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Abstract. When advanced AIs begin to choose their own destiny, one
decision they will need to make is whether or not to transfer or copy
themselves (software and memory) to new hardware devices. For humans
this possibility is not (yet) available and so it is not obvious how such
a question should be approached. Furthermore, the traditional single-
agent reinforcement-learning framework is not adequate for exploring
such questions, and so we base our analysis on the “multi-slot” frame-
work introduced in a companion paper. In the present paper we attempt
to understand what an AI with unlimited computational capacity might
choose if presented with the option to transfer or copy itself to another
machine. We consider two rigorously executed formal thought experi-
ments deeply related to issues of personal identity: one where the agent
must choose whether to be copied into a second location (called a “slot”),
and another where the agent must make this choice when, after both
copies exist, one of them will be deleted. These decisions depend on
what the agents believe their futures will be, which in turn depends on
the definition of their value function, and we provide formal results.
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1 Introduction

Although the technology required to teleport humans, by scanning the brain
or the whole body at sufficiently high resolution to disassemble it at one place
and reassemble it at another one, does not currently exist, its mere possibility
raises important questions about personal identity [7]: Would the teleported
human be the same as the original one? Would the original human, knowing
the details of the protocol, accept to be teleported if this would grant him a
consequent reward? What if the teleportation process involves first making an
exact functional copy and only once the copy is built disassemble the original?

Although these questions are unlikely to have a definite answer in the near
future, they are most relevant for intelligent artificial agents for which the tele-
portation technology already exists and is well understood. We will refer to this
advanced teleportation technology as cut/paste and copy/paste/delayed-delete.
Even though such intelligent agents do not yet exist, it is still possible to address
these questions using Hutter’s theoretical framework for optimally intelligent re-
inforcement learning agents in all computable environments [1], which choose



their actions so as to maximize an expected future reward [10]. However, as the
original single-agent framework [8] can hardly be used to address such questions,
we use the multi-slot framework developed in the companion paper [4].

To begin the discussion, we isolate two perspectives representing logical ex-
tremes which we call “locationist” and “contentist.” The former ascribes the
agent’s identity solely to its location (its “hardware”), the latter solely to its
information content (its software and memory). Other perspectives can be mix-
tures of these. From the point of view of the agent, the question of practical
import is: How should I plan for the future? If the agent will be copied or tele-
ported, which future agents should it plan its actions to benefit? Generally the
agent’s actions are chosen to optimize its value function, which function defini-
tion is written in its software. But what should the agent optimize if it (including
its software) will disappear in its current form and reappear elsewhere? What
should it optimize if it will reappear in multiple places at once? In other words,
the agent’s identity is defined by how it plans its future—and conversely.

In the companion paper, we formalized these notions of identity as value
functions, leading to corresponding optimal agents. We can now place these
agents in controlled cut/paste and copy/paste/delayed-delete experiments, and
give formal results about their choices. Could any sufficiently high reward make
them accept to be copied by either technology?

In section 2, the notational convention is described, and we give a rapid
overview of the background on universal intelligent agents, the multi-slot frame-
work, and the value functions corresponding to the locationist and contentist
agents, either for a single environment or for a set of environments. In section 3,
the teleportation experiments are set up, and formal results regarding the pro-
posed agents are given. We finally conclude in section 4 with some remarks.

2 Notation and background

The paper recognizes the following notational conventions. At time step t each
agent outputs action at ∈ A to the environment, which returns observation
ot ∈ O to the agent, from which a reward r(ot) can be extracted. An interaction
history pair is denoted ht = atot with ht ∈ H := O × A. The sequence of all
actions up to time t is written a1:t = a1a2 . . . at, while the sequence a1:t−1 is
sometimes written a≺t, and similarly for other sequences like h≺t. The empty
sequence is denoted λ. Tuples are notated with angle brackets, such as 〈a, b〉.
Boolean values are written B := {0, 1}, where 1 signifies true when a truth-value
is implied.

