
The Multi-Slot Framework:
A Formal Model for Multiple, Copiable AIs

Laurent Orseau

AgroParisTech, UMR 518 MIA, F-75005 Paris, France
INRA, UMR 518 MIA, F-75005 Paris, France

laurent.orseau@agroparistech.fr

Abstract. Because advanced AI is likely in the future, so is the pos-
sibility of multiple advanced AIs. It is therefore also likely that such
advanced AIs will be implemented in software that can be copied from
hardware to hardware. The best existing theoretical framework for the
rigorous formal treatment and prediction of such AIs are those based on
the AIXI framework developed by Hutter [2]. Unfortunately, these single-
agent frameworks do not allow formal treatment of multiple co-existing
AIs. The current paper introduces a novel “multi-slot” framework for
dealing with multiple intelligent agents, each of which can be duplicated
or deleted at each step, in arbitrarily complex environments. The frame-
work is a foundational first step in the analysis of environments that
allow creation (by copying) and deletion of multiple agents. Even by fo-
cusing on the case where the agents do not interact, the notion of future
of an agent is not straightforward anymore, so we propose several such
definitions, leading to value functions and AIXI-like agents. Finally, the
framework is shown to be sufficiently general to allow for the existence
of a universal environment that can simulate all environments in paral-
lel. A companion paper uses the multi-slot framework presented here to
explore the notion of identity in man and machine.

Keywords: Universal AI, AIXI, multi-agent

1 Introduction

In the traditional agency framework [13], a single agent interacts with an envi-
ronment by outputting an action and receiving an observation at each discrete
time step. A reinforcement learning agent [17] can extract a reward from the
observation. In this framework, the universal reinforcement learning agent AIXI
is the optimal learning agent that chooses its actions so as to maximize its future
expected reward [2], in all computable environments. Although this framework
is very general and well sufficient for almost all practical purposes, it still relies
on some strong assumptions, and we have already considered elsewhere relaxing
some of these constraints, for example when agents can modify themselves [14,8],
can be modified by the environment [12,9] or even be computed by it [10].

In this paper, we present a novel framework that is more general than the
traditional one (but less, for simplicity, than the space-time embedded intelli-
gence one [10]), where optimally intelligent agents can be duplicated and deleted
by the environment. We call it the multi-slot agency framework, as agents are
placed in slots, which can be thought of for now as robotic bodies or computer
hardware. This is similar to a multi-agent framework [1] and could be used as
such but, instead of focusing on the interactions between agents, which is difficult
at best with universal agents [3], we provide a specialization of the framework to
explicitly prevent interaction, so as to be able to provide formal results. What
matters is that agents can make decisions regarding being copied or deleted.

This new framework is initially motivated by questions about personal iden-
tity, in particular the relation between information content and the hardware
that supports it [11]: If a person is teleported by a device that scans and dis-
assembles the person’s body, transfers the information at the speed of light to
a distant place where it entirely reassembles the same body, is it the same per-
son? Some related thought experiments about the identity problem are treated
formally in the companion paper [7], based on the framework presented here.

In the present paper, we focus on the definition of the framework and of the
corresponding optimal reinforcement learning agents. However, there does not
seem to be a single straightforward definition of the value functions: Indeed, in
the traditional agency framework, there is no ambiguity as to what the future
observations of the agent are. But what if the agent can be transfered or even
copied to different locations? What or where are its future observations? How
to take them into account in the definition of the optimal agents? We provide
several plausible definitions of optimal agents, based either on the location of the
agent or on the set of its copies. We believe this new framework is general enough
to consider a wide range of new situations that are difficult or even impossible
to consider in the traditional framework.

In the next section, the notation is introduced along with a quick exposure
of the background on universal reinforcement learning agents. In section 3, the
multi-slot framework is defined. In section 4, a few possible definitions of value
functions are proposed. In section 5 we define a particular environment, that has
the property of being able to simulate all computable traditional environments.
Finally, we conclude with some remarks.

2 Notation and background

The paper recognizes the following notational conventions. At time step t each
agent outputs action at ∈ A to the environment, which returns observation
ot ∈ O to the agent, from which a reward r(ot) can be extracted. An interaction
history pair is denoted ht = atot with ht ∈ H := O × A. The sequence of all
actions up to time t is written a1:t = a1a2 . . . at, while the sequence a1:t−1 is
sometimes written a≺t, and similarly for other sequences like h≺t. The empty
sequence is denoted λ. Tuples are notated with angle brackets, such as 〈a, b〉.

