
An Application of Stochastic Context Sensitive
Grammar Induction to Transfer Learning

Eray Özkural

Gök Us Sibernetik Araştırma ve Geliştirme Ltd. Şti.

Abstract. We generalize Solomonoff’s stochastic context-free grammar induc-
tion method to context-sensitive grammars, and apply it to transfer learning prob-
lem by means of an efficient update algorithm. The stochastic grammar serves
as a guiding program distribution which improves future probabilistic induction
approximations by learning about the training sequence of problems. Stochas-
tic grammar is updated via extrapolating from the initial grammar and the solu-
tion corpus. We introduce a data structure to represent derivations and introduce
efficient algorithms to compute an updated grammar which modify production
probabilities and add new productions that represent past solutions.

1 Introduction

The present paper addresses the problem of stochastic context-sensitive grammar (SCSG)
guided universal induction. We update the guiding stochastic grammar, i.e., guiding
probability distribution (GPD), such that the information in the current solution and
past solutions may be transferred to future solutions in an efficient way, and the running
time of future solutions may be decreased by suitably extrapolating the GPD from the
initial GPD and the solution corpus. If an induction system’s probability distribution of
programs is fixed, then the system does not have any real long-term learning ability that
it can exploit during induction. We can alleviate this problem by changing the proba-
bility distribution so that we extrapolate from the already invented solution programs,
allowing more difficult problems to be solved later. We can modify the GPD and the
reference machine to encode useful algorithmic information from past solutions. GPD
may be improved so that it makes relevant programs more likely, and the reference
machine may be augmented with new subprograms.

We assume that we have a good approximation algorithm to solve stochastic opera-
tor induction, set induction and sequence prediction problems. It has been explained in
references how Levin Search may be used for this purpose, however, any other appropri-
ate search method that can search the universal set of programs/models, or a large model
class, including genetic programming is admissible. The only significant condition we
require is that the approximation algorithm uses the GPD specified by the stochastic
grammar as the a priori distribution of programs, regardless of the search method. The
approximation algorithm thus required must return a number of programs/stochastic
models that have high a priori probability (with respect to GPD) and fit the data well.
For instance, a satisfactory solution of the (universal) operator induction problem will
return a number of programs that specify a conditional probability distribution function

of output data given input data (more formally, an operator Oj(A|Q) that assigns prob-
abilities to an answer A, given question Q). Thus, a set of operator OJ ’s are assumed
to be returned from an operator induction solver.

2 Background

Universal inductive inference theory was proposed by Ray Solomonoff in 1960’s [10,
11], and its theoretical properties were proven in [12]. Levin search is a universal prob-
lem solution method which searches all possible solution programs according to an
order of induction, and it is bias-optimal [3]. The first incremental general purpose in-
cremental machine learning system was described in [13]. Later work of Solomonoff
proposed an improved general purpose incremental machine learning system, including
the abstract design of a powerful artificial intelligence system that can solve arbitrary
time-limited optimization problems, and also explains in detail how Levin search may
be used to solve universal induction problems [14]. Solomonoff later proposed the guid-
ing probability distribution (GPD) update problem, and recommended PPM, genetic
programming, echo state machines, and support vector regression as potential solution
methods [17].

In a theoretical paper, Solomonoff described three kinds of universal induction: se-
quence induction, set induction and operator induction, defining the solutions as op-
timization problems [15]. Sequence induction model predicts the next bit for any bit
string. Set induction allows us to predict which bit string would be added to a set of bit-
strings, modeling clustering type of problems. Operator induction learns the conditional
probability between question and answer pairs written as bit strings, allowing us to pre-
dict the answer to any unseen question, solving in theory any classification/regression
type of problem. A practical method for context-free grammar discovery as relevant
to the present paper was first proposed in [16], including an a priori distribution for
context-free grammars, which we shall refer to later. Schmidhuber proposed an adap-
tive Levin search method called Optimal Ordered Problem Solver (OOPS) that changes
the probability distribution dynamically, with a simple probability model of programs
that is suitable for low-level machine languages, by assigning an instruction probability
to each program, and using an instruction that bumps the probability of an instruction
[9]. This work is significant in that it shows that Levin search can be used to solve con-
ceptually difficult problems in practice, and that adaptive Levin search is a promising
strategy for incremental learning. Our preceding study adapted the practical approach
of OOPS to stochastic context-free grammars instead of instruction probabilities for
deterministic function induction and function inversion problems using Scheme as the
reference machine [8], which also provides preliminary experimental support but oth-
erwise does not address stochastic problems.