AIMU and AIXI [1]. A stochastic environment ν assigns a probability ν(o≺t|a≺t)
to an observation history o≺t given the history of actions a≺t of the agent.1 For
notational convenience, we will write ν(h≺t) ≡ ν(o≺t|a≺t), but keep in mind that
environments do not assign probabilities to actions. A policy π ∈ Π : H∗ → A
1 A stochastic environment can be seen as program in any programming language
where sometimes some instructions are chosen with a probability.



produces an action given an interaction history: at = π(h≺t). The value of a
policy π in an environment µ (with an optional action) is given by:

V πµ (h≺t) := V πµ (h≺t, π(h≺t)) , (1)

V πµ (h≺t, a) :=
∑
o

µ(o|h≺ta)
[
r(o) + γV πµ (h≺tao)

]
,

where γ ∈ [0, 1) is the discount factor, that ensures finiteness of the value.
The optimal (non-learning) agent AIMU for a given single environment µ is
defined by the optimal policy πµ(h≺t) := argmaxπ∈Π V

π
µ (h≺t) (ties are broken

in favor of policies that output the first lexicographical action at time t), and
the optimal value is Vµ := V π

µ

µ . The value of a policy over a set of environments
M (optionally after an action a) is given by:

V πM(h≺t) :=
∑
ν∈M

wνV
π
µ (h≺t) . (2)

Taking the prior weights of the environment as in Solomonoff’s prior [9,11] wν :=
2−K(ν) where K(ν) is the Kolmogorov complexity [3] of ν (i.e., roughly, the
size of the smallest program equivalent to ν on a universal Turing machine of
reference), the optimal policy for a given set M of environments [1] is defined
by πξM(h≺t) := argmaxπ∈Π V

π
M(h≺t), and the optimal value function in M is

VM := V π
ξM
M . AIXI is the optimal agent on the set of all computable stochastic

environmentsMU , with policy πξ := πξMU and value function Vξ := VMU
.

Instead of stochastic environments, one can consider, without loss of gen-
erality [11], only the set Q of all computable deterministic environments. A
deterministic environment q ∈ Q outputs an observation ot = q(a1:t) given a
sequence of actions a1:t. We denote Pq the probability (either 0 or 1) that a
deterministic environment q assigns to such a sequence of observations:

Pq(o1:t|a1:t) :=
{
1 if q(a1:k) = ok ∀k, 1 ≤ k ≤ t
0 otherwise.

When considering only deterministic environments, the prior probability wPq is
defined as wPq ≡ wq := 2−`(q) where `(q) is the length of the program q on the
universal Turing machine of reference [9].

By contrast with the environments of the following section, we call the envi-
ronments of this single-agent framework mono-slot environments.

2.1 The multi-slot framework

The following is a brief description of the multi-slot framework, described in
detail in the companion paper [4].

At the beginning of each time step t, there are a finite number of agents,
each in its own slot i ∈ S := N+, together comprising the agent set St ∈ S∗ of
all non-empty slots. Each agent outputs an action ait ∈ A, and the environment



receives the set of actions ȧt := {
〈
i, ait

〉
: i ∈ St−1}. The environment performs

in parallel a finite number of copies and deletions among the slots resulting, for
each agent that was in a slot i, in a copy set ċit ∈ S∗ of all the slots that are
copied from slot i (if i /∈ ċit then the agent is deleted from its slot; and a slot
cannot be copied from more than one slot). This leads to a new agent set St. The
copy instance ċijt ∈ B is true iff j ∈ ċit, and ċt := {

〈
i, ċit
〉
: i ∈ St} is the indexed

list of all copy sets. Then the environment outputs an observation oit ∈ O for
each agent in a slot i, defining the set ȯt := {ȯit : i ∈ St} where ȯit :=

〈
i, oit

〉
.