Boolean values are written B := {0, 1}, where 1 signifies true when a truth-value
is implied.

AIMU and AIXI [2]. A stochastic environment ν assigns a probability ν(o≺t|a≺t)
to an observation history o≺t given the history of actions a≺t of the agent.1 For
notational convenience, we will write ν(h≺t) ≡ ν(o≺t|a≺t), but keep in mind that
environments do not assign probabilities to actions. A policy π ∈ Π : H∗ → A
produces an action given an interaction history: at = π(h≺t). The value of a
policy π in an environment µ (with an optional action) is given by:

V πµ (h≺t) := V πµ (h≺t, π(h≺t)) , (1)

V πµ (h≺t, a) :=
∑
o

µ(o|h≺ta)
[
r(o) + γV πµ (h≺tao)

]
,

where γ ∈ [0, 1) is the discount factor, that ensures finiteness of the value.
The optimal (non-learning) agent AIMU for a given single environment µ is
defined by the optimal policy πµ(h≺t) := argmaxπ∈Π V

π
µ (h≺t) (ties are broken

in favor of policies that output the first lexicographical action at time t), and
the optimal value is Vµ := V π

µ

µ . The value of a policy over a set of environments
M (optionally after an action a) is given by:

V πM(h≺t) :=
∑
ν∈M

wνV
π
µ (h≺t) . (2)

Taking the prior weights of the environment as in Solomonoff’s prior [16,18]
wν := 2−K(ν) where K(ν) is the Kolmogorov complexity [6] of ν (i.e., roughly,
the size of the smallest program equivalent to ν on a universal Turing machine
of reference), the optimal policy for a given setM of environments [2] is defined
by πξM(h≺t) := argmaxπ∈Π V

π
M(h≺t), and the optimal value function in M is

VM := V π
ξM
M . AIXI is the optimal agent on the set of all computable stochastic

environmentsMU , with policy πξ := πξMU and value function Vξ := VMU
.

3 The multi-slot framework

In the multi-slot framework, the environment is interacting with several agents
at the same time, on discrete interaction time steps. Each agent is on a given
slot, a place where its binary program is written and computed; and can then
be thought of as a computer (see Fig. 1). The number of agents can vary, and
they can be copied to other slots, or deleted from their own slot, over time.

For generality, we first give a definition of a general agent in terms of self-
modifying agents [8]:

Definition 1 (slot, memory space and agent). A slot number is the index
i ∈ S := N+ of a memory space mi. At any discrete time t ∈ N≥0, a memory
1 A stochastic environment can be seen as program in any programming language
where sometimes some instructions are chosen with a probability.

Environment

Slot1 o
a

Slot2 o
a

...

Fig. 1. The environment is in interaction with several slots.

space mi
t ∈ W is a bit string that can either be empty, mi

t = λ, or contain an
agent π̂it ∈ Π̂ : O → A ×W, i.e., a program that can be executed by an oracle
computer O: π̂it(.) = O(mi

t, .). The agent need not be computable. An agent takes
as input an observation ot−1 from the environment (or λ if t = 1), and generates
as output (1) its current action at, and (2) a new memory mi

tc (hence a new
agent), i.e.,

〈
at,m

i
tc
〉
:= π̂it−1(ot−1), where tc is the intermediate time step t

right after the action is produced, named time before copy.

Sequence notation a1:t and slot-indexed sequence notation ai1:t are used for var-
ious symbols.

Definition 2 (agent set). The agent set St ∈ S∗ is the set of all non-empty
slots at time t: St := {i : i ∈ S,mi

t 6= λ}.

Definition 3 (copy instance, copy set, copy set list). A copy instance
ċijt ∈ B is a boolean value indicating whether the memory in slot j must be
copied from the memory in slot i, i.e., mj

t ← mi
tc . All copies are performed in

parallel, yielding a new agent set. The copy set ċit is the set of all slots j at time
t that are copied from slot i: ċit := {j : ċijt = 1}. All slots that are not in a
copy set at time t are empty at time t. The copy set list is the indexed list of all
non-empty copy sets at time t: ċt := {

〈
i, ċit
〉
: ċit 6= ∅}.

