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Abstract. We advocate for a novel connectionist modeling framework
as an answer to a set of challenges to AGI and cognitive science put
forth by classical formal systems approaches. We show how this frame-
work, which we call Vector Symbolic Architectures, or VSAs, is also
the kind of model of mental activity that we arrive at by taking Ludwig
Wittgenstein’s critiques of the philosophy of mind and language seriously.
We conclude by describing how VSA and related architectures provide a
compelling solution to three central problems raised by Wittgenstein in
the Philosophical Investigations regarding rule-following, aspect-seeing,
and the development of a “private” language.
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1 Connectionism and the classical approach

The traditional and perhaps still-dominant view of mental activity describes it in
terms of symbols and rules of the sort used in writing predicate calculi or formal
grammars. For example, the concept of romantic jealousy might be described by
a rule

{(X loves Y ) and (Y loves Z)} → (X is jealous of Z)

The precise details of the symbols and rules do not much matter; what is
important here is the hypothesis that any physical system that instantiates the
symbols and rules in an explicit, consistent way is a reasonable candidate for
being a model of mind [1]. The brittleness of such rule-based systems and the



difficulty of scaling them up to real-world problems5 led to the connectionist
(neural network, Parallel Distributed Processing) renaissance of the 1980’s and
90’s, centered around the back-propagation algorithm for training networks with
hidden layers of nodes [3]. PDP advocates cited the “graceful degradation” dis-
played by such systems, in contrast to the all-or-nothing brittleness of rule-based
systems, as evidence in favor of the PDP / connectionist approach. With network
nodes roughly corresponding to neurons and connections to synapses, PDP net-
works also looked to be a promising avenue to showing how cognitive capacities,
such as thought and language, could be based in hidden neural activity.

Researchers favoring connectionist models typically cite the past-tense model
of English verbs [4], which indicated that a single neural network exposed to
representations of the present and past tenses of English verbs could learn both
rule-like patterns (walks/walked) and exceptions (goes/went),without anything
corresponding to an explicit syntactic rule. The word or other form being rep-
resented at any given time was encoded not as an explicit symbol, but in the
“sub-symbolic” state of activations distributed across the hidden (internal) neu-
rons. Such distributed representations [5] offered a number of desirable features,
such as content-addressability and robustness to noise, that were not intuitively
available to classicists.

Advocates of the symbols-and-rules approach were quick to point out the
limitations: although connectionist models showed an impressive ability to learn
both rule-like and exception-based patterns, there was little evidence that they
were capable of modeling the systematic, compositional nature of language and
thought [6]. Without the ability to compose and decompose propositions and
other structures in systematic ways – relating e.g., John loves Mary to Mary
loves John – there was little reason to expect connectionist models to work for
more abstract reasoning as in the jealousy example above. Further, the back-
propagation algorithm used to train the network required explicit supervision
(repeated error-correction by a teacher) in a way that was not consistent with
actual language acquisition, which consists mainly of the experience of positive
exemplars [7]. In addition to concerns about the ability of connectionist networks
to scale up to bigger problem domains, these observations made connectionist
models seem implausible.

2 VSA representation and operation

Partly in response to such criticisms, we have spent the past decade or so devel-
oping connectionist models that support the acquisition of systematic, composi-
tional behavior from a small number of positive examples and provide plausible,
scalable models for language and thought.

The general term we use for these models – Vector Symbolic Architecture, or
VSA [8] – describes a class of connectionist networks that use high-dimensional

5 An oft-cited model was SHRDLU [2], which could converse in English about a virtual
world containing children’s toy blocks using a vocabulary of around 50 words, but
was never successfully extended to a more realistic, complicated domain.



vectors of low-precision numbers to encode systematic, compositional informa-
tion as distributed representations. VSAs can represent complex entities such
as multiple role/filler relations or attribute/values pairs in such a way that ev-
ery entity – no matter how simple or complex – corresponds to a pattern of
activation distributed over all the elements of the vector.