Solomonoff’s seminal contribution was the universal distribution. Let M be a uni-
versal computer. A priori probability of a program π is P (π) = 2−|π| for prefix-free
M ’s where |π| denotes length of binary program π. He defined the probability that a
string x ∈ {0, 1}∗ is generated by a random program as:

PM (x) =
∑

M(π)=x∗

2−|π| (1)

where PM (x) is the algorithmic probability of x, x∗ is any continuation of x. This
particular definition was necessary so that we could account for programs (including
non-terminating programs) that generate a sequence of bits, to be used in sequence
prediction. We shall denote it by just P (·) in the rest of the paper, as we can discern
probability of programs from bit strings. PM is also called the universal prior for it may
be used as the prior in Bayesian inference. Note that P is a semi-measure, but it may be
suitably normalized for prediction applications.

3 Guiding Probability Distribution

An induction program uses a reference machineM , and an a priori probability distribu-
tion of programs in M , P (·), to achieve induction. The a priori probability distribution
of programs is encoded as a stochastic context-sensitive grammar of programs in the
present paper, and corresponds to the GPD.

In our present system, we have a fast memory update algorithm comprised of three
steps that modify a Stochastic Context-Sensitive Grammar (SCSG) of programs, which
is the explicit long-term memory representation of our memory system. A SCSG may be
formally defined as a tuple G = (N,Σ,P, S, Pr) where N is the set of non-terminals,
Σ is the set of terminals, P is the set of productions of the form αAβ → αγβ where
a non-terminal A in the context of string α to the left and β to the right expands to
string γ in the same context. S is the start symbol, and Pr(pi) assigns a probability to
each production pi. The calculation of the a priori probability of a sentence depends
on the obvious fact that in a derivation S ⇒ α1 ⇒ α2 ⇒ ... ⇒ αn where produc-
tions p1, p2, ..., pn have been applied in order to start symbol S, the probability of the
sentence αn is naturally P (αn) =

∏
1≤i≤n Pr(pi), and the probabilities assigned to

each sentence must conform to probability axioms. In context-sensitive grammars, the
consistency axiom is achieved by ensuring that the sum of probabilities of each produc-
tion which has a left hand side of αAβ adds up to 1 for each A, and any α and β. It is
absolutely important that the probability distribution specified by the guiding distribu-
tion is consistent. Otherwise, some universal induction algorithms may go into infinite
loops. This is the reason why we limited the grammar to context-sensitive, because we
cannot yet handle unrestricted grammars. Thus, universal induction approximation is
also required to detect consistency errors during solution, and abort when necessary.

4 Transfer Learning

The transfer learning system works on multiple induction problems. The induction
problem may be any induction problem such as sequence prediction, set induction, op-
erator induction [15] or any other reasonable extension of universal induction such as
Hutter’s extension to sequence prediction [2], program learning [4] and grammar driven
genetic programming in general [6, 5] . The induction problem is solved (i.e., approx-
imated, since it is semi-computable), using genetic programming or Levin search. Al-
ternatively, any appropriate search method can be used. At this stage, we run the fast
memory update algorithm on the latest solution, which we call solution N . We iterate
until no more problems remain.