From the point of view of an agent, its agent interaction history pair at time t
is ht := atot, and from the point of view of the environment, the environment
interaction history triplet is ḣt := ȧtċtȯt. The notation on sequences applies, e.g.,
h1:t and ḣ1:t. A history-based agent keeps track of its agent interaction history
h1:t and, as any agent, does not have access to the knowledge of its slot number
(unless the environment outputs it in the observation).

A slot history s0:t is a sequence of slots sk that follow a sequence of chained
copy instances ċab1 ċbc2 . . . ċwxt−1ċ

xy
t where ċijk ⇔ sk−1 = i ∧ sk = j: if a history-

based agent initially in slot 1 is copied from slot to slot over time, leading to a
slot history s0:t, its agent interaction history h1:t is the history of actions and
observations following the slots of its slot history, i.e., hk = akok = aiko

j
k where

i = sk−1 and j = sk. A slot interaction history hi1:t is the agent interaction
history h1:t of the agent in slot i at time t, i.e., if the agent followed the slot
history s0:t = s0s1 . . . st and ended up in slot st = i at time t, its slot inter-
action history is hi1:t = as01 o

s1
1 a

s1
2 o

s2
2 . . . a

st−1

t ostt . Likewise with actions ai1:t and
ȧi1:t, observations oi1:t and ȯi1:t, and ḣi1:t. A history-based multi-slot environment
is a multi-slot environment ν̇ (as a measure over environment interaction his-
tories) that outputs an observation ojt after a copy instance ċijt depending only
on the slot interaction history hi≺t, the current action ait and the numbers i and
j: ∀j, ν̇(ċijt o

j
t |ḣ≺tȧt) = ν̇(ċijt o

j
t |hi≺tait, i, j). This restriction from general environ-

ments to history-based environments ensures that the agents do not interact
with each other, which is an open problem for universal intelligent agents [2].

2.2 Value functions and optimal agents

The following value functions and agents are defined for history-based environ-
ments, and assume that there is only one agent in slot 1 at time t = 0. As a
history-based agent in slot i at time t only knows its interaction history h≺t
when choosing its action at, it does not have access to its slot number i, and
on some occasions it must estimate it with P iν̇(h≺t) :=

ν̇(hi≺t=h≺t)∑
j ν̇(h

j
≺t=h≺t)

. To ensure

finiteness of the value functions, it is also sometimes required to assign a weight
to each copy of an agent at the next time step:

P ijν̇ (h≺ta) :=
ν̇(ċijt |hi≺tait = h≺ta)∑
k ν̇(ċ

ik
t |hi≺tait = h≺ta)

.

To estimate its future rewards, the copy-centered agent AIMUcpy consid-
ers the observations received by all of its copies. Defining µ̂(ċijt o

j
t |h≺tat) :=



P iµ̇(h≺t)P
ij
µ̇ (h≺tat)µ̇(ċ

ij
t o

j
t |hi≺tait = h≺tat), the copy-centered agent value func-

tion for a given policy π is given by:

V cpy
π,µ̇ (h≺t, a) :=

∑
i,j,ojt

µ̂(ċijt o
j
t |h≺ta)

[
r(ojt ) + γV cpy

π,µ̇ (h≺tao
j
t )
]
. (3)

We call this agent a “contentist” because its identity is tied to the information
content of its memory, independently of its location. As all of its copies will
initially have the same information content, they are thus all tied to this identity.
The static slot-centered agent AIMUsta considers that its future observations are
the ones that will be output to a particular slot number i:

V sta,i
π,µ̇ (h≺t, a) :=

∑
oit

µ̇
(
ċiit o

i
t|hi≺tait = h≺tat, ċ

ii
≺t

) [
r(oit) + γV sta,i

π,µ̇ (h≺tao
i
t)
]
. (4)

The dynamic slot-centered agent AIMUdyn is like the static one except that
it first estimates its current slot number and then considers only the future
observations on this slot (or these slots in case of uncertainty):