For our purposes in this paper, we make use of three operations on vectors:
an element-wise multiplication operation ⊗ that associates or binds vectors of
the same dimensionality; an element-wise vector-addition operation + that su-
perposes such vectors or adds them to a set; and a permutation operator P ()
than can be used to encode precedence relations.

For example, given a two-place predicate like kisses and the representations of
two individuals John and Mary, one possible way of representing the proposition
that Mary kisses John is

〈kisses〉 ⊗ 〈subject〉 ⊗ 〈Mary〉+ 〈kisses〉 ⊗ 〈object〉 ⊗ 〈John〉
where the angle brackets 〈〉 around an item stand for the vector representation
of that item. If the vector elements are taken from the set {−1,+1}, then each
vector is its own binding inverse.6 Binding and unbinding can therefore both be
performed by the same operator, thanks to its associativity:

X ⊗ (X ⊗ Y ) = (X ⊗X)⊗ Y = Y

Because these vector operations are also commutative and distribute over addi-
tion, another interesting property holds: the unbinding operation can be applied
to a set of associations just as easily as it can to a single association:

Y ⊗ (X ⊗ Y + W ⊗ Z) =
Y ⊗X ⊗ Y + Y ⊗W ⊗ Z = X ⊗ Y ⊗ Y + Y ⊗W ⊗ Z =

X + Y ⊗W ⊗ Z

If the vector elements are chosen randomly (e.g., either +1 or -1 chosen by coin
flip), then we can rewrite this equation as

Y ⊗ (X ⊗ Y + W ⊗ Z) = X + noise

where noise is a vector completely dissimilar (having a dot-product or vector
cosine of zero) to any of our original vectors W , X, Y , and Z. If we like, the
noise can be removed through a “cleanup memory,” such as a Hopfield network
[9], that stores the original vectors in a neurally plausible way. In a multiple-
choice setting, the cleanup isn’t even necessary, because we can use the vector
dot-product to find the item having the highest similarity to X + noise.

Going beyond simple associative binding, we can use the permutation oper-
ator to encode directionality or precedence. For example, to encode the simple
directed graph in Figure 1:

6 It may seem dubious to represent predicates or individuals by simple vectors taken
(randomly) from the set {−1,+1}. Our goal here is not to provide a theory of rep-
resentation, but rather to illustrate the basic functioning of VSA, which can in turn
serve as a foundation for a fully fleshed-out representational system of actual vectors
derived through the interaction of sensory-motor processes, linguistics experience,
etc.



Fig. 1. A simple directed graph

〈G〉 = A⊗ P (B) + A⊗ P (C) + B ⊗ P (D)

Querying the child(ren) of B then corresponds to applying the inverse per-
mutation P−1() to the result of the same product operation:

P−1(B ⊗ 〈G〉) =
P−1(B ⊗ (A⊗ P (B) + A⊗ P (C) + B ⊗ P (D))) =

P−1(B ⊗A⊗ P (B) + B ⊗A⊗ P (C) + B ⊗B ⊗ P (D)) =
P−1(B ⊗A⊗ P (B) + B ⊗A⊗ P (C) + P (D)) =

D + noise

In sum, VSA provides a principled connectionist alternative to classical sym-
bolic systems (e.g., predicate calculus, graph theory) for encoding and manipu-
lating a variety of useful structures. The biggest advantage of VSA representa-
tions over other connectionist approaches is that a single association (or set of
associations) can be quickly recovered from a set (or larger set) of associations
using the same simple operator that creates the associations, in a time that is
independent of the number of associations. VSA thus answers the scalability
problem, and also shows how to build compositionally without using the gram-
matical rules and atomic symbols that classical approaches require. VSA also no
longer needs to rely on back-propagation for learning. We can thus get to the
same phenomenal results we see in language use efficiently, without positing a
deep grammar or logic.