Some derived properties:

– The copy ċiit is not implicit, i.e., if ċiit = 0 then mi
t is not the copy of mi

tc .
– A slot j cannot be both the copy of slot i and slot k: i 6= k =⇒ ċit ∩ ċkt = ∅.
– The agent set St is the union of all copy sets: St =

⋃
i ċ
i
t.

– Two slots being in the same copy set have the same memory content, but
the converse is not always true: j ∈ ċit, k ∈ ċit ⇒ mj

t = mk
t .

Definition 4 (multi-slot interaction protocol). The multi-slot interaction
protocol between multiple, possibly non-computable agents and a single, com-
putable environment is defined as follows. At the initial time step t = 0, the
number of non-empty slots must be finite. At each time step t, the following
stages occur in the given order:

1. t← t+ 1.
2. Each agent in a non-empty slot i produces π̂it−1(oit−1) =

〈
ait,m

i
tc
〉
. The envi-

ronment receives the finite set ȧt ∈ (S ×A)∗ of pairs
〈
i, ait

〉
of slot numbers

i ∈ St−1 and slot actions ait for all non-empty slots i. We are now at time
before copy tc.

3. The environment computes the copy set list ċt and the copies are performed
among the slots.

4. The environment outputs a finite set ȯt ∈ Ȯ = (S × O)∗ of pairs
〈
i, oit

〉
of

slot number i ∈ St and observations oit for each non-empty slot i. We now
have the environment interaction history triplet ḣt := ȧtċtȯt.

5. Back to 1.

The following points are worth noting. The environment cannot know the
contents of the slots, it merely performs copies. The number of non-empty slots
always remains finite. The agents have no direct access to their slot numbers, to
the copy sets, or to the actions performed by the other agents.

Definition 5 (multi-slot environment). A multi-slot environment operates
according to the interaction protocol in Definition 4 and is defined by a proba-
bility distribution ν̇(ċ1:tȯ1:t|ȧ1:t) over all observation sequences and copy set list
sequences given action sequences.

Definition 6 (slot history). A slot history st1:t2 ∈ S∗ is a sequence of slots
resulting from a given sequence of chained copy instances ċabt1+1ċ

bc
t1+2 . . . ċ

wx
t2−1ċ

xy
t2

such that ∀k ∈ [t1 + 1, t2], ċ
ij
k ⇔ sk−1 = i ∧ sk = j.

In other words, the slot history s9:13 = (8, 2, 3, 3, 7) corresponds to the se-
quence of copies ċ8,210 ċ

2,3
11 ċ

3,3
12 ċ

3,7
13 .

At time t, the contents of each slot i has undergone a unique slot history si0:t
of chained copies from time 0 to t, where sit = i. The sequence is unique since a
slot j at t can have been copied from only one slot i at t− 1 (see Definition 3).
For an agent in slot i at time t, this is the sequence of slots on which the actions
and observations of its interaction history have been output and received.

Definition 7 (agent/environment slot action/observation/interaction
history). An environment slot interaction history ḣit1:t2 is the set of observations
and actions occurring between t1 to t2 following the slots of the slot history
sit1−1:t2 :

ḣit1:t2 := ȧ
st1−1

t1 ċ
st1−1st1
t1 ȯ

st1
t1 . . . ȧ

st2−1

t2 ċ
st2−1st2
t2 ȯ

st2
t2 .

Likewise with the environment slot observation history ȯit1:t2 and action history
ȧit1:t2 , and the agent slot observation history oit1:t2 , action history ait1:t2 , and
interaction history hit1:t2 = ojt1a

j
t1 . . . o

i
t2a

i
t2 .

Thus, ḣi1:t is the history of actions, observations, and (chained) copies that
resulted in the contents of slot i at step t from the point of view of the envi-
ronment (i.e., accompanied by slot numbers and copy sets), whereas hi1:t is the
same history but from the agent’s point of view (i.e., without slot numbers or
copy sets).

Definition 8 (history-based agent). On slot i at time tc before the copies, a
history-based agent is an agent whose memory content is composed of an inter-
action history hi≺tait, and a policy πit that uses the history to output an action:

if mi
t−1 ≡

〈
hi≺t, π

i
t−1
〉
then mi

tc ≡
〈
hi≺ta

i
t, π

i
t−1
〉
, ait := πit−1(h

i
≺t) .