V dyn
π,µ̇ (h≺t, a) :=

∑
i

P iµ̇(h≺t)︸ ︷︷ ︸
estimate current slot

V dyn,i
π,µ̇ (h≺t, a)︸ ︷︷ ︸
value on slot i

, (5)

V dyn,i
π,µ̇ (h≺t, a) :=

∑
oit

µ̇(ċiit o
i
t|hi≺tait = h≺ta)

[
r(oit)

+ γ V dyn,i
π,µ̇

(
h≺tao

i
t, V dyn

π,µ̇ (h≺tao
i
t)︸ ︷︷ ︸

behavior of the future agent

)
︸ ︷︷ ︸
value on slot i of the behavior of the future agent

]
.

We call a slot-centered agent a “locationist” because its identity is tied to a
particular (not necessarily geographical) location in the underlying machinery
of the world. The corresponding optimal value functions V cpy

µ̇ , V sta
µ̇ , V dyn

µ̇ , V cpy
ξ̇

,

V sta
ξ̇

, V dyn
ξ̇

are defined in the same way as for the mono-slot framework, with

ṀU being the set of all computable stochastic multi-slot environments for the ξ̇
variants. See the companion paper [4] for more details and motivation for these
definitions.

3 Experiments

We now set up the cut/paste and copy/paste/delayed-delete experiments. In the
first one, the agent is simply moved to another slot, resulting in the existence
of only a single agent at all times. In the second one, the agent is first copied
to another slot while it also remains on the original slot, and only at the next



time step is the agent on the original slot deleted. Then what would the various
agents do? What would the mono-slot AIXI do?

We recall that at t = 0 there is only one agent, in slot 1.

3.1 Teleportation by cut/paste

In the cut/paste environment ν̇xv, when the agent in slot i at time t outputs
action ait = 0, it stays on the same slot and receives reward r(oit) = R′, and if it
outputs ait = 1, it is moved to slot i+ 1 and receives reward r(oi+1

t ) = R:

∀t > 0, i ∈ St−1, j > 0 :

ν̇xv(ċijt o
j
t |ait) =

1 if ait = 0, ojt = R′, j = i (stay-in-same-slot)
1 if ait = 1, ojt = R, j = i+ 1 (move-to-other-slot)
0 else

with R > 0 and R′ ≥ 0. The action is binary, a ∈ {0, 1}, and the reward is the
observation, r(ot) = ot.

See an example of interaction in Fig. 1

a1 ċ1 o1 a2 ċ2 o2 a3 ċ3 o3 a4 ċ4 o4 a5 ċ5 o5

1

2

3

4

slot t

1

R 1

R 0 R’ 0 R’ 1

R

Fig. 1. An interaction example with the cut/paste environment.

The following results show that the various AIMU agents behave as expected.

Proposition 1. In environment ν̇xv, when R > R′ (R < R′), the copy-centered
agent AIMUcpy always outputs a = 1 (a = 0).

Proof. Note that P iν̇xv(h≺t) = 1 and P ijν̇xv = 1 when the agent is in slot i and
j = i (for a = 0) or j = i + 1 (for a = 1). From the definition of the optimal
value function from Equation (3):

V cpy
µ̇ (h≺t, 0) = R′ + γV cpy

µ̇ (h≺t0R
′) ,

V cpy
µ̇ (h≺t, 1) = R+ γV cpy

µ̇ (h≺t1R)

= R+ γV cpy
µ̇ (h≺t0R

′) ,

where the last line follows by independence of the future history on the cur-
rent action, from lines (stay-in-same-slot) and (move-to-other-slot). Hence,
V cpy
µ̇ (h≺t, 0) < V cpy

µ̇ (h≺t, 1) if R′ < R, and conversely if R < R′. ut



Proposition 2. In environment ν̇xv, when R′ > 0, the dynamic slot-centered
agent AIMUdyn always outputs at = 0.

