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Abstract. Autonomous service robots must be able to learn from their
experiences and adapt to situations encountered in dynamic environ-
ments. An episodic memory organizes experiences (e.g., location, specific
objects, people, internal states) and can be used to foresee what will oc-
cur based on previously experienced situations. In this paper, we present
an episodic memory system consisting of a cascade of two Adaptive Res-
onance Theory (ART) networks, one to categorize spatial events and the
other to extract temporal episodes from the robot’s experiences. Artifi-
cial emotions are used to dynamically modulate learning and recall of
ART networks based on how the robot is able to carry its task. Once an
episode is recalled, future events can be predicted and used to influence
the robot’s intentions. Validation is done using an autonomous robotic
platform that has to deliver objects to people within an office area.

Keywords: Episodic memory, Adaptive resonance theory, Artificial emo-
tions, Autonomous robots

1 Introduction

Autonomous service robots cohabiting with humans will have to achieve recur-
ring tasks while adapting to the changing conditions of the world. According
to Hawkins [6], predicting upcoming percepts and action consequences is key to
intelligence. Collecting information about one’s experiences over time and their
relationships within a spatio-temporal context is a role associated to an episodic
memory (EM) [16]. External context information such as location, objects, per-
sons and time [13] can be used, as for internal states such as emotions, behaviors
and goals [11, 7]. Memory consolidation and recall can be accomplished by encod-
ing and classifying events (e.g., by using a R-Tree [13]) and by using methods
(e.g., probabilistic-based [3]) looking at contextual cues and history to deter-
mine if a memorized episode is relevant to the current situation. If an episode
is recalled before the robot has completed its task, the memory can be used to
anticipate upcoming percepts and actions for the task [8].

More bio-inspired approaches, like Adaptive Resonance Theory (ART) net-
works, have also been used to categorize patterns from contextual and state
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data [1, 14, 18]. Wang et al. [18] use the concept of fusion ART, i.e., two ART
networks in cascade [2, 18], to create an EM-ART model: one ART is used to
encode spatial events and the other to extract temporal episodes from the ex-
perienced situations. Key parameters with this approach are the learning rates
β and the vigilance parameters ρ. The learning rates set the influence a pat-
tern has on weight changes, i.e., learning, and is associated to memory stability.
Vigilance parameters are used as thresholds for the template matching process:
high ρ produce a match when specific input patterns are presented, while lower
ρ make more generic pattern matching, tolerant to noise and disparities between
the learned pattern and the input pattern. In [19], validation of EM-ART was
conducted using a first-person shooter game environment, looking for instance at
the influences of ρ on how the episodic memory learns, demonstrating interesting
performance of the EM-ART model. However, using EM-ART on an autonomous
robot requires dealing with limited, noisy, imprecise and asynchronous percep-
tion processes, compared to having complete and continuous access to external
context information and internal states of a virtual world. In addition, stability
in the representation of events and episodes is required to make the EM-ART
usable in the decision-making processes of a robot. Our solution to these issues
is to dynamically set β and ρ associated to each events and episodes based on
how the robot is able to carry its task, instead of keeping constant β and ρ asso-
ciated to layers. Such evaluation is conducted using a simple model of artificial
emotions. This paper present our EM-ART model, validated using IRL-1 robot
platform programmed to deliver objects to people in an indoor environment.