The transfer learning program contains a reference machine M , which is in our
system usually a universal computer that can specify any stochastic model, and it is
an essential input to the universal induction approximation. However, M can also be
any more restricted model class so as to promote efficiency. For instance, it can be
constrained to only primitive recursive functions, or other model classes in statistics
such as Markov models (forgoing universality). The universal induction approximation
is any valid approximation to the kinds of induction problems supported by the sys-
tem, usually just Levin search using reference machine M as the reference machine
and SCSG of programs as the a priori program distribution. However, it is known that
genetic programming can solve the induction problem just as well. We assume that at
least sequence prediction, set induction and operator induction problems can be solved
by giving appropriate parameters to universal induction approximation. It is known that
the most difficult problem among them, operator induction, can be solved by finding in
available time a set of operator models Oj(·|·) such that

∑
j a

j
n is as large as possible

where

ajn = P (Oj(·|·))
n∏
i=1

Oj(Ai|Qi). (2)

That is, we use a universal prior to determine the operators that both have high a priori
probability (P (Oj()), and fit the data well (

∏
Oj()), i.e. they have high goodness of

fit. P (·) may be calculated using SCSG of programs. The solution corpus contains the
stochastic models inferred by the induction algorithm for each solution, and associated
information such as formal parameters of each model, and their derivation in SCSG
of programs. The fast memory update algorithm , uses the solution corpus to improve
SCSG of programs, so that the a priori probability of models/programs in the solution
corpus increases, while the grammar does not grow prohibitively, as will be explained
in detail. The fast memory update algorithm is the most important part of the system, as
it is the critical step for extrapolating from solution corpus a better grammar that accel-
erates future solutions. We call the algorithm “fast” in the sense that it does not have an
exponential running time complexity with respect to output size as in Levin search; we
merely use ordinary enumeration and data mining algorithms that are reasonably fast.
Please also see [1] for an algorithm that applies SCSG’s to trajectory learning, which
our work differs chiefly in that we use grammar induction to learn program distribu-
tions.

5 Formalization

Some formalization may make the process clearer. Let G0 be the initial SCSG that acts
as a probability distribution (GPD) for all programs in the reference machine M . Let
the training sequence be a sequence D = [d1, d2, ..., dN] of N induction problems
where each di is the data for either of sequence prediction, set induction or operator
induction problems. The type of induction may be assumed to be represented with a [ti]
sequence. Alternatively, the induction types may contain another extension of univer-
sal induction that is supported by the induction algorithm used. Then, we assume that
the universal induction approximation finds a set of probability models that have high
a priori probability and explain the data well. Each such model x may be run on the

reference machine M with additional arguments that correspond to the induction prob-
lem type M(x, arg1, arg2, ...). For instance, if we are inferring the next element of a
sequence, the probability model could take a list B = b1b2...bn, and the next element
observed: M(s, b1b2b3...bn, bn+1) = P (bn+1|b1b2b3...bn), the formal parameters for
the problem being worked on is thus easily determined according to problem type. The
solution of the induction problem i yields m probability models, which we will store in
the solution corpus. Sequence S = [si] where solution i (si) represents the m solutions
as a set {si,j} of individual solution programs. Additional useful information may be
associated with each solution program, as will be explained later. Thereafter, the update
algorithm works, and using both the entire solution corpus S and the previous gram-
mars G0 through GN−1 , it produces a new grammar GN . In practice, it is possible
to use only G0 and GN−1 although according to some implementation choices made,
other grammars may have to be kept in memory, as well.

Following are the steps of the fast memory update algorithm, respectively. The step
to update production probabilities, updates production probabilities in SCSG of pro-
grams based on the initial grammar G0 and the solution corpus, calculating the pro-
duction probabilities in the program derivations among the solution corpus and then
extrapolating from them and the initial probabilities in G0. The memoization step adds
a production for each model in solution N to generate it by a call to a subprogram si,j ,
which has already been added to reference machine M . The derivation compression
step finds regularities in the derivations of each program in the solution corpus and adds
shortcut productions to SCSG of programs suitably to compress these regularities in fu-
ture solutions. To be able to make this compression, it is essential that the derivations
are represented using a derivation lattice, as will be explained next.