3 VSA and Wittgenstein

Having outlined the details of Vector Symbolic Architectures, we will now argue
for VSA as the kind of AGI framework that accords well with the critiques pre-
sented by Wittgenstein in his Philosophical Investigations [10] and other later
works. As pointed out by several researchers ([11]; [12]; [13]), connectionist net-
works are to the classical approaches of Fodor and Pylyshyn, what Wittgen-
stein’s later philosophy of language was to the formal approaches of Gottlob
Frege and Bertrand Russell. We have shown how VSAs can fulfill the promise of
connectionism by responding to classicist concerns. We will now show how VSAs
coordinate well with several of Wittgenstein’s important observations concerning
meaningful language.



First, we note that the sub-symbolic content of VSA representations (which
are arbitrary or literally random) accords nicely with the “Beetle in the Box”
metaphor from section 293 of the Investigations:

Suppose everyone had a box with something in it: we call it a “beetle”.
No one can look into anyone else’s box, and everyone says he knows
what a beetle is only by looking at his beetle. – Here it would be quite
possible for everyone to have something different in his box. One might
even imagine such a thing constantly changing. – But suppose the word
“beetle” had a use in these people’s language? – If so it would not be
used as the name of a thing. The thing in the box has no place in the
language-game at all; not even as a something: for the box might even
be empty. – No, one can ’divide through’ by the thing in the box; it
cancels out, whatever it is. That is to say: if we construe the grammar
of the expression of sensation on the model of ’object and designation’
the object drops out of consideration as irrelevant.

Wittgenstein highlights the role of the symbol in linguistic practices. Symbols
commonly do not derive their meaning by directly representing a thing, i.e., by
ostensive definition. The language-game shows us how to use the word meaning-
fully. In other words, the atomic thing can cancel out without loss of meaning.
Indeed, VSAs use of random vectors guarantees that my “beetle,” i.e., any atomic
sensation particular to me and my use of the word, will be different from yours
from the very start. Further, as the concept of beetle evolves in the experience
of an individual or its use by that individual changes in different contexts, the
random vector itself may be “constantly changing.”

Second, we observe that the distributed nature of VSA representations ac-
cords well with Wittgenstein’s notion of “family resemblance” terms. This con-
nection was noted by Smolensky [14], who described how a “family of distributed
patterns” informed the meaning of a word in connectionist models. Mills ex-
panded on this point [11] and explicitly linked it to Wittgenstein’s critique of
essentialist concepts and formalisms. Mills notes that connectionist systems re-
flect the reliance on overlapping and criss-crossing resemblances and contextual
cues for meaningful word use ([10] #66; [11],139-141).

Mills also notes that Wittgenstein rejects a psycho-physical parallelism ([15],
608-611), and this also accords well with the distributed nature of the symbols
([11], 151, 152). A distributed view of symbols stands in contrast to recent efforts
to localize thought in a particular organ or brain region – the most extreme ver-
sion being the putative “grandmother cell” neuron whose sole job is to recognize
your grandmother [16].

Third, we note that the relation between the symbols does not require the
classical linguistic or propositional form in order to be meaningful. The non-
linguistic nature of the distributed representations employed in VSA carries over
into natural language expressions. As Wittgenstein indicates in the building crew
example at the beginning of the Investigations, it is a mistake to claim that the
utterance “Slab!” really means “Bring me a slab!” ([10] #19). I.e., in order



for an utterance to be meaningful there is no need for it to fit an underlying
grammatical form that looks like a proposition in predicate calculus. In contrast
to the sentence-like representations employed in traditional symbol systems, in
VSA there is no sense in which any item is located in any grammatical “position.”

Last, we note that the uniform nature of representation in VSA eliminates
the sort of problems that Wittgenstein criticized in Russell’s theory of types and
related formalisms. VSA dispenses with grammatical categories and types. As
early as 1914, Wittgenstein was suspicious of any artificial hierarchical struc-
tures that might be used to designate, from the top-down, when a particular
combination of signs were symbols with sense [17]. The idea that all symbols
are of the same type, coordinates well with VSA representation, which, in turn,
coordinates well with Wittgenstein’s later view: meaningful utterances emerge
from linguistic practices and not from the artificial characterizations we impose
by designating symbols and manipulating them with formal rules.