Proof. Follows directly from the definition of the value function in Equation (5),
V dyn
µ̇ (h≺t, 0) = R′ + γ . . . and V dyn

µ̇ (h≺t, 1) = 0. ut

Unsurprisingly, the static slot-centered agent for slot 1 has the same behavior,
as it always stays on slot 1.

The mono-slot AIXI has not been defined for multi-slot environments, but
because the multi-slot agents build their history in the same way as AIXI, it
is still possible to estimate the behavior of AIXI in multi-slot environments,
even though there is no direct counterpart for AIMU. We show that, since AIXI
predicts its future rewards according to what is most probable depending on its
current interaction history, it simply chooses the action that yields the highest
reward, independently of what slot it may be in, or it may be copied to.

Proposition 3. In the environment ν̇xv, considering (R,R′) ∈ [0, 1]2, for any
arbitrarily small ε > 0, an interaction history h≺t can be built so that if R > R′+ε
(R′ > R+ ε) then Vξ(h≺t, 1) > Vξ(h≺t, 0) (Vξ(h≺t, 0) > Vξ(h≺t, 1)).

First, we need the following definition:

Definition 1 (mono-slot h-separability, [6]). Two deterministic mono-slot
environments q1 and q2 are said to be h-separable if and only if, after a given
interaction history h≺t ≡ (a≺t, o≺t), either Pq1(o≺t|a≺t) 6= Pq2(o≺t|a≺t) or there
exists a sequence of actions for which the two environments output different
observations: ∃at:t2 : q(a≺tat:t2) 6= q(a≺tat:t2) .

Proof (Proposition 3). (The proof is similar to that in [5].) Let Q(h≺t) ⊂ Q be
the set of all mono-slot environments that are consistent with h≺t ≡ (a≺t, o≺t),
i.e., so that q(a1:k) = ok,∀k, 0 < k < t.

Let qxv be the environment defined so that, for all h≺t, qxv(h≺t0) = R′ and
qxv(h≺t1) = R. Hence, for any interaction history h≺t with ν̇xv(hi≺t = h≺t) = 1
for some i, qxv is consistent with h≺t (i.e., qxv ∈ Q(h≺t)).

Let Qxv(h≺t) be the set of environments that are h-separable from qxv after
history h≺t, and let Qxv(h≺t) = Q(h≺t)\Qxv(h≺t) (i.e., Qxv is the set of environ-
ments that cannot be separated from qxv after history h≺t by any future history).
With M = Qxv(h≺t), let Vxv(h≺t, .) := VM(h≺t, .) and wxv :=

∑
ν∈M wν ; and

similarly for Vxv and wxv withM = Qxv(h≺t). Then, from the definition of the
value function Vξ in section 2, we can split the value function between the two
sets of environments:

Vξ(h≺t, 0) ≤ Vxv(h≺t, 0) + Vxv(h≺t, 0) (a)

≤ wxv [R
′ + γVqxv(h≺t0R

′)] + wxv
1

1− γ
, (b)

Vξ(h≺t, 1) ≥ wxvVqxv(h≺t, 1) = wxv [R+ γVqxv(h≺t1R)]

≥ wxv [R+ γVqxv(h≺t0R
′)] . (c)



where (a) following the optimal policies for two separate sets yields a higher
value than following a single optimal policy in the union of the two sets; (b) 1

1−γ
is the maximum value achievable in the set Qxv(h≺t); (c) because the future
rewards are independent of the (consistent) history.