We define the probability of an agent interaction history as ν̇(hi≺t) :=∑
ḣ≺t

ν̇(ḣ≺t)ν̇(h
i
≺t|ḣ≺t) where ν̇(hi≺t|ḣ≺t) is either 1 or 0 depending on whether

hi≺t is consistent with ḣ≺t.

Definition 9 (history-based multi-slot environment). A history-based
multi-slot environment is a multi-slot environment ν̇ so that the copy set of
a given slot i and the observations output to these copies depend only on the
history of the agent in slot i and the involved slot numbers:

∀j : ν̇(ċijt ȯ
j
t |ḣ≺tȧt) = ν̇(ċijt ȯ

j
t |hi≺tait, i, j) .

These environments ensure, as a simplification, that there is no interaction be-
tween the different agents. Note however that the copy instances and observa-
tions can depend on the slot number, which means that an agent in slot i may
not have the same interaction with the environment than an agent in slot j with
the same history.

Note that even though the agents cannot interact, the “sub-environments”
they are interacting with are still not independent, because they are all the
continuations of the environments at the previous step and, since initially we
will consider that there is only one agent in slot 1, all the sub-environments
are tied to this initial environment. Furthermore, because the sub-environments
are generated by a single program, the more different the sub-environments, the
higher the complexity of the history-based multi-slot environment.

4 Value functions for multi-slot environments

For a given mono-slot environment, AIMU is the optimal agent that chooses
its actions so as to maximize its future rewards, which are extracted from its
observations. But when a agent can be copied at any step, what constitutes the
future of this agent, i.e., what will be its future observations?

Interestingly, there does not seem to be any single obvious direct translation
of AIMU in the multi-slot framework. For example, all the following definitions
of future (observations) are valid. This then leads to various definitions of AIMU.
Assuming an AIMU agent is in slot i at time t, to compute its reward for time
t + 1 it can take into account for the next time step (and thus, recursively, for
all future time steps):

– only the observations output to slot 1;
– only the observations output to slot i;
– only the observations output to the tth prime number slot;

– only the observations received by the first of its copies;
– observations received by all of its copies, possibly with some weighting;
– only the observations received by its copies that yield a minimal reward;
– observations received by all agents that have the exact same history, inde-

pendently of whether they have a common ancestor with the agent under
consideration;

– observations received by all agents that have output the sequence 11011 of
actions at some point in their history;

– observations received by all agents that have a common ancestor with the
agent under consideration;

– etc.

In the following subsections, we focus on 3 AIMU agents: The copy-centered
agent AIMUcpy, which considers the observations of all of its copies; and the
static slot-centered agent AIMUsta and dynamic slot-centered agent AIMUdyn,
which consider only the observations on either a predefined slot or on the slot
they think they occupy.

We assume that there is only one agent in slot 1 at t = 0, i.e., S0 = {1}, in
interaction with a history-based multi-slot environment ν̇.

A note on time-consistency. When designing an AIMU equation (Bellman op-
timality equation), such as the ones that follow, a particular attention must be
paid to time consistency [5]: The action that the agent predicts it will take in
a future situation must be the same as the one it takes if the situation actu-
ally arises. In other words, its behavior must be consistent over time with the
behavior it has predicted it will have.

4.1 Estimating the current slot number

When the environment makes a copy of the agent at time t to slots i and j,
this leads to two identical agents at time t + 1 with the same history, if they
receive the same observation, and the two agents therefore cannot know for sure
if they are in slot i or in slot j, and must estimate the probability of being in
each, based on their interaction history h≺t. This estimation is important as the
received observations can depend on the slot number. It is also related to the
need to account for the observer’s localization when estimating the posterior
probability of being in a given environment [4].

Then the probability that the agent is in slot i, given its interaction history
h≺t is defined by:

P iν̇(h≺t) :=
ν̇(hi≺t = h≺t)∑
j ν̇(h

j
≺t = h≺t)

and is defined as 0 if the denominator is null. In a deterministic environment,
ν̇(hi≺t = h≺t) is either 1 or 0 in depending on whether the history hi≺t is consistent
with the environment, and the denominator is the number of agents that have
the same history.