VSA fits desiderata Wittgenstein established in the Investigations by (1) not
relying on ostension or an atomic identification for symbol meaning, (2) recog-
nizing the distributed and “family resemblance” nature of symbol construction,
(3) not relying on predicate logic or grammatical form for the composition of
meaningful thoughts or sentences, and (4) repudiating different orders or types
for symbols in favor of a more organic approach. Moreover, we will now show how
VSA can solve three interrelated puzzles that Wittgenstein raised in a manner
consistent with his observations.

4 Learning patterns without explicit rule-following

Wittgenstein had serious reservations about attempts to characterize language
or mental processes using symbols-and-rules methodology ([10] #81; [12] 138).
For Wittgenstein, the productivity of human thought and linguistic behavior is
underdetermined by the rules of logic and grammar. A rule on its own cannot
be properly applied without some sort of training.

Having illustrated the way in which VSA supports compositionality and sys-
tematicity, we now illustrate how it can generalize from exemplars without re-
course to explicit rules. This example is due to Rasmussen and Eliasmith [18],
who show how a VSA-based neural architecture can solve the Raven’s Progres-
sive Matrices task for intelligence testing. In this task, subjects are given a puzzle
like the one in the left side of Figure 2 (simplified for our purposes here) and are
asked to select the missing piece from a set of possibilities like the ones on the
right.

Asked how they arrived at this solution, people might report that they fol-
lowed these two rules:

1. Put one item in the first column, two in the second, and three in the third.
2. Put • in the first row, � in the second, and N in the third.

A compelling feature of VSA is that it can solve this problem using the
representation of the matrix itself; that is, VSA can (so to speak) learn the



Fig. 2. Raven’s Progressive matrix example (left) and candidate solutions (right)

rule(s) through exposure to the problem. Each element of the matrix can be
represented as a set of attribute/value pairs; for example, the center element
would be

〈shape〉 ⊗ 〈diamond〉+ 〈number〉 ⊗ 〈two〉

Solving the matrix then corresponds to deriving a mapping from one item to
the next. As Rasmussen and Eliasmith show, such a mapping can be obtained
by computing the vector transformation from each item to the item in the row
or column next to it. The overall transformation for the entire matrix is then
the vector sum of such transformations.

Details of our VSA solution to the Raven’s Matrices (a simplified version of
[18]), along with Matlab code for this task and others mentioned in this paper,
are available from tinyurl.com/wittvsa. A similar solution, using a different
kind of VSA encoding, is presented in [19].

5 Seeing-as: Determining perceptual experience in
ambiguous contexts without interpretation

The paradox of visually ambiguous figures, or “seeing-that vs. seeing-as,” oc-
cupied Wittgenstein all the way from the Necker cube example in Tractatus
[20] (5.5423) through the duck-rabbit example in the Investigations (II.xi; see
Figure 3), about which he says

I may, then, have seen the duck-rabbit simply as a picture-rabbit from the
first. That is to say, if asked “What’s that?” or “What do you see here?”
I should have replied: “A picture-rabbit”. I should not have answered
the question “What do you see here?” by saying: “Now I am seeing it
as a picture-rabbit”. I should have described my perception: just as if I
had said “I see a red circle over there.”

There is no sense in which we simultaneously perceive one alternative and the
possibility of the other: either the duck or the rabbit must win. Wittgenstein’s
point is that the possibility of interpretation, when the perceptual information
is ambiguous, does not mean that we are interpreting in normal circumstances,
e.g., in the case of seeing just the rabbit. Connectionist approaches show how



Fig. 3. The Duck-Rabbit(courtesy of Wikimedia Commons) and the Necker Cube

the same perceptual process that shows us the red circle can show us the duck
or the rabbit, but not both at the same time.