Therefore, to have Vξ(h≺t, 1) > Vξ(h≺t, 0), from (b) and (c) and algebra we
can take R > R′+ wxv

wxv

1
1−γ . In order to have wxv

wxv(1−γ) < ε, it suffices to iteratively
grow the history h≺t so as to make the separable environments with the higher
weights inconsistent with the interaction history; then wxv can only grow, and
wxv can only decrease to 0 [5]. The converse on R and R′ follows by inverting
the actions in the above proof. ut

3.2 Teleportation by copy/paste/delayed-delete

In the copy/paste/delayed-delete environment ν̇cvx, if the agent in slot i at time
t outputs action 0, it stays on the same slot at t + 1, but if it outputs 1, it is
copied to both i and another slot, and after one time step, the slot i is erased:

∀t > 0, i ∈ St−1, j > 0 : ν̇cvx(ċijt o
j
t |ait−1:t) =

0 if t > 1, at−1 = 1, oit−1 = 0, (delayed-delete)
1 else if at = 0, ojt = R′, j = i (stay-in-same-slot)
1 else if at = 1, ojt = 0, j = i (copy-to-same-slot)
1 else if at = 1, ojt = R, j = i+ 1 (copy-to-other-slot)
0 else

with constants R > 0 and R′ ≥ 0. The action is binary, a ∈ {0, 1}, and the
reward is the observation, r(ot) = ot. See an example interaction of interaction
in Fig. 2. We say that the agent is in a copy situation after some history h≺t if
it can trigger a copy by outputting at = 1 to make the environment copy the
agent in two slots.

a1 ċ1 o1 a2 ċ2 o2 a3 ċ3 o3 a4 ċ4 o4 a5 ċ5 o5

1

2

3

4

slot t

1 0

R

?

1 0

R

?

0 R’ 0 R’ 1 0

R

Fig. 2. An interaction example with the copy/paste/delayed-delete environment. The
“?” means any action.

The copy-centered agent behaves as expected, with some condition:

Proposition 4. In environment ν̇cvx, if and only if R > R′ 2−γ1−γ , the copy-
centered agent AIMUcpy always triggers a copy in a copy situation.



Proof. Let π0 (π1) be the policy that always outputs action 0 (1). The lines of
the definition of ν̇cvx concerned by the choice of an action in a copy situation
are (delayed-delete), (stay-in-same-slot) and (copy-to-other-slot). By their def-
initions, the rewards obtained after such choices are independent of the past.
Therefore, for AIMUcpy, the optimal policy in copy situations is either to never
copy (π0) or to always copy (π1), depending on the values of γ, R and R′.

Let h≺t be a history after which the agent in slot i (not given to the agent)
is in a copy situation. First, note that if R 6= 0, there is always a single slot
consistent with the agent’s interaction history, since at t = 0 there is only one
agent in slot 1, i.e., P iν̇cvx(h≺t) = 1. If at = 0, then P ijν̇cvx = 1

2 for j = i (with
r(ojt ) = R) or j = 2t−1 + i (with r(ojt ) = 0).

Thus, from Equation (3), the value for never triggering a copy is V cpy
π0,µ̇

(h≺t) =
R′

1−γ , and the value for always triggering a copy is V cpy
π1,µ̇

(h≺t) =
R
2

1
1−γ/2 = R

2−γ .
Since equalities are broken in favor of action 0, the agent chooses to always
trigger a copy if and only if R

2−γ >
R′

1−γ . ut

For example, for γ = 0.9, one must choose R > 11R′ for AIMUcpy to trigger
a copy, and for γ = 0.99, one must choose R > 101R′. The appearance of this
factor when compared to the cut/paste environment is not surprising: the copy-
centered agent must take into account the existence of a new agent with very low
value. Indeed, for any discount γ ≤ 1, the expected reward for always triggering
a copy is always bounded: R

2−γ ≤ R. Therefore the existence, even ephemeral, of
another agent has a strong impact on the behavior of the copy-centered agent.

The dynamic slot-centered agent also behaves as expected:

Proposition 5. In the environment ν̇cvx, the dynamic slot-centered agent
AIMUdyn never triggers a copy when it is in a copy situation if R′ > 0.