4.2 The copy-centered agent AIMUcpy

The copy-centered agent AIMUcpy considers that its future observations are the
observations received by all of its copies. Unfortunately, it is not possible to
simply assign a weight of 1 to each copy. For example, if the number of copies
grows faster than the geometric discounting decreases, the value function may
not be summable, which prevents the comparison of action values in general.
Therefore, it is necessary to weight the copies so as to ensure finiteness of the
value function. We arbitrarily choose a uniform weighting of the copies of the
next time step. Thus, at some time step t, if the agent is in slot i, the weight of
one of its direct copies in slot j is defined by

P ijν̇ (h≺ta) :=
ν̇(ċijt |hi≺tait = h≺ta)∑
k ν̇(ċ

ik
t |hi≺tait = h≺ta)

and is defined as 0 if the numerator is 0. In deterministic environments, this is
simply the inverse of the size of the copy set, 1

|ċit|
.

We thus define the copy-centered agent value function as:

V cpy
π,µ̇ (h≺t, a) :=

∑
i

P iµ̇(h≺t)︸ ︷︷ ︸
Estimate the
current slot

∑
j

P ijµ̇ (h≺ta)︸ ︷︷ ︸
Weight each copy

∑
ojt

µ̇(ċijt o
j
t |hi≺tait = h≺tat)

︸ ︷︷ ︸
Take action and receive
observation in copy slot

[
r(ojt)

+ γV cpy
π,µ̇ (h≺tao

j
t)
]
.

Note that the recurrence follows the generic definition of Equation (1). We can
simplify the equation by defining:

µ̂(ċijt o
j
t |h≺tat) := P iµ̇(h≺t)P

ij
µ̇ (h≺tat)µ̇(ċ

ij
t o

j
t |hi≺tait = h≺tat)

to have:

V cpy
π,µ̇ (h≺t, a) :=

∑
i,j,ojt

µ̂(ċijt o
j
t |h≺ta)

[
r(ojt) + γV cpy

π,µ̇ (h≺tao
j
t)
]
.

Following the generic definitions of section 2, and as for the following value
functions, the value of the optimal policy is V cpy

µ̇ , which defines the optimal
non-learning agent AIMUcpy, the value of the optimal policy in a set M is
V cpy
Ṁ , and the optimal learning agent for all computable stochastic history-based

multi-slot environments ṀU is AIXIcpy with value V cpy
ξ̇

.
Some remarks:

– Once the slot number is estimated, one may expect this information to be
passed through the recurrence on V cpy

µ̇ . However, doing so would not be
time-consistent: Indeed, the agent at time t+ 1 will not have access to this
information, and therefore the agent at time t must do as if it were the
agent at t+1, even though it already has estimated the slot number. (Thus
V cpy
π,µ̇ (h≺tao

j
t) must be read V cpy

π,µ̇ (h≺tao).)

– ċijt must be kept inside µ̇(ċijt o
j
t | . . .) despite the weight of the copies. For

example, if there is probability 0.5 for the agent to be copied to only 1 slot
(thus half of the time resulting in no copy), the weight of this copy is still 1
(whereas the copy probability is 0.5).

4.3 The static slot-centered agent AIMUsta

The static slot-centered agent AIMUsta considers only the observations received
on a particular predefined slot. As an analogy, this slot can be seen as a bank
account, on which the agent wants to maximize the value, but does not care
about the value on any other account. The static slot-centered agent AIMUsta

value function is defined by:

V sta,i
π,µ̇ (h≺t, a) :=

∑
oit

µ̇
(
ċiit o

i
t|hi≺tait = h≺tat, ċ

ii
≺t

) [
r(oit) + γV sta,i

π,µ̇ (h≺tao
i
t)
]
,

with µ̇(·|x) := 0 if µ̇(x) = 0.
This agent cares only about what happens on a predefined slot, and all its

copies will also care about the same slot. Furthermore, the arguable presence of
ċiit and ċii≺t requires that the agent “stays” on slot i and is not moved from one
slot to another before coming back to the initial slot, and for time consistency,
consider only cases where it has always been on slot i in the past.2

4.4 The dynamic slot-centered agent AIMUdyn

A more dynamic version of the slot-centered agent takes into account the ob-
servation (for the near and far future) of the (estimated) slot it occupies at the
current time step.