2 EM-ART Modulated with Artificial Emotions

EM-ART is made of three layers: the Input Layer is used to represent the external
context information and internal states on which to build the episodic memory;
the Event Layer is made of nodes associated to events experienced; and the
Episode Layer has nodes that represent the sequence of events making episodes
as the robot accomplishes a particular task. Weights between the Input Layer and
an Event node represent the pattern from the Input Layer associated to an event,
while weights between the Event Layer and an Episode node are associated to the
temporal order of events in an episode. As the robot accomplishes its intended
task, the matching scheme of EM-ART is used to find similar events and episodes
encoded in the memory, adapting weights to reflect variations in similar patterns
or adding nodes with their associated weights to learn new events and episodes.
Weight learning is influenced by the learning rates β, and the matching scheme
by the vigilance parameters ρ. Simply by changing ρ, EM-ART can be used to
recall specific events and episodes (e.g., the robot brought Paul a book from Peter
in room 1002), or more generic situations (e.g., the robot brought someone an
object from Peter in a room). In [18, 19], β and ρ are defined for layers, making
learning and matching uniform across layers. In our EM-ART model, we exploit
the influences of β and ρ by assigning them to each event and episode nodes
according to how the robot is able to satisfy its intentions while accomplishing
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the task, as monitored by the artificial emotion module. If a match between the
current situation and a memorized episode is found, we also demonstrate how
our EM-ART model can be used to predict upcoming event nodes simply by
lowering their associated ρ and by ordering them using the memorized weights.
Figure 1 illustrates our EM-ART model, described as follows.

Fig. 1. EM-ART with an Artificial Emotion module

2.1 Input Layer

Let Ik denote an input vector, with Iki ∈ [0, 1] refers to input attribute i, for

i = 1, ..., n. Ik is augmented with its complements I
k

such that I
k

i = 1 − Iki to
define the activity vector xk of the Input Layer. Changes in the attributes of xk

initiate the matching process with the Event Layer.
Input attributes are grouped into cn channels, and with IRL-1 we use five

channels: location, objects recognized, people identified, IRL-1’s exploited behav-
iors and its emotional state. A short-term memory buffer is used to synchronize
percepts coming from different perceptual modules. For instance, the identity
of the person interacting with IRL-1 and the object shown can be observed to-
gether even though they are derived using distinct and asynchronous perceptual
processes. This allows the Input Layer to aggregate percepts related to more
meaningful and significant changes in xk, which trigger the matching process in
the Event Layer.
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2.2 Event Layer

The matching scheme with the Event Layer consists of four steps:

1. Activating an Event node. Activation T of node j from the Event Layer
is calculated using:

Tj =

cn∑
k=1

∣∣xk ∧wk
j

∣∣
αk +

∣∣wk
j

∣∣ (1)

where wk
j is the weight vector associated with the event j and input channel

k, αk > 0 is the choice parameter, the fuzzy AND operation ∧ is defined by
(p∧ q)i ≡ min(pi, qi), and the norm |.| is defined by |p| ≡

∑
i pi for vectors

p and q.
2. Matching of xk and hypothesis J . This step, known as resonance evalu-

ation, examines if, for each channel k, xk matches the weights wk
J associated

to the selected event node (identified as J), according to the following:∣∣xk ∧wk
J

∣∣
|xk|

≥ ρJ · γk (2)

with ρJ ∈ [0, 1] being the vigilance parameter associated to the selected
event node J and γk ∈ [0, 1] being the relevance parameter associated to
input channel k. γk make EM-ART sensitive to the precision of situational
attributes, i.e. the resulting recognition threshold for an event is influenced
by characteristics from a bottom layer using γk as opposed to vigilance pa-
rameter ρ which influences the recognition from a top layer. For instance,
γk = 0 for the People channel generates an event regardless of the identity
of the individual, while γk = 1 requires that a specific individual be identi-
fied to generate an event. Channels with zero relevance allow the system to
keep specific information in memory without influencing pattern recognition,
while providing useful information when an episode is recalled.
The evaluation starts by selecting node J with the highest T as the hypoth-
esis. If any of the channel k fails to reach resonance with the event J , TJ
is set to the next event J having the highest Tj until resonance occurs. If a
resonant state is not reached, a new node is created as J .

3. Learning. Using J as the Event node, learning is performed according to:

w
k(new)
J =

(
1− βJ

)
w
k(old)
J + βJ

(
xk ∧w

k(old)
J

)
(3)

where βJ ∈ [0, 1] is the learning rate parameter associated to the event J .
βJ = 1 is used when a new node is created.

