligent behavior in simple 

physical systems without the need for explicitly specifying goals or utilities. It sug-

gests a potentially general thermodynamic model of adaptive behavior as a non-

equilibrium process in open systems. A nonequilibrium physical system’s bias to-

wards maximum instantaneous entropy production is reflected by its evolution toward 

higher-entropy macroscopic states, a process characterized by the formalism of en-

tropic forces. The instantaneous entropic force on a canonical ensemble associated 

with a macrostate partition is given by: 

                                                            (5) 

where T is the reservoir temperature and S(X) is the entropy associated with a 

macrostate X and X0 is the present macrostate. In order to uniformly maximize entro-

py production between present and a future time horizon, the author proposes general-

ized causal entropic forces over paths through the configuration space rather than over 

the instantaneous configuration (or the ensemble). He then defines the causal path 

entropy of a macrostate X with the current system state x(0) as: 

                                                          (6) 

where Pr(x(t)|x(0)) denotes the conditional probability of the system evolving through 

the path x(t) assuming the initial system state x(0), integrating over all possible paths 

taken by the open systems’ environment during the same interval. A path-based caus-

al entropic force F corresponding to (6), can be expressed as: 

                                                            (7) 

where TC is a causal path temperature that parametrizes the system’s bias toward 

macrostates that maximize causal entropy. The remaining part of the causal path force 

derivation takes in to account specific assumptions about the environment being a 

heat bath at temperature Tr and the environment being coupled to only a few forced 

degrees of freedom. The environment periodically rethermalizes these forced degrees 



of freedom with a period Є. Further, the temporal dynamics of the system are taken to 

be Markovian in nature giving the path probability as: 

                                    
                                  (8) 

Making use of all these assumptions, the author finally arrives at the following path 

dependent force (Specific details not mentioned here. The reader is referred to [1] for 

the detailed derivation): 

          
   

  
                                              (9) 

The effect of the above force can be seen as driving the forced degrees of freedom 

with a temperature dependent strength in an average of short term directions      , 

weighted by the diversity of long term paths [                               ], 

that they make reachable, where the path diversity is measured over all degrees of 

freedom of the system. 

3 Causal Entropic forces in a Quantum Universe 

3.1 Projective or Von-Neumann Interactions 

If the time horizon for evaluating the causal entropic force τ →  , equation (6) gets 

modified to the following, owing to the celebrated asymptotic equi-partition property: 

         
            

  
                                

 

 
        (10) 

where       is the entropy rate of the Markov process. This is a valid assumption to 

make if the Markov chain is ergodic and stationary. Having established this let us 

move onto the development of the Quantum analogue. 

 As explained in [5], measurements and actions can be treated as system bath 

interactions in two mutually non-commuting eigenbases. Under the Born-Markov 

approximation, the temporal evolution of the reduced system (with bath degrees 

traced away) is described by the Lindblad Master equation: 

   

  
   

 

 
            

 

 
      

          
           

      (11) 

As in the case of Langevin dynamics, the bath thermalizes coupled degrees of free-

dom of the system in the pointer basis (the Lindbladian basis    for projective inter-

actions) after each interaction. We also assume the density matrix to be initially diag-

onal in the measurement eigenbasis      
 . The expectation value of the force on the 

ensemble is given by: 

        
  

  
                                                   (12) 



Here P is the momentum operator. Now, this ensemble force can be simplified as 

under: 

                                                             (13) 

Furthermore, we will assume that the action Lindbladian is PVM (projective valued 

measure) of the action observable. From equations (12) and (13), using explicit form 

of the Lindblad generator and common dissipation rates μ for all components forming 

the ensemble, the non-unitary component of the force (neglecting Hamiltonian dy-

namics) in a measurement eigenstate      
  is given by: 

     
 

 
                                                            (14) 

Here,        is an action basis (substituted for the Lindblad operator eigenbasis) and μ is 

Fourier transform of the time correlation function of corresponding Bath operators 

[4]. With some algebra, we obtain: 

     
 

 
                                                          (15) 

Notice the resemblance of the above equation with (10). The contribution of each 

action eigenstate to this force is proportional to statistical diversity (parametrized by 

the Born probability          
 ) of all future paths resulting from the action. The 

above equation explains the origins of such path based causal forces for projective 

Markovian interactions as the time horizon for evaluation of posterior path probabili-

ties τ →   in (9). 

3.2 Generalized Interactions 

In case of projective interactions, the Von Neumann entropy              of the 

system always increases [5]. So the system does not approach a goal state as against 

that illustrated in [1]. We turn to generalized action interactions (positive operator 

valued measures that are generalizations of projective valued measures) in this section 

which can decrease an open system’s entropy at the cost of entropy of the bath, ena-

bling the system to approach a goal state asymptotically as the system attains equilib-

rium. We will also assume that the average internal energy of the system is initially 

higher than reservoir temperature. For non equilibrium processes, the total entropy 

production rate is given by the detailed balance relation (second law for open sys-

tems): 

  
  

  
                                                          (16) 

where   is the total entropy production rate and J is the entropy flux owing to heat 

exchange between the system and its environment. 