As it is not told what slot it should care about, it must estimate it given
its interaction history. But this leads to a complication: Say at time t the agent
knows it is in slot i, and will be copied to slots i and j at time t+1, independently
of the action, and both future agents will receive the same observation. The agent
in slot i at t should want to optimize what happens in slot i only, but there is a
trick: the agent at time t+ 1 in slot i will not have (in general) the information
of its slot being i and not j, and therefore must estimate it—it will thus estimate
that it can be either in slot i or in slot j. Thus, the agent at time t must optimize
what will happen on slot i only, knowing that its copy at t+1 will optimize what
happens on both slots i and j. This time consistency requirement leads to the

2 However, removing these would require the agent to consider the actions of other
agents that could come on its slot, which is an open problem [3].

following value function for the dynamic slot-centered agent AIMUdyn:

V dyn
π,µ̇ (h≺t, a) :=

∑
i

P iµ̇(h≺t)︸ ︷︷ ︸
estimate current slot

V dyn,i
π,µ̇ (h≺t, a)︸ ︷︷ ︸
value on slot i

,

V dyn,i
π,µ̇ (h≺t, a) :=

∑
oit

µ̇(ċiit o
i
t|hi≺tait = h≺ta)

[
r(oit)

+ γ V dyn,i
π,µ̇

(
h≺tao

i
t, V dyn

π,µ̇ (h≺tao
i
t)︸ ︷︷ ︸

behavior of the future agent

)
︸ ︷︷ ︸
value on slot i of the behavior of the future agent

]
.

The value functions and their corresponding optimal agents defined above are
all plausible transformations of AIMU and AIXI for multi-slot environments, but
it remains to understand if they really behave correctly in all situations (the very
definition of “correctly” being the problem itself). Some experiments are set up
in the companion paper [7] to provide first insights.

5 The universal multi-slot environment

In history-based environments, when a agent is copied to two slots, as the two
new agents do not interact anymore, they can be seen as being in parallel (mono-
slot) universes. We can even construct a very simple “universal” environment that
simulates all the mono-slot environments in parallel.

Let µ̇∀ be the multi-slot environment defined as follows: At each time step,
each agent in slot i is copied to slot i and to slot 2t−1+ i (thus ċit = {i, 2t−1+ i}).
The first copy receives observation 0 and the second one observation 1.

∀t, i ≤ 2t−1 : µ̇∀(ċijt o
j
t) =

1 if j = i and ojt = 0

1 if j = 2t−1 + i and ojt = 1

0 otherwise

We call this environment universal because of the following theorem:

Theorem 1. In the universal environment µ̇∀, with O = {0, 1}, for any deter-
ministic mono-slot environment q ∈ Q, at any time t > 0, there is always one
slot i ≤ 2t (and exactly one) so that the interaction history hi1:t ≡ (a1:t, o1:t) of
the agent in this slot is consistent with q, i.e., q(a1:k) = ok ∀k, 0 < k ≤ t.

Proof. By recurrence. For such a given environment q, suppose there is a slot i
so that the current interaction history hi≺t ≡ (a≺t, o≺t) on this slot is consistent
with q: q(a≺t) = ok ∀k, 0 < k < t. Let at = ait be the action chosen by the agent
on this slot i. Then the history on slot i at the end of time step t is h≺tat0 and
the history on slot j = 2t−1+ i is h≺tat1. As q(h≺tat) is either 0 or 1, the history
on either slot j or slot i (but not both) is still consistent with q. As the empty
history at t = 0 is consistent with all environments, the recurrence holds. ut

Note that, interestingly, this theorem would not hold if the observations were
given to the agent in slot i before the copies are performed, because then the
histories on slots i and j would be the same.

The universal environment is reminiscent of the coin-flip stochastic environ-
ment, that outputs observation 0 or 1 with a 1

2 probability, but there is an
important difference: In the stochastic environment, any observation string of
length t has a probability 2−t to be observed, whereas in the universal environ-
ment, all strings of length t are always realized, which means that the probability
that an agent has observed the string 0t is 1, just like there is at least another
agent at time t (sufficiently big) that has an interaction history corresponding to
playing chess games in a mono-slot environment (also compare Schmidhuber’s
multiverse [15]).