6 Derivation Lattice

A derivation lattice of a derivation of a SCSG G is a bipartite directed graph L(G) =
(V,E) with two disjoint vertex sets Vs (set of symbols) and Vp (set of productions), such
that Vs ⊆ N ∪Σ (all symbols in the grammar) and Vp ⊆ P (G) (all productions). Each
production αAβ → αγβ in the derivation is represented by a corresponding vertex pi
in the lattice, and an incoming edge is present for each symbol in αAβ and an outgoing
edge is present for each symbol in γ. Furthermore, each incoming and outgoing edge
is given a consecutive integer label, starting from 1, indicating the order of the sym-
bol in production left-hand and right-hand side, respectively. The production vertices
are labeled with the production number in the SCSG and their probabilities in SCSG.
Additionally, if there are multiple input symbols in the derivation, their sequence order
must be given by symbol vertex labels, and the set of all input symbols I(L(G)) must
be determined. The traversal of the leaf nodes according to increasing edge labels in
the lattice will give the output string of the lattice and is denoted as O(L(G)). (G is
dropped from notation where it is clear.) The level of a vertex u in the lattice is analo-
gous to any directed acyclic graph, it may be considered as the minimum graph distance
from the root vertices I(L) of the lattice to u. This way, the parse trees used in lower-
order grammars are elegantly generalized to account for context-sensitive grammars,
and all the necessary information is self-contained in a data structure. Alternatively, a

hypergraph representation may be used in similar manner to achieve the same effect,
since hypergraphs are topologically equivalent to bipartite graphs. We denote the set of
derivation lattices of all solution programs si,j ∈ S by L(S). Please see the Appendix
for an example [7].

7 Update Algorithm

The solution corpus requires a wealth of information for the solution to each induction
problem in the past. Recall that during solution, each induction problem yields a number
of programs. For solution i, the programs found are stored. The derivation lattice for
each program and the a priori probability of each program, both according to SCSG
of programs are stored, as well as the formal parameters of the program so that they
may be called conveniently in the future. Additional information may be stored in the
solution corpus, such as the time it took to compute the solution, and other relevant
output which may be obtained from universal induction approximation.

The SCSG of programs stores the current grammar G and it also maintains the
initial grammar G0, which is used to make sure that the universality of the grammar
is always preserved, and required for some of the extrapolation methods. G0 is likely
constructed by the programmer so that a consistent, and sensible probability distribution
is present even for the first induction problem. The probabilities cannot always be given
uniformly, since doing so may invalidate consistency. Additionally, the entire history of
grammars may be stored, preferably on secondary storage.

7.1 Updating Production Probabilities

The step to update production probabilities works by updating the probabilities in SCSG
of programs as new solutions are added to the solution corpus. For this, however, the
search algorithm must supply the derivation lattice that led to the solution, or the solu-
tion must be parsed using the same grammar. Then, the probability for each production
pi = αAβ → αγβ in the solution corpus can be easily calculated by the ratio of the
number (n1) of productions with the form αAβ → αγβ in the derivations of the solu-
tions in solution corpus to the number (n2) of all productions in the corpus that match
the form xAy → xzy, for any x, y, z, that is to say, any production that expands A
given arbitrary context and right-hand side. We cannot replace the probabilities calcu-
lated this way (Laplace’s rule) over the initial probabilities in G0, as initially there will
be few solutions, and most probabilities n1/n2 for a production will be zero, making
some programs impossible to generate. We can use the following solution. It is likely
that the initial distribution G0 will have been prepared by the programmer through test-
ing it with solution trials. The number of initial trials thus considered is estimated, for
instance, 10 could be a good value, let this number be n3. Then, instead of n1/n2 we
can use (n1+ p0 ∗n3)/(n2+n3) where p0 is the probability of pi in G0. Alternatively,
we can use various smoothing methods to solve this problem, for instance exponential
smoothing can be used to solve this problem.

s0 = p0

st = αpt + (1− α)st−1

where p0 is the initial probability, pt is the probability in the solution corpus, st is
the smoothed probability value in SCSG of programs after kth problem and α is the
smoothing factor. Note that if we use a moving average like exponential moving aver-
age, we do not give equal weight to all solutions, the most recent solutions have more
weight. This may be considered to be equivalent to a kind of short-term activation of
memory patterns in SCSG of programs. The rapid activation and inhibition of prob-
abilities with a sufficiently high α is similar to the change of focus of a person. As
for instance, shortly after studying a subject, we view other problems in terms of that
subject. Therefore, it may also be suitable to employ a combination of time agnostic
and time dependent probability calculations, to simulate both long-term and short-term
memory like effects.