 

 



3.2.1  Maximizing Path Diversity 

In the current context, the diversity of future paths can be termed as the maximum 

entropy that can be produced from the present to a future time horizon. Given the 

density operator   at the present time, the future path diversity is given by: 

                                                          (17) 

where   is the maximum attainable future system entropy. Integrating the entropic 

balance relation (16) over the time span to reach equilibrium, one gets: 

            
  

 
                                         (18) 

Let the entropy at time t = 0 be S0 and the current absolute entropy be St. Then making 

use of the balance relation in conjunction with the second law, we get: 

             
  

 
                                               (19) 

Because the average internal energy of the system is assumed to be initially higher 

than the bath temperature, as the system progresses towards equilibrium heat is dissi-

pated to the bath. So the heat exchange term in the above inequality is negative. Sec-

ondly   is the maximum attainable future system entropy, so the first term on the right 

side of the inequality is positive making the quantity on the right side strictly positive 

and it is the maximum value that can be attained for the future path diversity. As can 

be inferred, this value is approached when the total entropy production over time 

     is extremely small.  

4 Causal Entropic Forces and Maximizing Expected Utility 

4.1 Hamiltonian Theory of Dynamic Economics 

Having laid down the foundations of path based forces in Quantum Mechanics for 

open systems, we now develop the relation between economic utility and path diversi-

ty. For the problem of consumption-optimal growth with positive rate of time dis-

count α > 0, the equations of motion are [6]: 

                                                         (20) 

                                                       (21) 

where, k  is the initial endowment vector and Q is the vector of capital goods prices 

and H is the system Hamiltonian representing the production technology. The optimal 

steady state at the equilibrium (Q*,k*) is given by: 

 



                                                         (22) 

                                                       (23) 

From [7], the optimal path to the steady state for a diffusion process is given by the 

one that maximizes the following discounted expected utility over (possibly) infinite 

sequence of interventions: 

            
         

  
  

                                     (24) 

where ci is the consumption at time step i, St is the current value of quantity being 

consumed and U is the agent’s utility from consumption ci. We can assume the rate of 

time discount α to be constant for the sake of simplicity. According to [7], if the time 

discount rate α is given to be quite large, the optimal policy is Markovian in nature 

and is characterized by a control region, a complementary continuation region and a 

set of optimal actions that can be taken in control region. For the discrete time 

Markovian policy, equation (24) reduces to the well known Bellman equation: 

     
                    

  
         

    
                      (25) 

which can be rewritten as: 

     
                                    

         
    
     

  (26) 

4.2 Economic Utility and Entropy 

Using standard form of the Lindblad Dissipator and assuming characteristic dissipa-

tion rates μ to be equal for all components, the rate of change of expectation value of 

       in the system energy eigenbasis       is given by: 

 
             

  
                 

        
 

 
     

                      (27) 

where {*,*} represents the anti-commutator. It is known from the theory of 

Markovian master equation for open systems that: 

      
                                                      (28) 

So, equation (27) can be written as: 

 
            

  
                                                   (29) 

where, 



        
                                                             (30.a) 

                   
        

 

 
    

                        (30.b) 

Equation (29) is a first order linear differential equation with the general solution: 

                               
 

 
                              (31) 

So, the change in Von Neumann Entropy in an action interaction is given by: 

                             
  

 
                           (32) 

where                and τd is the characteristic decoherence time. Negative of 

change in entropy is used in (32) owing to the assumption that the system entropy 

decreases in an action interaction as was mentioned earlier. Notice the resemblance of 

(32) with the Bellman equation (26). From (18), it can be inferred that this situation is 

achieved when the total entropy production for an action interaction is extremely 

small. This is precisely the condition that we arrived at while trying to maximize fu-

ture path diversity D (17) in the previous section, which suggests that both the prob-

lems of maximizing path diversity and maximizing expected utility are duals of each 

other in the proposed scheme. In terms of thermodynamic utility, this condition trans-

lates to the minimum reduction in the amount of Free energy of a system as it attains 

equilibrium. Free energy of a system corresponds to the maximum useful work that 

can be extracted from the system. As the system attains equilibrium with the heat 

bath, the system entropy attains its minimum value leading to emergence of an opti-

mal stationary goal state. 

5 Conclusions and Future Scope 

Theory of causal entropic forces is based on the idea of maximizing causal path en-

tropy by evaluating path probabilities upto a finite time horizon τ instead of greedily 

maximizing instantaneous entropy production [1]. However, adhering to classical 

thermodynamics, one cannot fully explain the origins of such a path based force act-

ing on a macrostate of a statistical ensemble. Using the interaction model proposed in 

[5], we treat measurements and actions as system environment interactions in two non 

commuting eigenbases. We establish how such a force might originate in the Quan-

tum mechanical framework for projective interactions. However, projective interac-

tions result in increase in Von Neumann entropy of the system, in which case the 

system never approaches a singular goal state. So we turn to generalized interactions 

in order to explain maximization of path diversity when the system entropy decreases 

on each action interaction at the cost of entropy of the bath using detailed balance 

relation. We also show how under a suitable choice of utility function, maximizing 

path diversity and maximizing expected utility are duals of each other.  



Future work would include determining the common criterion for optimality 

for maximizing path diversity and expected utility in the presented scheme in terms of 

system-environment coupling strength and properties of action operators that lead to 

non-projective Lindbladians, which in turn allow decrease in system entropy. In [8], 

the authors describe application of displaced oscillator variational ansatz to Caldeira 

Leggett model for Brownian particle in a box coupled to an ohmic dissipative envi-

ronment. They show, with the help of numerical renormalization group techniques, 

how for a critical system-environment coupling strength, the particle gets localized to 

the center of the box which is analogous to the illustration of Brownian particle be-

havior under causal entropic forces [1]. A generalization of analysis in [8] would be 

necessary to arrive at the precise conditions necessary for emergence of optimal goal 

states in dissipative systems as predicted by theory of causal entropic forces. Once 

these conditions are established, it would be possible to explain intelligence as emer-

gent phenomenon in general non-equilibrium thermodynamic systems and processes. 
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