4. Evaluating the activity vector y = y1, ..., ym of the Event Layer.
For node J , yJ = 1, the activities of other nodes on the Event Layer decay
linearly according to:

y
(new)
j = max(0, y

(old)
j (1− τ)) (4)

where τ is the decaying factor ∈ [0, 1], which incidentally set the maximum
number of event nodes that can be activated to derive an episode.
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2.3 Episode Layer

The role of the Episode Layer is to recognize temporal patterns (or sequences
of events) in the Event Layer and to predict upcoming events using the concept
of temporal auto-association [5]. Whenever y changes, the Episode Layer uses a
matching scheme identical to the Event Layer, evaluating resonance with node S
from the Episode Layer or creating a new node if no matches are found. Learning
is done only when the task assigned to the robot is completed. Recognition of
temporal patterns throughout a task must happen early enough to benefit from
the prediction of these patterns before the end of the task, and therefore ρs are
generally low by default, so that episode node can reach a resonant state more
easily.

By default, every ρj are set high (0.95) to recognize specific contextual events,
but are lowered to conduct a prediction if an episode is recognized before it is
completed (to then be reset at the value before prediction occurred). If resonance
occurs for episode node S at event node J , wj

S between the Event Layer and
the episode S can be used to derive the relative order of events in the episode.
The prediction yP of upcoming events can be calculated using the complement
of wj

S and y:

yp = wj
S \ y, wjS > wJS and yj > 0 (5)

Anticipated events are subsequently reordered chronologically (in ascending
order according to wj

S). To facilitate matching of these upcoming events, minor
differences are tolerated by lowering ρj according to:

ρj(new) = ρj(old)
(

1− Cρ
(

1− (p− 1)

length(yP )

))
(6)

where p is the relative index of the event in the reordered sequence yp, and Cρ
is a constant that defines the maximum decrement for ρj . The next upcoming
event (p = 1) has its vigilance parameter decreased the most. Lowering match-
ing threshold of predicted patterns is a concept that is believed to be existing in
the human brain [9]. Predicted events are more likely to appear in the current
episode, so lowering ρj facilitates their activation and makes it possible to tol-
erate minor differences. To retrieve specific situational attributes related to yp,
weights wkj can be read out one at a time following the sequential order of the
anticipated events.

2.4 Artificial Emotion Module

The Artificial Emotion Module is used to adjust ρs and βs to favor recall of the
most relevant episode and to improve episode stability in memory. Two artificial
emotions intensities Ee ∈ [0, 1] are used: Joy (indicating that the robot behaves
according to its intentions) and Anger (indicating that its intentions are not
satisfied). The heuristic used is that when an episode is experienced with high
emotion intensity, such episode needs to be stable in memory, meaning that it
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should remain intact as future learning occurs. This is done by lowering the
learning rates (βs or βj), which will limit weight changes:

β(new) = β(old) (1− Cβ · (max(Ee)− 0.5)) , β(new) ∈ [βmin, βmax] (7)

where Cβ is a constant that defines the maximum decrement, and βmin and
βmax limiting the range. A max Ee lower than 0.5 increases β, while a value
above 0.5 decreases it.

Also, episodes with high emotional intensities must be recalled easily, mean-
ing that ρs can be decreased according to:

ρs(new) = ρs(old) (1− Cρ · (max(Ee)− 0.5)) , ρs(new) ∈ [ρsmin, ρ
s
max] (8)

where ρsmin and ρsmax limits the range.
Equations (7) and (8) are applied and saved when learning occur on the

associated layer.

3 Experimental Setup

IRL-1 is a robotic platform composed of a humanoid torso on top of a mobile base
[4]. IRL-1 uses a Kinect motion sensor for vision processing, a laser range finder
for obstacle avoidance and simultaneous localization and mapping (implemented
using [15]), and a 8-microphone array for speech interaction with people. IRL-1
detects a person by merging information from legs detection, voice direction and
face detection, turning its head toward the person. People identification is imple-
mented using a basic face recognition algorithm based on Principle Component
Analysis on the detected face [17]. Objects recognition is done using 2D im-
ages from the Kinect using SIFT [10]. Two computers running Linux and Robot
Operating System (ROS) [12] are used to implement IRL-1 control architecture.