7.2 Memoization of Solutions

The memoization step, on the other hand, recalls precisely each program in a solution.
The problem solver has already added the program of each solution i as a subprogram
with a name si,j for jth program of the solution, to the reference machine. For each
solution, we also have the formal parameters for the solution. For instance, in an op-
erator induction problem, there are two parameters Oj(Ai|Qi), the answer Ai and the
question Qi parameters, and the output is a probability value. Therefore, this step is
only practical if reference machine M has a function call mechanism, and we can pass
parameters easily. For most suitable M , this is true. Then, we add an alternative pro-
duction to the grammar for each si,j . For instance, in LISP language, we may add an
alternative production to the expression head (corresponding to LISP S-expressions) for
an operator induction solution for solution i, and add individual productions for each
si,j :

expression→pi solution-i

solution-i→pi,1 (si,1 expression expression)

solution-i→pi,1 (si,2 expression expression)

. . .

solution-i→pi,j (si,j expression expression)

Naturally, the question of how to assign the probability values arises. We recommend
setting pi to a fixed, heuristic, initial value c0, such as 0.1, and re-normalize other pro-
ductions of the same head expression so that they add up to 1 − c0, preserving consis-
tency. We expect the update production probabilities method to adjust the pi in subse-
quent problems, however, initially it must be given a significant probability so that we
increase the probability that it will be used shortly, otherwise, according to the smooth-
ing method employed, the update production probabilities method may rapidly forget
this new production. It is simple to set pi,j . They may be determined by the formula:

pi,j =
P (si,j)∑
j P (si,j)

(3)

where P (si,j) is given by GPD (SCSG of programs) and should already be available in
the solution corpus. In practice, it does not seem costly to maintain all si,j in the solution
corpus, as the induction algorithm will likely find only a small number of them at most
(e.g., only 3-4). This may be intuitively understood as the number of alternative ways
we understand a problem: we may be able to represent the problem with a diagram, or
with a mathematical formula, but it is difficult to multiply the correct models arbitrarily.
If we decide to spend a long time on a single induction problem, we may be able to
come up with several alternative models, however, the number would not be infeasibly
large for any non-trivial problem. That is, the stochastic memory system never entirely
forgets any solution model si,j , it may only assign it a low probability.

7.3 Derivation Compression Algorithm

The derivation compression step adds common derivations to the SCSG of programs.
With each solution program si,j a derivation lattice Li,j is associated, and stored in
the solution corpus along with the solution. After we have solved the nth problem,
the statistics of the solution corpus change. The general idea is to use the non-trivial
statistics of the solution corpus, in addition to production frequencies, to update the
SCSG of programs. A sub-derivation L′ of a given derivation lattice L is a derivation
itself, and it is a subgraph of L and it is a proper derivation lattice, as well. For instance,
we can follow a path from each input symbol to an output symbol, and it can only
contain well-formed and complete productions in the current SCSG of programs. Such
a subderivation corresponds to a derivation α ⇒∗ β where α = I(L) and β = O(L),
and L has a probability that corresponds to the product of probabilities of productions
in L′ (as in any other derivation lattice). We observe that we can represent any such
derivation with a corresponding production α→ β.

We find all sub-derivations L′ that occur with a frequency above a given thresh-
old t among all derivation lattices in the solution corpus. Well-known frequent sub-
graph mining methods may be used for this purpose. There are various efficient algo-
rithms for solving the aforementioned mining problem which we shall not explain in
much detail. However, it should be noted that if a sub-lattice L′ is frequent, all sub-
lattices of L′ are also frequent, which suggests a bottom-up generate-and-test method
to discover all frequent sub-lattices. The important point is that there is a complete
search method to find all such frequent sub-lattices for any given t. Let us assume that
F = {Ls | Ls is a sub-lattice of at least t Li,j lattices}. Any frequent sub-graph mining
algorithm may be used, and then we discard frequent sub-graphs that are not derivation
lattices. Now, each Ls ∈ F corresponds to an arbitrary production α→ β. Our method
incorporates such rules in the SCSG of programs, so that we will short-cut the same
derivation steps in subsequent induction problems, when they would result in a solution
program. However, we cannot add arbitrary derivations because we are using context-
sensitive grammars. We first restrict F to only context-free productions, by searching
for derivation lattices, that start with only one non-terminal. These would typically be
expansions of commonly used non-terminals in the grammar, such as expression or
definition. We remove the rest that do not correspond to context-free productions.