Modeling the perception of visually ambiguous images like this was one of the
first accomplishments of the connectionist renaissance of the 1980s. As Rumel-
hart et al. [21] showed, such images could be represented as a network of con-
straints that excited or inhibited each other in a way that drove the network
quickly into one of the possible solutions. For example, in the Necker cube in
Figure 3, the two solutions are (1) PQRS front, TUVW back and (2) ) PQRS
back, TUVW front. Rumelhart et al. modeled these constraints as a localist
(“grandmother cell”) neural network each of whose units represented a possible
position of each vertex. They showed that inhibitory or excitatory synaptic con-
nections between pairs of constraints (Pf excites Wb; Rf inhibits Wf ), combined
with a simple update rule, are sufficient to drive the entire network quickly into
one of the two consistent yet incompatible solutions.

This excitation / inhibition model provides a nice explanation for Wittgen-
stein’s observation about seeing-as: presented with a set of vertices, the model,
like human observers, cannot help but “see” one global pattern of organization
or another. The network is, however, localist, and as a general model of con-
straint satisfaction it therefore raises the philosophical and practical concerns
expressed earlier. Is it possible to design an excitation / inhibition network that
uses distributed (VSA) representations?

In [22] we provide an example of such a network, and show how it can be
used to solve a Necker-cube-like problem called “graph isomorphism” (optimally
matching up the vertices of two similar shapes). Our solution works by a Bayesian
process that repeatedly updates a candidate solution state x using evidence w,
until x converges to a stable solution. Inhibition of inconsistent solutions by
consistent solutions is implemented by normalizing the values in x to a fixed
interval at the end of every update. This same approach can be used to solve
the Necker Cube. In our Necker Cube program, the candidate solution state
x is initially just the vector sum of the representations of all possible solution
components:

x0 = Pf +Qf +Rf +Sf +Tb+Ub+V b+Wb+Pb+Qb+Rb+Sb+Tf +Uf +Vf +Wf



where the subscripts stand for forward and backward. As usual for VSA, each
term of the sum is a vector of high dimensionality with elements chosen random-
lyfrom the set {−1,+1}. The constraints (evidence) w can then be represented
as the sum of the pairwise products of mutually-consistent components:

w = Pf ⊗Qf +Pf ⊗Rf +Pf ⊗Sf +Pf ⊗Tb +Pf ⊗Ub + ...+Wb⊗Ub +Wb⊗Vb

The update of x from w can likewise be implemented by using the binding
(elementwise product) operator ⊗. If any vertex/position vector (e.g. Pf ) has
greater representation in x than others do, multiplying this consistency vector w
by the state vector x has the effect of “unlocking” (unbinding) the components
of w consistent with this evidence. As an example, consider the extreme case in
which x contains only the component Pf :

xt ⊗ w =

Pf⊗(Pf⊗Qf+Pf⊗Rf+Pf⊗Sf+Pf⊗Tb+Pf⊗Ub+...+Wb⊗Ub+Wb⊗Vb) =

Qf + Rf + Sf + Tb + Ub + Vb + Wb + noise

6 Boxing the beetle: the emergence of schemata from
repeated exposure

VSA and related connectionist technologies support the view of mental processes
that we get by taking Wittgenstein’s critiques seriously. These technologies all
involve (1) representations distributed over high-dimensional vectors of numeri-
cal elements and (2) psychologically plausible learning mechanisms.

Sparse Distributed Memory or SDM [23] is a technology for content-based
storage and retrieval of high-dimensional vector representations like the ones
used in VSA. An SDM consists of some (arbitrary) number of address vectors,
each with a corresponding data vector. Addresses and data can be binary 0/1
values, or +1,-1 values as in VSA. The address values are initially random, and
the data values are initially zero. To enter a new address/data pair into the
SDM, the Hamming distance (count of the elementwise differences) of the new
address vector with each of the existing address vectors is first computed. If the
new address is less than some fixed distance from an existing address, the new
data is added to the existing data at that address. To retrieve the item at a
novel address, a similar comparison is made between the novel address and the
existing addresses, resulting in a set of addresses less than a fixed distance from
the probe. The data vectors at these addresses are summed, and the resulting
vector sum is converted to a vector of 0’s and 1’s (or -1s and +1s) by converting
each non-negative value to 1 and each negative value to 0 (or -1).