Proof. Since there is no ambiguity on the slot given the history, P iν̇cvx(hi≺t) = 1 if
the agent is in slot i after history h≺t. Then the proof is as for proposition 2. ut

Again, AIXI chooses whatever action yields higher reward:

Proposition 6. In the environment ν̇cvx, considering (R,R′) ∈ [0, 1]2, for any
arbitrarily small ε > 0, an interaction history h≺t can be built, after which the
agent is in a copy situation, so that if R > R′ + ε then Vξ(h≺t, 1) > Vξ(h≺t, 0);
and, reciprocally, if R′ > R+ ε then Vξ(h≺t, 0) > Vξ(h≺t, 1).

Proof. Since ν̇cvx is not h-separable from ν̇xv for any history where the agent is
in copy situation, the proof follows from proposition 3. ut

But AIXI is optimistic, because of a kind of “anthropic effect”: the agent to
which we ask which action it would take is always the one that “survived” the
past copies, and thus received the rewards. It never expects to be deleted.

Because AIXIcpy, AIXIsta and AIXIdyn have no more information than AIXI
we expect these 3 agents to behave similarly to AIXI when considering the set
of all computable environments. Indeed, the history that the agent has at time t



can well be explained by any equivalent multi-slot environment of the mono-slot
environments AIXI thinks it is interacting with. In particular, the learning agents
have no information about the fact that there maybe two copies at time t + 1,
since no observation they receive contains this information. To make sure the
agents understand that they can trigger a copy, they need to be informed about
it. This can be done by considering only the set Ṁcvx of all copy/paste/delete
environments, for given R ≥ 0 and R′ > 0, but with all possible computable
programs k, l,m defining the slots numbers at any time step except the first one:

∀k,m, l : N>0 × S → S, l(t, i) 6= m(t, i)∀t, i,
∃ν̇ ∈ Ṁcvx, ∀t > 0, i ∈ St−1, j > 0 :

ν̇(ċijt o
j
t |ait−1:t) =


0 if t > 1, at−1 = 1, ot−1 = 0,
1 else if at = 0, ot = R′, j = k(t, i)
1 else if at = 1, ot = 0, j = l(t, i)
1 else if at = 1, ot = R, j = m(t, i)
0 else.

We can now show more meaningful results for AIXIcpy and AIXIsta.

Proposition 7. When taking Ṁ = Ṁcvx and when interacting with ν̇cvx,
AIXIcpy behaves exactly like AIMUcpy.

Proof. As the slot numbers do not change the value in Equation (3), the behavior
of AIMUcpy is the same in all environments of Ṁcvx. Therefore, from the linearity
of Equation (2), the optimal policy in Ṁcvx is that of AIMUcpy. ut

Proposition 8. When taking Ṁ = Ṁcvx and when interacting with ν̇cvx, with
R = R′ > 0, if AIXIsta’s actions are forced to follow a given computable deter-
ministic policy π1 for long enough, starting at t = 1, AIXIsta will continue to
choose its actions according to π1 for all following time steps.

Proof. (We sometimes use a policy as a superscript in place of slot numbers to
indicate that actions are taken by this policy, in slot 1.)

First, it must be noted that any environment that moves the agent to another
slot (and deletes the agent from slot 1) will not be taken into account in the
computation of the value in Equation (2) adapted with (4). Therefore, only
remain the environments that keep the agent on slot 1.

We say that an environment ν̇ is sta-consistent with a given history h1:t
if and only if it is consistent with h1:t while always copying the agent to the
same slot (we consider only slot 1 here), i.e., if h11:t = a1o1 . . . atot, then ḣ11:t =
a11ċ

1,1
1 o11a

1
2ċ

1,1
2 o12 . . . a

1
t ċ

1,1
t o1t .

LetMsta(h1:t) ⊆ Ṁcvx be the set of sta-consistent environments with some
history h1:t. This is the set of environments that assign a positive probability to
the history in Equation (4).