For each such new context-free sub-derivation A ⇒∗ β discovered, we try to find
a frequent context for the head non-terminal A. We assume that we can locate each

Ls in the pruned F set among Li,j . The context of each production pi in a derivation
lattice can be calculated easily as follows. We give two methods. The sub-graph Li
that contains the derivations p1, p2, . . . , pi are determined. I(Li) will contain the entire
context forA up to derivation in the order of production applications, and since we know
the location of A we can split the context into αAβ, obtaining a derivation αAβ ⇒∗
αγβ. Alternatively, the level-order traversal of the lattice up to and including the level
of pi will tend to give a balanced context (left and right context will have close length).

After we obtain contexts for each frequent sub-derivation, we can use a sequence
mining technique to discover frequent context-sensitive derivations in the solution cor-
pus. Letα = a1a2 . . . an and β = b1b2 . . . bn. Note that if sub-derivationαAβ ⇒∗ αγβ
is frequent in the solution corpus, a2 . . . anAβ ⇒∗ a2 . . . anγβ and αAb1 . . . bn−1 ⇒∗
αγb1 . . . bn−1 are also frequent (in the solution corpus). Therefore, a simple bi-directional
sequence mining method may be used to start with derivations of the form ΛAΛ⇒∗ β
(the context is null), extending the context of A one symbol at a time to left and right,
alternately, with candidate symbols from the already determined contexts of A in Li,j
and then testing if the extended context is frequent, iterating the extension in both di-
rections until an infrequent context is encountered, and outputting all frequent contexts
found this way. That is to say, the well-known sequence mining algorithms are extended
here to the bi-directional case, which is not difficult to implement, however, in our case,
it is also an extremely effective method. After this second data mining step, we will
have determined all sub-derivations with a frequency of at least t, of the form:

αAβ ⇒∗ αγβ (4)

which is precisely the general form of context-sensitive productions. In similar fashion
to memoization of programs, we split the head non-terminal into two parts, the produc-
tions in G0 and the new productions we have added:

A→pf Af (5)

The rest of productions of A are normalized so that they add up to 1−pf . pf is initially
given a high enough value (such as 0.1 in our present implementation), and this has to
be done only once when the first frequent sub-derivation for A head is discovered. We
expect that pf will be adjusted appropriately during subsequent memory updates. The
frequent sub-derivations may now be converted to productions of the form

αAfβ →pi αγβ (6)

and added to solution corpus. The problem of determining the probability of each pro-
duction is inherent in the frequency values calculated during mining of frequent sub-
derivations. The formula

pi =
|{αAβ ⇒∗ αγβ ∈ L(S)}|

|{
⋃
α,β,γ αAβ ⇒∗ αγβ ∈ L(S)}|

(7)

where we use multisets instead of sets (sets with duplicates), and the set union operator
is meant to concatenate lists, assigns a probability value to each production in propor-
tion to the computed frequencies of the corresponding frequent sub-derivation in the

solution corpus, which is an appropriate application of Laplace’s rule. That is to say, we
simply count the number of times the sub-derivation αAβ ⇒∗ αγβ has occurred in the
solution corpus, and divide it by the number of times any production xAy ⇒∗ xzy has
occurred for any strings x, y, z.

If t is given too low, such as 2, an inordinate number of frequent sub-lattices will
be found, and processing will be infeasible. We use a practical method to address this
problem. We start with t = n/2, and then we use a test that will be explained below
to determine if the productions are significant enough to add to SCSG of programs, if
the majority of them are significant, we halve t, (t = t/2), and continue iteration until
t < 2 at which point we terminate.