As illustrated in [24], the distribution of each pattern across several locations
produces a curious property: given a set of degraded exemplars of a pattern (such
as the pixels for an image with some noise added), an SDM can often reconstruct



the “ideal” form of the pattern through retrieval, even though no exemplar of
this ideal was presented to it. Because of these powerful properties of SDM, our
research group and others (e.g., [19]) have begun to construct models combining
VSA representations with SDM. For example, the VSA might be used to encode
sequence information (through the binding and permutation operators described
above), and the SDM would then be used as a memory of previously-encountered
sequences. We are currently investigating the use of this architecture as a model
of the encapsulation and chunk extraction that are necessary for the acquisition
of skilled behaviors like language and planning.7

In allowing each address to portray a slight variant of the same concept,
SDM reminds us of the family-resemblance approach to categories in the In-
vestigations. Moreover, this property of SDM also proposes a solution to the
problem of how we might come to use a particular leaf pattern as a schema
for leaves in general ([10] #47) or how we might come to develop a sign for a
particular yet elusive sensation using experience and memory.

Let us imagine the following case. I want to keep a diary about the
recurrence of a certain sensation. To this end I associate it with the sign
“S” and write this sign in a calendar for every day on which I have the
sensation.—-I will remark first of all that a definition of the sign cannot
be formulated.–But still I can give myself a kind of ostensive definition. –
How? ... in the present case I have no criterion of correctness. ([10]#258)

This remark is meant to support the idea that there can be no language that
ties words directly to private sensations. It emphasizes the need for a background
of reliable cues and uses to be in place before a sign can be meaningful. The
connectionist approach helps explicate the manner in which private experiences
can develop into meaningful uses of language even here when the information is
sparse.

If Wittgenstein is not denying a kind of private language (e.g., the sort that a
Robinson Crusoe could still speak) as insightful readers of the so-called “private
language” argument believe ([26], ch. 10), then we have a riddle in this passage
that distributed representations can solve: just as we saw how a rule could emerge
from linguistic practices, and how a symbol could be determined from possibly
ambiguous perceptual information, we now see how meaning might emerge for
a sign that has a sparse and ambiguous heritage.

This ties directly back into the beetle in the box example. Just as we do not
get the meaning of “beetle” by pointing to an object, we do not get the meaning
of a sensation word by an internal “pointing” to a sensation. There need be no
unique private sensation that the sign “S” captures in order for a meaningful
language containing the sign “S” to get off the ground. Wittgenstein suggests
that one cannot tell, even privately, if one is using the word correctly if there is
nothing but the sensation to rely on; one does not have a grip on the right use
of the term without a context and other behavioral cues that give sense to the

7 Contrast this approach with the state-of-the-art model for such tasks, which relies
on back-propagation for the memory component. [25]



sign [27]. Although SDM works with degraded versions of an original concept or
ideal that it can reconstruct, it can also construct a meaningful representation
from a set of experiences in want of criteria of correctness. What VSA, SDM,
and the like show here is how an ideal or proper use for the sign can be built up
from the uses of “S” even if the iterations of the “S” tying it to the sensation
were not “correctly” used (from some imagined God’s eye point of view that we
do not have).

Without any external checks to help provide a use for the sign we could not
reliably establish a meaning, but the iterations and their associations, e.g., my
stomach growling and it being around 12 o’clock when I say “S”, can begin to
build a box around the beetle – and then we can bracket the beetle: the private
sensation no longer functions to provide the rule by which I will use the word:
for the purposes of meaningful language, the sensation itself “is not a something,
but not a nothing either!” ([10] #304) And the rule by which I use the word is
established in a network of sub-symbolic connections; it is not fixed permanently,
nor is it a rule of ordinary English grammar, or a rule of Mentalese that such a
grammar purports to approximate. Wittgenstein shows us that we do not always
have a special internal or intentional grip on what the sign means. We cannot
grasp the inner sensation or the outer beetle, nor need we.
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