For this experiment, IRL-1’s task is to deliver one of three objects O1, O2

and O3 to people in a different location, according to the following scenario:

– In room R0, a person P stops in front of IRL-1. IRL-1 then identifies and
greets the person.

– Person P shows the object Oo to IRL-1. IRL-1 then recognizes the object
and extends its left arm to grasp it.

– IRL-1 autonomously navigates to the other room R1, searching to deliver
object Oo to somebody. When entering a room, IRL-1 asks if there is someone
there to take object Oo. IRL-1 wanders around until a person D is located
in area L inside room R1.

– IRL-1 extends its arm and delivers object Oo.

Each occurrence of this scenario consists of an episode. Once the task com-
pleted, learning is triggered in the Episode Layer and IRL-1 is programmed to
return to room R0 to start again.
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For the trials, parameters of our EM-ART are initialized as follows: ρj = 0.95,
ρs = 0.55, ρsmin = 0.45, ρsmax = 0.85, Cρ = 0.20, βj = βs = 0.6, βmin = 0.1,
βmax = 1, Cβ = 0.25, τ = 0.05 and αk = 0.01. Joy and Anger are associated
with the following control modules controlling IRL-1: Teleoperation (required
when IRL-1 looses its position in the map), Go To (to navigate from one room
to another) and Wandering. If these modules are activated (meaning that IRL-1
wants to satisfy the intended goal associated to these controllers) and exploited
(meaning that IRL-1 is using these modules to control its actions) over time, then
the intensity of Joy increases; otherwise, if they are activated but not exploited,
Anger increases. For example, when IRL-1 activates Go To, Joy increases and
Anger decreases as long as the module is exploited. If IRL-1 gets lost in its inter-
nal map, the Go To behavior is no longer exploited and therefore Joy decreases
and Anger increases.

4 Experimental Results

To demonstrate the use of our EM-ART model, we conducted 10 trials for each of
the following conditions, each trial initiated with an empty memory, to observe
how it responds to different types of situations.

1. Recall repeatability and prediction. R0, R1, P , Oo, D and L remained
identical throughout the trials, leading to only one episode. The EM-ART
should therefore be able to recall the episode as soon as possible, allowing
IRL-1 to predict where to go before having to wander in room R1, allowing
IRL-1 to use L as a destination to go to. Successful recall of L occurred 8
times out of 9. Trial 1 lead to the creation of an episode made of 15 event
nodes. For trials 2 to 4, recall occurred relatively late in the episodes, i.e.,
while IRL-1 was wandering in R1. As the scenario was repeated and learned,
recurring events stayed while sporadic events faded, and recall occurred as
early as when IRL-1 was in R0, after having recognized the object Oo or
the person P . In the one trial where recall was not observed, IRL-1 lost its
position in its map: teleoperation was required, Anger were generated and
10 new event nodes were created, leading to a distinct episode.

2. Recall repeatability and learning. R0, R1, P , Oo and D remained iden-
tical throughout the trials, while L changed with each trial. The objective
of this condition was to observe if the last L learned could be predicted as
the destination when an episodic recall occurred. Successful recall of L hap-
pened 8 times out of 9. Each time, the destination predicted was the one
from the previous trial, as expected, and IRL-1 started wandering from that
point. When learning of the episode with the new destination L occurred,
the weighted connections to the previous destination L were reduced. For
the unsuccessful trial, a false detection of the object recognition module led
to the creation of five new event nodes at the beginning of the episode, and
consequently, created of a new episode.