Since the interaction history h≺t is unique on each slot, for each interaction
history there exists a single slot i so that P iµ̇∀(h≺t) = 1. Therefore, it implies
that the universal environment has a constant weight in the value function, but
it has no predictive power as observations are the same for all actions and thus
does not bias the selection of the action.3

6 Conclusion

The multi-slot framework allows formal treatment of multiple, simultaneous in-
telligent agents that can be duplicated or deleted. Each agent inhabits its own
slot and can be copied to another slot at each time step. Restricting attention
to history-based environments ensures that the agents do not interact, thereby
allowing the definition of optimal, incomputable agents, such as Hutter’s AIMU
and AIXI [2].

The new framework opens up a broad range of definitions for such agents,
leading to several different definitions of value function corresponding to very
different ways of valuing the future. The copy-centered agent, for example, plans
the future of each of its copies with equal weight, while the slot-centered agent
attempts only to optimize the future of a particular slot.

The framework is sufficiently general to allow the existence of a universal
environment, which simulates all other environments in parallel. This universal
environment has a constant probability of being the true environment at all steps,
which raises some epistemological questions regarding what is truly knowable
about our world.

In a companion paper [7], the multi-slot framework provides the foundation
for several thought experiments, allowing formal results regarding the nature of
personal identity (natural and artificial).

3 But note that a similar environment that exchanges the observations depending on
the action a ∈ {0, 1} would have some predictive power.

Acknowledgements

Thanks especially to Mark Ring for help on earlier drafts and for our many
extensive discussions, from which this paper arose, regarding the nature of iden-
tity. Thanks also to Stanislas Sochacki for earlier formative conversations on this
topic, and to Jan Leike for helpful comments and careful reading.

References

1. Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelli-
gence, vol. 1. Addison-Wesley Reading (1999)

2. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer (2005)

3. Hutter, M.: Open problems in universal induction & intelligence. Algorithms 3(2),
879–906 (2009)

4. Hutter, M.: Observer localization in multiverse theories. In: Proceedings of the
Conference in Honour of Murray Gell-Mann’s 80th Birthday. pp. 638–645. World
Scientific (2010)

5. Lattimore, T., Hutter, M.: Time Consistent Discounting. In: Algorithmic Learning
Theory. LNAI, vol. 6925, pp. 383–397. Springer, Berlin, Espoo, Finland (2011)

6. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, third edit edn. (2008)

7. Orseau, L.: Teleporting universal intelligent agents. In: Artificial General Intelli-
gence (AGI). LNAI, vol. 8598. Springer (2014)

8. Orseau, L., Ring, M.: Self-Modification and Mortality in Artificial Agents. In: Ar-
tificial General Intelligence (AGI). pp. 1–10. LNAI, Springer (2011)

9. Orseau, L., Ring, M.: Memory issues of intelligent agents. In: Artificial General
Intelligence, Lecture Notes in Computer Science, vol. 7716, pp. 219–231. Springer
Berlin Heidelberg (2012)

10. Orseau, L., Ring, M.: Space-time embedded intelligence. In: Artificial General In-
telligence, Lecture Notes in Computer Science, vol. 7716, pp. 209–218. Springer
Berlin Heidelberg (2012)

11. Parfit, D.: Reasons and Persons. Oxford University Press, USA (1984)
12. Ring, M., Orseau, L.: Delusion, Survival, and Intelligent Agents. In: Artificial Gen-

eral Intelligence (AGI). pp. 11–20. LNAI, Springer (2011)
13. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice-Hall,

3rd edn. (2010)
14. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–

193 (2009)
15. Schmidhuber, J.: The fastest way of computing all universes. In: A Computable

Universe: Understanding and Exploring Nature as Computation, pp. 381–398.
World Scientific (2012)

16. Solomonoff, R.: Complexity-based induction systems: comparisons and convergence
theorems. IEEE transactions on Information Theory 24(4), 422–432 (1978)

17. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
18. Zvonkin, A K and Levin, L.A.: The complexity of finite objects and the develop-

ment of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

	The Multi-Slot Framework: A Formal Model for Multiple, Copiable AIs
	Introduction
	Notation and background
	The multi-slot framework
	Value functions for multi-slot environments
	Estimating the current slot number
	The copy-centered agent AIMUcpy
	The static slot-centered agent AIMUsta
	The dynamic slot-centered agent AIMUdyn

	The universal multi-slot environment
	Conclusion