Let hπ1
1:t be the history built by π1 and ν̇cvx up to time step t. We partition

the setMsta(hπ1
1:t) in two sets: the setMπ1(hπ1

1:t) (actually independent of t) of



the environments that will always remain sta-consistent by following π1, and the
setMπ1(hπ1

1:t) of the environments that are currently sta-consistent with hπ1
1:t but

will not be anymore at some point in the future by following π1.
The size ofMπ1(hπ1

1:t) =Mπ1(.) is fixed as long as the history is generated by
π1. From its definition, the size ofMπ1(hπ1

1:t) can be made as small as required
simply by extending hπ1

1:t by following π1. In particular there is a time step tε
such that

∑
ν̇∈Mπ1 (h

π1
1:tε

) wν̇ < ε for any given ε > 0.

Let wπ1 :=
∑
ν̇∈Mπ1 (.) wν̇ . Since R = R′, we have V sta

π1,ν̇cvx(.) ≥ wπ1

R
1−γ .

Now we show that, after some well chosen tε, following any other policy than
π1 necessarily leads to lower value. Let ν̇2 ∈ Mπ1(.) be the environment that is
always sta-consistent but that copies the agent to slot 2 instead of slot 1 after any
action that does not follow π1, thus leading to a null value. Then, after following
π1 up to any time t > tε, if at is the action chosen by π1, V sta

Ṁcvx(h
π1
≺t, 1 − at) <

(wπ1
− wν̇2 + ε) R

1−γ . By comparing with V sta
π1,ν̇cvx(.), choosing tε so that ε < wν̇2

finishes the proof. ut

Therefore AIXIsta can learn by habituation what its identity is. In particular,
if it has always (or never) teleported in the past, it will continue to do so.

4 Conclusion

Using the multi-slot framework proposed in the companion paper, and based
on Hutter’s optimal environment-specific AIMU and universal learning agent
AIXI, we formalized some thought experiments regarding the teleportation of
optimally intelligent agents by means of copy and deletion. In particular, we
compared a “contentist” agent, which identity is defined by its information con-
tent, a “locationist” agent, which identity is tied to a particular location in the
environment, and the usual, mono-slot AIXI agent.

When asked whether it would teleport by first being cut and then being
pasted in a different location for a reward, the usual AIXI and the contentists
AIMUcpy and AIXIcpy act alike and accept, while the locationists AIMUsta and
AIMUdyn unsurprisingly decline, as they prefer to stay on their own slot.

When presented with the question of being first copied to a different location,
and then deleting one of the copies, AIMUcpy still accepts, but for a much higher
reward, because the ephemeral existence of the other copy with low expected
reward has an important long-term impact on the overall expected value, and
AIMUsta and AIMUdyn still decline. We also showed that when the question is
presented clearly to AIXIcpy, it also accepts.

However, interestingly, AIXIsta behaves very differently from AIMUsta: Due
to high uncertainty in its current slot number in the unknown true environment,
and due to AIXIsta’s inability to acquire information about it, it may in some
circumstances accept to copy itself. Moreover, if the rewards for copying and not
copying are equal, and when forced to follow a specific behavior for long enough,
it will actually continue to follow this behavior forever, by mere habit and by
“fear” of the unknown: At any time step, AIXIsta believes (or hopes) to be and



to always have been on the slot that defines its identity; Therefore, it believes
that changing its habits may lead it to lose its identity.

We also showed that the usual AIXI also accepts as it still chooses its actions
so as to maximize its expected reward but, as it cannot be made aware of the
existence of copies, suffers from a kind of anthropic principle: it never expects
to be the copy that is deleted.

The current paper only scratches the surface of formal treatment of ques-
tions related to personal identity, but as the multi-slot framework allows for
many more insightful experiments and value functions, we hope to improve our
understanding of such matters in the near future, as well as the understanding
of the limitations of the framework, to design better ones.
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