We can determine if a discovered production is significant by applying the set in-
duction method to the GPD update problem. Recall that set induction predicts the most
likely addition to a set, given a set of n items. A recognizer Ri(·) assigns probabilities
to individual bit strings (items), this can be any program. Let there be a set of observed
items x1, x2, . . . , xn ∈ X . What is the probability that a new item xn+1 is in the same
set X? It is defined inductively as:

P (x ∈ X) =
∑
i

P (Ri)
∏
j

Ri(xj) (8)

using a prior P (·). Since we cannot find all such Ri, we try to find, using an induction
algorithm to find Ri’s that maximizes this value. The resulting Ri’s give a good gener-
alization of the set from observed examples. We now constrain this general problem to
a simpler model of SCSG’s following Solomonoff’s probability model for context-free
grammars:

PG(G) = P (|N |).P (|Σ|).
(k − 1)!

∏k
i=1 ni!

k − 1 +
∑k
i=1 ni!

(9)

where k = |N | + |Σ| + 2 is the number of kinds of symbols, and ni is the number
of occurrences of each kind of symbol, since a simple string coding of the grammar
requires k kinds of symbols, including all non-terminals and terminals, as well as two
punctuation symbols sep1 and sep2 to separate alternative productions of the same
head, and heads, respectively. The probabilities of integers can be set as Rissanen’s in-
teger distribution as Solomonoff has previously done. The same method can be applied
to context-sensitive grammars, requiring only the additional change that, the context
in αAβ → αγβ, that is α and β must also be coded, using sep1. Note that this is a
crude probability model and neglects probabilities, however, it can be used to deter-
mine whether a production or a set of productions added to the SCSG of programs
improves the SCSG’s goodness of fit Ψ :

Ψ = PG(Gi)
∏
j

PGi
(sj) (10)

for each solution program sj in the corpus, where by PGi
(sj) we mean the probabil-

ity assigned by grammar Gi to program sj . This is a crucial aspect of the method,
we only add context-sensitive productions that improve the extrapolation of the gram-
mar, avoiding superfluous productions that may weaken its generalization power. Recall

Equation 8, first we simplify it by maintaining only the best Ri, that is the Ri that con-
tributes most to probability of membership. We assume that our previous SCSG GN−1
was such a model. Now, we try to improve upon it, by evaluating candidate productions
to be added to Gn−1. Let a new production be added this way, and let this grammar
be called G′. Let Equation 9 be used to calculate the a priori probability of Gi, coded
appropriately as a string, which corresponds to P (Ri) in Equation 8. Ri(xj) term cor-
responds to the probability assigned to the solution program xj by SCSG Gi. We thus,
first calculate the goodness of fit for Gn−1, and then we calculate the goodness of the
fit for G′ (by re-parsing all solution programs in the solution corpus) and we only add
the new production chosen this way if the goodness of fit Ψ increases. Otherwise, we
decide that the gain from fitting the solution programs better does not compensate for
the decrease in a priori probability, and we decide to discard the candidate produc-
tions. Alternatively, we can also test productions in batches, rather than one by one.
Our preferred method is, however, for m candidate productions, we sort them in or-
der of decreasing probability (Equation 7), and then we can test them one by one. We
also maintain the number of successfully added productions so that we can decide to
continue with the exploration of frequent sub-derivations.

It must be emphasized that more refined probability models of SCSG’s will result
in better generalization power for the derivation compression step, as a crude probabil-
ity model may mistakenly exclude useful productions from being added. This is not a
limitation of our proposal.

After the derivation compression step, all the solutions si,j must be re-parsed with
the latest grammar GN , and updated in the solution corpus so that they all refer con-
sistently to the same grammar, to avoid any inconsistency in subsequent runs of the
derivation compression step.