3. Semantic differences and creation of new episodes. R0, R1, P and
D remained identical throughout the trials, while Oo changed to be one of
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three objects (O1, O2, O3). This should lead to the creation of three episodes
semantically different but with some similar events. Each object delivery
was done at a specific location L for the object in question, to differentiate
which episode was recalled and used to predict L. Figure 2 presents the total
number of event nodes and episode nodes in memory after each trial, and
with the object presented. As expected, each trial involving a new object
Oo led to the creation of a new episode, for a total of three. The number
of event nodes in the memory increased in the first five trials since percepts
changed slightly over the episodes, but stabilized in the last five trials.

Fig. 2. Number of nodes of the Event Layer and Episode Layer as IRL-1 is being
presented with three objects.

4. Relevance of the input channel. To test the influence of γk on an event
node, R0, R1, P , D and L are kept identical over the trials, γ2 = 0 for the
Object channel, and a different object (O1, O2, O3) was used between trials.
This condition should lead to the same episode, making the objects carried
by IRL-1 irrelevant for the episode, and as expected, after 10 trials, only
one episode was learned. IRL-1 also recalled the episode when entering R1

(once in the corridor between R0 and R1), and went directly to the delivery
location L without wandering in the room R1, regardless of Oo.

5. Episode with high emotional intensity. R0, R1, P , Oo, D and L re-
mained identical throughout the trials, but we forced IRL-1 to experience
high emotional intensity during trial 1, by deliberately covering up the laser
range sensor, making the Go To module unusable. This made Anger reached
its maximum value as the episode was learned, leading to the decrease of βs

and ρs according to Eq. (7) and Eq. (8). This condition should lead to rapid
episode recall, allowing IRL-1 to benefit from a prediction early on at the
beginning of the task. Indeed, during trials 2 to 10, the episode learned in
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trial 1 was recalled as soon as IRL-1 realized it was in R0: IRL-1 then decided
to directly go to the delivery location L.

6. Episode with no emotions. R0, R1, P , Oo, D and L remained identical
throughout the trials, but we set Ee = 0 for Joy and for Anger to illustrate
the influences of emotions on recall. According to Eq. (7) and Eq. (8), ρs will
increase over time, and the episode will not be recognized as easily. During
trials 2 and 3, a successful episode recall was observed, allowing IRL-1 to
predict the delivery location L. During trials 4 and 5, IRL-1 recognized the
episode, but the prediction was not useful since L was already reached after
having wandered for a while. Starting trial 6, episode recall did not happened
before the end of the task because ρs was too high (0.85) to tolerate minor
variations in the sequence of events, leading to the creation of new episodes
in memory. After ten trials, the episodic memory contained three episodes
rather than only one.

5 Conclusion and Future Work

The underlying objective of providing a robot with an episodic memory is to
allow it to adapt its decision-making processes according to past experiences
when operating in dynamic environments. This paper presents a variant of EM-
ART in which the learning rate parameters and the vigilance parameters are
associated to specific event and episode. Changing the learning rate influences
weight adaptation to either learn quickly (β = 1) or preserve what was experi-
enced in the past (β = 0), whether it is for an event node or an episode node.
The vigilance parameters set what can be characterize as the granularity of the
matching scheme: it can be identical (ρ = 1) or coarse (ρ = 0.1), in relation
to input channels or to events. Keeping these parameters constant across lay-
ers consider that each episode has the same importance, which is unrealistic
considering that the episode experienced may or may not be the results of ap-
propriate actions according to the robot’s intentions. Using a repeatable scenario
involving people recognition, object recognition and location identification, we
illustrate how adapting these parameters can lead to appropriate episode learn-
ing and recall, and how upcoming predicted events can be used to influence the
behaviour of the robot. Results show that the robot successfully differentiates
semantically dissimilar episodes and expands its memory to learn new situations
online. To explore further all the potential of our EM-ART model, future work
involves extensive testing with a higher number of trials experienced randomly,
with different complex tasks in which repeatable sequences can be experienced,
and observing how the EM evolves over time.
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