8 Discussion

We show that we can extend OOPS while restoring the vital property of bias-optimality.
We propose using a SCSG for GPD that extrapolates algorithmic information from al-
ready solved induction problems. We introduce a data structure for representing SCSG
derivations. SCSG addresses the transfer learning problem by storing information about
past solutions. A fast memory update algorithm is proposed which is comprised of three
steps: updating production probabilities, memoization of programs and derivation com-
pression. All of these steps use statistics of the solution corpus, which contains all solu-
tion programs that the induction approximation program discovers. They then modify or
add productions in the grammar. Probabilities of productions are extrapolated from ini-
tial grammar and solution corpus. All new solution programs are memoized and added
to the grammar as new productions with similarly conceived probabilities. Derivation
compression is achieved with discovery of frequent sub-derivations in the solution cor-
pus and result in additional productions. We decide which new productions to keep
by SCSG induction, which is a straightforward extension of a stochastic context-free
grammar induction method of Solomonoff. The resulting transfer learning architecture
is quite practical since it maintains universality of Solomonoff induction, while pre-
senting an extremely fast update algorithm for GPD’s that are appropriate for complex

reference machines like LISP. In the future, we plan to demonstrate the performance of
our transfer learning algorithms on extensive training sequences involving both deter-
ministic and stochastic problems.

Bibliography

[1] Jing Huang, D. Schonfeld, and V. Krishnamurthy. A new context-sensitive grammars learn-
ing algorithm and its application in trajectory classification. In Image Processing (ICIP)
2012, pages 3093–3096, Sept 2012.

[2] Marcus Hutter. Optimality of universal bayesian sequence prediction for general loss and
alphabet. JMLR, pages 971–1000, Nov 2003.

[3] L.A. Levin. Universal problems of full search. Problems of Information Transmission,
9(3):256–266, 1973.

[4] Moshe Looks. Scalable estimation-of-distribution program evolution. In Proceedings of
the 9th annual conference on Genetic and evolutionary computation, 2007.

[5] Moshe Looks, Ben Goertzel, and Cassio Pennachin. Learning computer programs with the
Bayesian optimization algorithm. In GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, volume 1, pages 747–748, Washington DC, USA,
25-29 June 2005. ACM Press.

[6] Robert I. McKay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and Michael
O’Neill. Grammar-based genetic programming: a survey. Genetic Programming and Evolv-
able Machines, 11(3-4):365–396, 2010.

[7] Eray Özkural. An application of stochastic context sensitive grammar induction to transfer
learning: Appendix. Published on www at https://examachine.net/papers/
derivation-lattice.pdf.

[8] Eray Özkural. Towards heuristic algorithmic memory. In Jürgen Schmidhuber, Kristinn R.
Thórisson, and Moshe Looks, editors, AGI, volume 6830 of Lecture Notes in Computer
Science, pages 382–387. Springer, 2011.

[9] Juergen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:211–256,
2004.

[10] Ray J. Solomonoff. A formal theory of inductive inference, part i. Information and Control,
7(1):1–22, March 1964.

[11] Ray J. Solomonoff. A formal theory of inductive inference, part ii. Information and Control,
7(2):224–254, June 1964.

[12] Ray J. Solomonoff. Complexity-based induction systems: Comparisons and convergence
theorems. IEEE Trans. on Information Theory, IT-24(4):422–432, July 1978.

[13] Ray J. Solomonoff. A system for incremental learning based on algorithmic probability. In
Proceedings of the Sixth Israeli Conference on Artificial Intelligence, pages 515–527, Tel
Aviv, Israel, December 1989.

[14] Ray J. Solomonoff. Progress in incremental machine learning. In NIPS Workshop on Uni-
versal Learning Algorithms and Optimal Search, Whistler, B.C., Canada, December 2002.

[15] Ray J. Solomonoff. Three kinds of probabilistic induction: Universal distributions and
convergence theorems. The Computer Journal, 51(5):566–570, 2008. Christopher Stewart
Wallace (1933-2004) memorial special issue.

[16] Ray J. Solomonoff. Algorithmic probability: Theory and applications. In M. Dehmer
and F. Emmert-Streib, editors, Information Theory and Statistical Learning, pages 1–23.
Springer Science+Business Media, N.Y., 2009.

[17] Ray J. Solomonoff. Algorithmic probability, heuristic programming and agi. In Third
Conference on Artificial General Intelligence, pages 251–157, 2010.

https://examachine.net/papers/derivation-lattice.pdf
https://examachine.net/papers/derivation-lattice.pdf

	An Application of Stochastic Context Sensitive Grammar Induction to Transfer Learning

